JPH08104774A - Glass fiber reinforced resin molding - Google Patents

Glass fiber reinforced resin molding

Info

Publication number
JPH08104774A
JPH08104774A JP7179373A JP17937395A JPH08104774A JP H08104774 A JPH08104774 A JP H08104774A JP 7179373 A JP7179373 A JP 7179373A JP 17937395 A JP17937395 A JP 17937395A JP H08104774 A JPH08104774 A JP H08104774A
Authority
JP
Japan
Prior art keywords
weight
glass fiber
molded product
zinc sulfide
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7179373A
Other languages
Japanese (ja)
Other versions
JP2813559B2 (en
Inventor
Manabu Nomura
学 野村
Koji Sato
浩二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16064726&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH08104774(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP7179373A priority Critical patent/JP2813559B2/en
Publication of JPH08104774A publication Critical patent/JPH08104774A/en
Application granted granted Critical
Publication of JP2813559B2 publication Critical patent/JP2813559B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE: To provide a glass fiber reinforced thermoplastic resin molding which retains the length of glass fibers even after color matching and which has high mechanical strength and heat resistance. CONSTITUTION: This molding consists of 20-94.99wt.% thermoplastic resin, 0.01-10wt.% zinc sulfide and 5-70wt.% glass fibers having an average diameter of 3-20μm, with the average length of the fibers therein being 1-10mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車用部品,家電製
品用部品,OA機器用部品等の材料として好適に使用さ
れるガラス繊維強化樹脂成形品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass fiber reinforced resin molded product which is preferably used as a material for automobile parts, home electric appliance parts, OA equipment parts and the like.

【0002】[0002]

【従来の技術】ガラス繊維強化ポリプロピレン等のガラ
ス繊維強化熱可塑性樹脂の成形品は、機械的強度が高い
ため、種々の工業分野において重要な材料として使用さ
れている。この場合、成形品中のガラス繊維をできるだ
け長く、かつ均一に分散させることがガラス繊維強化樹
脂成形品の性能を引き出す点で重要である。
Molded articles of glass fiber reinforced thermoplastic resins such as glass fiber reinforced polypropylene are used as important materials in various industrial fields because of their high mechanical strength. In this case, it is important to disperse the glass fibers in the molded product as long and uniformly as possible in order to bring out the performance of the glass fiber reinforced resin molded product.

【0003】また、ガラス繊維強化樹脂成形品を製造す
る場合、様々な用途においてガラス繊維強化樹脂の調色
を必要とする場合が多い。白色を基本とする着色ガラス
繊維強化樹脂組成物については、代表的な白色顔料であ
る、酸化チタンが用いられている。しかし、この場合に
は成形品の機械的強度や耐熱性が低下する欠点があっ
た。このため、酸化チタンに代えて、硫化亜鉛系顔料を
用いた樹脂組成物が提案されている。たとえば、ポリエ
チレンテレフタレート系樹脂、ガラス繊維および硫化亜
鉛系顔料を所定割合で配合した樹脂組成物(特開昭60
−233150号公報)が開示されている。
Further, in the case of producing a glass fiber reinforced resin molded product, it is often necessary to adjust the color of the glass fiber reinforced resin in various applications. Titanium oxide, which is a typical white pigment, is used for the colored glass fiber reinforced resin composition based on white. However, in this case, there is a drawback that the mechanical strength and heat resistance of the molded product are lowered. Therefore, a resin composition using a zinc sulfide-based pigment instead of titanium oxide has been proposed. For example, a resin composition in which a polyethylene terephthalate resin, glass fiber and a zinc sulfide pigment are blended in a predetermined ratio (Japanese Patent Laid-Open No. Sho 60).
No. 233150) is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかしならが、これに
示されたものは、各成分を均一に混練した樹脂組成物で
あり、これをさらに成形品に成形した場合には、その実
施例からも明らかなように、原料のガラス繊維の長さ
(6mm)に比較して成形品中のガラス繊維の長さは、
0.42mm以下と極端に短く、酸化チタンに代えて、
硫化亜鉛を用いても1mm以上の平均繊維長を有する成
形品は得られていない。従って、その成形品は、強度的
にも耐熱的にも、必ずしも十分なものではなく、ガラス
繊維の性能を生かしきれていないという問題があった。
However, what is shown in this is a resin composition in which the respective components are uniformly kneaded, and when this is further molded into a molded article, it is confirmed from the examples. As is also clear, the length of the glass fiber in the molded product compared to the length of the raw glass fiber (6 mm) is
Extremely short at 0.42 mm or less, instead of titanium oxide,
Even if zinc sulfide is used, a molded product having an average fiber length of 1 mm or more has not been obtained. Therefore, the molded product is not always sufficient in strength and heat resistance, and there is a problem that the performance of glass fiber is not fully utilized.

【0005】本発明は、上記問題に鑑みてなされたもの
で、調色を行なった場合でも引張,曲げ強度,衝撃強度
など機械的強度が高く、高温曲げ強度,熱歪温度などの
耐熱性の高いガラス繊維強化樹脂成形品を提供すること
を目的とする。
The present invention has been made in view of the above problems, and has high mechanical strength such as tensile strength, bending strength and impact strength even when toning is performed, and has high heat resistance such as high temperature bending strength and heat distortion temperature. It is an object to provide a high glass fiber reinforced resin molded product.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明によれば、(A)熱可塑性樹脂20〜94.
99重量%、(B)硫化亜鉛0.01〜10重量%、お
よび(C)平均繊維径が3〜20μmのガラス繊維5〜
70重量%からなる成形品中の平均繊維長が1〜10m
mであることを特徴とするガラス繊維強化樹脂成形品が
提供される。
In order to achieve the above object, according to the present invention, (A) thermoplastic resin 20-94.
99% by weight, (B) 0.01 to 10% by weight of zinc sulfide, and (C) 5 to 5 μm of glass fibers having an average fiber diameter of 3 to 20 μm.
The average fiber length in a molded product composed of 70% by weight is 1 to 10 m.
There is provided a glass fiber reinforced resin molded product characterized by having m.

【0007】また、(A)熱可塑性樹脂20〜94.9
9重量%、(B)硫化亜鉛0.01〜10重量%、
(C)平均繊維径が3〜20μmのガラス繊維5〜70
重量%および(D)硫化亜鉛100重量部に対して0.
01〜10重量部のコバルト塩からなる成形品中の平均
繊維長が1〜10mmであることを特徴とするガラス繊
維強化樹脂成形品が提供される。
Further, (A) thermoplastic resin 20 to 94.9
9% by weight, (B) zinc sulfide 0.01 to 10% by weight,
(C) Glass fibers 5 to 70 having an average fiber diameter of 3 to 20 μm
% Based on 100% by weight and (D) 100 parts by weight of zinc sulfide.
Provided is a glass fiber reinforced resin molded product, characterized in that an average fiber length in the molded product composed of 01 to 10 parts by weight of a cobalt salt is 1 to 10 mm.

【0008】以下、本発明につき更に詳しく説明する。
まず、各成分について説明する。(A)成分 (A)成分の熱可塑性樹脂の種類に特に制限はなく、例
えばポリオレフィン、ポリアミド、スチレン無水マレイ
ン酸共重合樹脂(SMA),アクリロニトリル−スチレ
ン共重合樹脂(AS),アクリロニトリル−ブタジエン
−スチレン共重合樹脂(ABS),アクリロニトリル−
エチレン−スチレン共重合樹脂(AES)等のスチレン
系樹脂、ポリエチレンテレフタレート(PET)、ポリ
ブチレンテレフタレート(PBT)、ポリカーボネー
ト、ポリフェニレンスルフィド(PPS)、ポリアセタ
ール、ポリメチルペンテン、ポリフェニレンオキシド
(PPO)等のいずれのものでも用いることができる。
これらの中では、ポリオレフィン又はSMA,AS,A
BS,AES等のスチレン系樹脂、特にポリプロピレン
単独重合体や結晶性エチレン−プロピレン共重合体が好
ましい。
The present invention will be described in more detail below.
First, each component will be described. There are no particular restrictions on the type of the thermoplastic resin as the component (A), and examples thereof include polyolefin, polyamide, styrene maleic anhydride copolymer resin (SMA), acrylonitrile-styrene copolymer resin (AS), and acrylonitrile-butadiene-. Styrene copolymer resin (ABS), acrylonitrile-
Any of styrene resins such as ethylene-styrene copolymer resin (AES), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polycarbonate, polyphenylene sulfide (PPS), polyacetal, polymethylpentene, polyphenylene oxide (PPO), etc. It can also be used.
Among these, polyolefin or SMA, AS, A
Styrene resins such as BS and AES, especially polypropylene homopolymer and crystalline ethylene-propylene copolymer are preferred.

【0009】上記ポリプロピレン単独重合体や結晶性エ
チレン−プロピレン共重合体として、より具体的には、
結晶性を有するアイソタクチックプロピレン単独重合体
や、エチレン単位の含有量が少ないエチレンプロピレン
ランダム共重合体からなる共重合部又はプロピレン単独
重合体からなるホモ重合部とエチレン単位の含有量が比
較的多いエチレンプロピレンランダム共重合体とからな
る共重合部から構成された、いわゆるプロピレンブロッ
ク共重合体として市販されている実質上結晶性のプロピ
レンとエチレンとのブロック共重合体、あるいはこのブ
ロック共重合体における各ホモ重合部又は共重合部が、
さらにブテン−1,2−メチルペンテン−1などのα−
オレフィンを共重合したものからなる実質上結晶性のプ
ロピレン−エチレン−α-オレフィン共重合体などが好
ましく挙げられる。
As the polypropylene homopolymer and crystalline ethylene-propylene copolymer, more specifically,
Isotactic propylene homopolymer having crystallinity, a copolymerization part consisting of an ethylene propylene random copolymer having a low ethylene unit content or a homopolymerization part consisting of a propylene homopolymer and the content of ethylene units are relatively small. A block copolymer of substantially crystalline propylene and ethylene, which is commercially available as a so-called propylene block copolymer, or a block copolymer thereof, which is composed of a copolymerization portion composed of a large number of ethylene propylene random copolymers. Each homopolymerization part or copolymerization part in
In addition, butene-1,2-methylpentene-1 and other α-
Preferable examples include propylene-ethylene-α-olefin copolymers which are substantially crystalline and which are obtained by copolymerizing olefins.

【0010】(A)成分の含有量(組成割合)は、全体
の20〜94.99重量%、好ましくは50〜90重量
%である。20重量%未満では成形性が悪くなると共
に、成形品の外観が悪化する。94.99重量%を超え
ると引張強度,曲げ強度,剛性,耐熱性が低下する。
The content (composition ratio) of the component (A) is 20 to 94.99% by weight, preferably 50 to 90% by weight, based on the whole. When it is less than 20% by weight, the moldability is deteriorated and the appearance of the molded product is deteriorated. If it exceeds 94.99% by weight, the tensile strength, bending strength, rigidity and heat resistance will decrease.

【0011】(B)成分 (B)成分の硫化亜鉛は、顔料として配合されるもの
で、これにより成形品中におけるガラス繊維の繊維長を
長く保持することが可能になるものである。これに対
し、顔料として硫化亜鉛に代えて酸化チタンを用いた場
合は、成形品中のガラス繊維を長く保持することが難し
く、成形品の引張強度,曲げ強度,剛性,耐熱性が低下
する。硫化亜鉛の性状は限られないが、平均粒子径が
0.1〜1μm、特に0.2〜0.8μmで、純度が9
0%以上、特に95%以上のものが望ましい。平均粒子
径が0.1μm未満であると顔料分散が悪くなることが
あり、1μmを超えると十分な調色ができないことがあ
る。また、純度が90%未満であると耐熱性、耐候性が
低下することがある。
Component (B) The component (B), zinc sulfide, is added as a pigment, which makes it possible to keep the fiber length of the glass fiber in the molded product long. On the other hand, when titanium oxide is used as the pigment instead of zinc sulfide, it is difficult to hold the glass fiber in the molded product for a long time, and the tensile strength, bending strength, rigidity and heat resistance of the molded product are reduced. The properties of zinc sulfide are not limited, but the average particle size is 0.1 to 1 μm, particularly 0.2 to 0.8 μm, and the purity is 9
It is preferably 0% or more, particularly 95% or more. If the average particle size is less than 0.1 μm, the pigment dispersion may be poor, and if it exceeds 1 μm, sufficient toning may not be achieved. Further, if the purity is less than 90%, heat resistance and weather resistance may deteriorate.

【0012】硫化亜鉛の含有量(組成割合)は、全体の
合計量の0.01〜10重量%、好ましくは0.03〜
5重量%である。0.01重量%未満であると着色(調
色)が不十分となる。10重量%を超えると成形品が重
くなり、かつ物性が低下する上、10重量%より多く添
加しても調色上のメリットがなく、逆に経済的でなくな
る。
The content (composition ratio) of zinc sulfide is 0.01 to 10% by weight, preferably 0.03 to 10% by weight based on the total amount of zinc sulfide.
It is 5% by weight. If it is less than 0.01% by weight, coloring (toning) becomes insufficient. If it exceeds 10% by weight, the molded product becomes heavy and the physical properties are deteriorated. Also, if it is added in excess of 10% by weight, there is no merit in toning, and it is not economical.

【0013】(C)成分 (C)成分としては、平均繊維径が3〜20μm、好ま
しくは6〜15μmのガラス繊維を用いる。平均繊維径
が3μm未満であると成形時に繊維が破断し易く、成形
品の衝撃強度が不足し、20μmを超えると成形品の外
観が悪くなると共に、成形品の強度が不足する。また、
ガラス繊維の含有量(組成割合)は、全体の5〜70重
量%、好ましくは10〜50重量%である。5重量%未
満であると引張強度,曲げ強度,剛性,耐熱性等の諸物
性の改良効果が小さく、70重量%を超えると成形性が
低下すると共に、成形品の外観が悪くなる。
Component (C) As the component (C), glass fiber having an average fiber diameter of 3 to 20 μm, preferably 6 to 15 μm is used. If the average fiber diameter is less than 3 μm, the fibers are easily broken during molding, and the impact strength of the molded product is insufficient. If it exceeds 20 μm, the appearance of the molded product is deteriorated and the strength of the molded product is insufficient. Also,
The content (composition ratio) of the glass fiber is 5 to 70% by weight, preferably 10 to 50% by weight of the whole. When it is less than 5% by weight, the effect of improving various physical properties such as tensile strength, bending strength, rigidity and heat resistance is small, and when it exceeds 70% by weight, the moldability is deteriorated and the appearance of the molded product is deteriorated.

【0014】(D)成分 必要に応じて(D)成分として用いられるコバルト塩の
種類に特に限定は無いが、ナフテン酸コバルト,塩基性
炭酸コバルト,塩化コバルト,ステアリン酸コバルト等
が挙げられ、なかでもナフテン酸コバルトを好ましく用
いることができる。コバルト塩の含有量(組成割合)
は、(B)の硫化亜鉛100重量部に対して0.01〜
10重量部、好ましくは0.05〜5重量部である。
0.01重量部未満であると耐候性等の耐久性能の改良
効果が小さく、10重量部を超えると成形物の色相が劣
化すると共に、耐熱性,剛性等の低下をきたす。なお、
本発明の成形品には、上記(A)〜(D)成分に加え、
目的に応じ、酸化防止剤,耐候剤,離型剤,分散剤,顔
料等の添加剤を適宜含有することができる。
Component (D) The type of the cobalt salt used as the component (D), if necessary, is not particularly limited, and examples thereof include cobalt naphthenate, basic cobalt carbonate, cobalt chloride, and cobalt stearate. However, cobalt naphthenate can be preferably used. Cobalt salt content (composition ratio)
Is 0.01 to 100 parts by weight of zinc sulfide of (B).
10 parts by weight, preferably 0.05 to 5 parts by weight.
If it is less than 0.01 part by weight, the effect of improving the durability performance such as weather resistance will be small, and if it exceeds 10 parts by weight, the hue of the molded article will be deteriorated and the heat resistance and rigidity will be deteriorated. In addition,
In addition to the above components (A) to (D), the molded article of the present invention comprises
Additives such as an antioxidant, a weather resistance agent, a release agent, a dispersant, and a pigment may be appropriately contained according to the purpose.

【0015】本発明における成形品は、その製造方法と
しては特に制限されないが、たとえば、ガラス繊維を含
有する熱可塑性樹脂ペレット(P1)を作成する。その
際、溶融混練以外の方法を用いる。すなわち、熱可塑性
樹脂の溶融体中に平均繊維径が3〜20μmのガラス繊
維(C)の繊維束、を連続的に通過させ、その繊維束に
前記溶融体を含浸させてストランドを形成し、冷却後そ
れを切断する。具体的には、特願平1−322694号
公報に記載されているように、前記繊維束に溶融樹脂を
含浸させる際に、繊維束を、ロッドの中心を通る直線に
対し少なくとも一側が所定の角度だけ傾斜した状態でロ
ッドに巻き掛けるようにしてもよい。この場合、好まし
くは繊維束を、ロッドの中心を通る直線に対して少なく
とも一側が10度以上の傾斜角を有した状態でロッドに
巻き掛けるようにする。また、必要に応じて繊維束が波
形を形成するよう、この繊維束を複数のロッドに接触さ
せるようにする。
The method of producing the molded article of the present invention is not particularly limited, but for example, thermoplastic resin pellets (P1) containing glass fibers are prepared. At that time, a method other than melt-kneading is used. That is, a fiber bundle of glass fibers (C) having an average fiber diameter of 3 to 20 μm is continuously passed through a melt of a thermoplastic resin, and the fiber bundle is impregnated with the melt to form a strand, Cut it after cooling. Specifically, as described in Japanese Patent Application No. 1-332269, when the fiber bundle is impregnated with a molten resin, the fiber bundle has at least one predetermined side with respect to a straight line passing through the center of the rod. The rod may be wound around the rod while being inclined at an angle. In this case, preferably, the fiber bundle is wound around the rod with at least one side having an inclination angle of 10 degrees or more with respect to a straight line passing through the center of the rod. In addition, the fiber bundle is brought into contact with a plurality of rods so that the fiber bundle forms a corrugation if necessary.

【0016】より具体的には、まず、溶融した熱可塑性
樹脂中に繊維束(ガラスロービング)を連続的に通過さ
せ、繊維束に溶融樹脂を含浸させる。この際、繊維束が
波形を形成するよう曲げを繰り返して熱可塑性樹脂中を
通過するようにする。このようにすると、繊維束が十分
に開繊し、繊維束中に熱可塑性樹脂を十分に含浸させる
ことができる。次いで、上記熱可塑性樹脂を含浸した繊
維束(ストランド)を冷却後、ペレタイザで細かく切断
してペレット化する。すなわち、ガラス繊維の長さは略
ペレットの長さとなる。このペレットの切断長さを調整
することでガラス繊維の平均長さを30mm以下に調整
する。
More specifically, first, a fiber bundle (glass roving) is continuously passed through a molten thermoplastic resin to impregnate the fiber bundle with the molten resin. At this time, the fiber bundle is repeatedly bent so as to form a corrugated shape so as to pass through the thermoplastic resin. In this way, the fiber bundle is sufficiently opened, and the fiber bundle can be sufficiently impregnated with the thermoplastic resin. Next, the fiber bundle (strand) impregnated with the thermoplastic resin is cooled, and then finely cut by a pelletizer to be pelletized. That is, the length of the glass fiber is approximately the length of the pellet. By adjusting the cutting length of this pellet, the average length of the glass fiber is adjusted to 30 mm or less.

【0017】他方、成形品の成形に先立ち、熱可塑性樹
脂および硫化亜鉛を溶融混練してペレット(P2)を作
成する。この場合の熱可塑性樹脂は、前記ペレット(P
1)の作成に用いた熱可塑性樹脂と同一でも異っていて
もよい。なお、このペレット(P2)には、コバルト塩
(D)を配合することが、成形品の長期性能の向上の観
点から好ましい。
On the other hand, prior to the molding of the molded article, the thermoplastic resin and zinc sulfide are melt-kneaded to form pellets (P2). In this case, the thermoplastic resin is the pellet (P
It may be the same as or different from the thermoplastic resin used in the production of 1). In addition, it is preferable to mix the cobalt salt (D) with the pellet (P2) from the viewpoint of improving the long-term performance of the molded product.

【0018】本発明においては、上記ペレット(P1)
および(P2)に必要に応じて熱可塑性樹脂を加えて樹
脂組成物中の樹脂量を調整し、溶融混練して成形品を直
接成形する。この溶融混練成形方法としては、例えば射
出成形、押出成形などの成形法を挙げることができる。
上記成形例では、溶融混練工程を用いることなくガラス
繊維と熱可塑性樹脂とを複合化した強化樹脂ペレットを
用いること、硫化亜鉛と熱可塑性樹脂とを均一に混練し
たペレットを用いて直接成形品を成形するため、ガラス
繊維どうしの接触や硫化亜鉛とガラス繊維との直接接触
が少ないこと、ガラス繊維が熱可塑性樹脂の含浸により
包まれていること、およびガラス繊維と樹脂との溶融混
練が一回であることから、成形品中のガラス繊維の平均
繊維長を1〜10mmと長く保つことが可能となり、し
かも分散性にも優れたものとなり、そのため強度,剛
性,耐熱性に著しく優れた成形品を得ることが可能にな
った。すなわち、従来のガラス繊維強化樹脂成形品の場
合、通常、樹脂とガラス繊維とを押出機で溶融混練して
組成物(ペレット)を製造し、このペレットを用いて成
形品を成形しているため、得られた成形品は、ガラス繊
維と硫化亜鉛との直接接触および二度の溶融混練のため
ガラス繊維が破断し、その成形品中のガラス繊維の平均
繊維長が短く、そのため強度、耐熱性、剛性の向上効果
が不十分であった。したがって成形品中におけるガラス
繊維を長く保ち、かつ分散性を向上させた成形品は知ら
れていない。
In the present invention, the above pellet (P1)
If necessary, a thermoplastic resin is added to (P2) to adjust the amount of resin in the resin composition, and the mixture is melt-kneaded to directly form a molded product. Examples of this melt-kneading molding method include molding methods such as injection molding and extrusion molding.
In the above-mentioned molding example, using a reinforced resin pellet obtained by compounding glass fiber and a thermoplastic resin without using a melt-kneading step, a direct molded article is formed by using pellets obtained by uniformly kneading zinc sulfide and a thermoplastic resin. Since it is molded, there is little contact between glass fibers and direct contact between zinc sulfide and glass fibers, glass fibers are wrapped by impregnation of thermoplastic resin, and melting and kneading of glass fibers and resin once Therefore, the average fiber length of the glass fibers in the molded product can be kept as long as 1 to 10 mm, and the dispersibility is excellent, so that the molded product is remarkably excellent in strength, rigidity and heat resistance. It has become possible to obtain. That is, in the case of a conventional glass fiber reinforced resin molded product, usually a resin and glass fiber are melt-kneaded by an extruder to produce a composition (pellet), and the molded product is molded using this pellet. , The obtained molded product was ruptured due to direct contact between glass fiber and zinc sulfide and double melting and kneading, and the average fiber length of the glass fiber in the molded product was short, resulting in strength and heat resistance. However, the effect of improving rigidity was insufficient. Therefore, a molded product in which the glass fiber in the molded product is kept long and the dispersibility is improved is not known.

【0019】[0019]

【実施例】次に、実施例、比較例により本発明を具体的
に示すが、本発明は下記実施例に限定されるものではな
い。実施例1〜3,比較例1〜3 前記特願平1−322694号に記載された方法によ
り、MIが60g/10分のポリプロピレン40重量%
と繊維径10μmのガラス繊維60重量%とからなるガ
ラス繊維が連続したストランドを製造した後、ペレット
長が9mmになるようにカッティングを行ない、これを
マスターバッチMB−1として用いた。また、MIが2
0g/10分のポリプロピレンに酸化チタン,硫化亜鉛
をそれぞれ下記表1に示す割合でドライブレンドした
後、二軸混練機で混練してペレットPP1〜PP6を得
た。
Next, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. Examples 1 to 3 and Comparative Examples 1 to 3 According to the method described in Japanese Patent Application No. 1-232269, 40% by weight of polypropylene having MI of 60 g / 10 min.
And a glass fiber having a fiber diameter of 10 μm and 60% by weight of glass fiber were continuously formed into strands, which were then cut to a pellet length of 9 mm and used as a masterbatch MB-1. Also, MI is 2
Pellets PP1 to PP6 were obtained by dry blending 0 g / 10 min of polypropylene with titanium oxide and zinc sulfide in the proportions shown in Table 1 below, and then kneading with a biaxial kneader.

【0020】[0020]

【表1】 [Table 1]

【0021】次に、75重量%の上記PP−1(実施例
1),PP−2(実施例2),PP−3(実施例3),
PP−4(比較例1),PP−5(比較例2)又はPP
−6(比較例3)と25重量%の上記マスターバッチM
B−1とをそれぞれドライブレンドした後、射出成形機
を用いて実施例1〜3,比較例1〜3の試験片を作成し
た。これら試験片における各成分の割合を表2に示す。
得られた試験片を48時間状態調整した後、その物性を
測定した。結果を表3に示す。なお、表3の各物性は下
記方法で測定した。
Next, 75% by weight of the above PP-1 (Example 1), PP-2 (Example 2), PP-3 (Example 3),
PP-4 (Comparative Example 1), PP-5 (Comparative Example 2) or PP
-6 (Comparative Example 3) and 25% by weight of the above masterbatch M
After dry blending with B-1 respectively, test pieces of Examples 1 to 3 and Comparative Examples 1 to 3 were prepared using an injection molding machine. Table 2 shows the ratio of each component in these test pieces.
The obtained test piece was conditioned for 48 hours, and then its physical properties were measured. The results are shown in Table 3. In addition, each physical property of Table 3 was measured by the following method.

【0022】色相:目視にて行なった。 引張強さ:JIS K7113に準拠して測定した。 伸び率:JIS K7113に準拠して測定した。 曲げ強さ:JIS K7203に準拠して測定した。 曲げ弾性率:JIS K7203に準拠して測定した。 120℃曲げ強さ:JIS K7203に準拠して測定
した。 IZOD衝撃強さ:JIS K7110に準拠して測定
した。 HDT(高荷重):JIS K7207に準拠して測定
した。
Hue: It was visually observed. Tensile strength: Measured according to JIS K7113. Elongation: Measured according to JIS K7113. Bending strength: Measured according to JIS K7203. Flexural modulus: Measured according to JIS K7203. Bending strength at 120 ° C .: Measured according to JIS K7203. IZOD impact strength: Measured according to JIS K7110. HDT (high load): Measured in accordance with JIS K7207.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】実施例4 MIが30g/10分の結晶性エチレン−プロピレン共
重合体80重量%と硫化亜鉛20重量%とをドライブレ
ンドした後、二軸押出機にて混練してペレットを作製
し、これを顔料のマスターバッチMB−2として用い
た。MIが30g/10分の結晶性エチレン−プロピレ
ン共重合体45重量%,50重量%のマスターバッチM
B−1及び5重量%のマスターバッチMB−2をドライ
ブレンドした後、実施例1と同様に射出成形を行なって
試験片を作成し、同様に物性試験を行なった。結果を表
4に示す。
Example 4 80% by weight of a crystalline ethylene-propylene copolymer having an MI of 30 g / 10 min and 20% by weight of zinc sulfide were dry blended and then kneaded by a twin-screw extruder to prepare pellets. This was used as a pigment masterbatch MB-2. Masterbatch M of 45% by weight and 50% by weight of crystalline ethylene-propylene copolymer having MI of 30 g / 10 min
After dry blending B-1 and 5% by weight of masterbatch MB-2, injection molding was performed in the same manner as in Example 1 to prepare a test piece, and the physical property test was performed in the same manner. The results are shown in Table 4.

【0026】実施例5 MIが30g/10分の結晶性エチレン−プロピレン共
重合体80重量%及び硫化亜鉛20重量%と、更に硫化
亜鉛100重量部に対して2重量部のナフテン酸コバル
トを配合し、ドライブレンドした後、二軸押出機にて混
練してペレットを作成し、これを顔料のマスターバッチ
MB−3として用いた。MIが30g/10分の結晶性
エチレン−プロピレン共重合体45重量%,50重量%
のマスターバッチMB−1及び5重量%のマスターバッ
チMB−3をドライブレンドした後、実施例1と同様に
射出成形を行なって試験片を作成し、同様に物性試験を
行なった。結果を表4に示す。
Example 5 80% by weight of a crystalline ethylene-propylene copolymer having an MI of 30 g / 10 minutes and 20% by weight of zinc sulfide, and further 2 parts by weight of cobalt naphthenate was added to 100 parts by weight of zinc sulfide. Then, after dry-blending, the mixture was kneaded with a twin-screw extruder to prepare pellets, which were used as a pigment master batch MB-3. MI of 30 g / 10 minutes crystalline ethylene-propylene copolymer 45% by weight, 50% by weight
After the masterbatch MB-1 and the masterbatch MB-3 of 5% by weight were dry blended, injection molding was performed in the same manner as in Example 1 to prepare a test piece, and the physical property test was performed in the same manner. The results are shown in Table 4.

【0027】比較例4 MIが30g/10分の結晶性エチレン−プロピレン共
重合体80重量%と酸化チタン20重量%とをドライブ
レンドした後、二軸押出機にて混練してペレットを作製
し、これを顔料のマスターバッチMB−4として用い
た。MIが30g/10分の結晶性エチレン−プロピレ
ン共重合体45重量%,50重量%のマスターバッチM
B−1及び5重量%のマスターバッチMB−4をドライ
ブレンドした後、実施例1と同様に射出成形を行なって
試験片を作成し、同様に物性試験を行なった。結果を表
4に示す。上記実施例4,5、比較例4における各成分
の割合割合を表4に示す。また、実施例4及び実施例5
に関しては、その耐候性を下記方法で調べた。結果を表
6に示す。 耐候性評価方法:63℃ SWOMを用い、250時間
又は500時間暴露後のサンプル表面の色差(ΔE)を
JIS K7105に準拠して測定した。
Comparative Example 4 80% by weight of a crystalline ethylene-propylene copolymer having an MI of 30 g / 10 min and 20% by weight of titanium oxide were dry-blended and then kneaded with a twin-screw extruder to prepare pellets. This was used as pigment masterbatch MB-4. Masterbatch M of 45% by weight and 50% by weight of crystalline ethylene-propylene copolymer having MI of 30 g / 10 min
After dry blending B-1 and 5% by weight of masterbatch MB-4, injection molding was carried out in the same manner as in Example 1 to prepare a test piece, and the same physical property test was carried out. The results are shown in Table 4. Table 4 shows the proportion of each component in Examples 4 and 5 and Comparative Example 4 described above. In addition, Example 4 and Example 5
For, the weather resistance was examined by the following method. The results are shown in Table 6. Weather resistance evaluation method: A 63 ° C. SWOM was used to measure the color difference (ΔE) of the sample surface after exposure for 250 hours or 500 hours in accordance with JIS K7105.

【0028】[0028]

【表4】 [Table 4]

【0029】[0029]

【表5】 [Table 5]

【0030】[0030]

【表6】 [Table 6]

【0031】[0031]

【発明の効果】以上説明したように、本発明によって、
調色を行なった場合でも、ガラス繊維の繊維長を長く保
持してなる、機械的強度、耐熱性の高いガラス繊維強化
樹脂成形品を提供することができる。
As described above, according to the present invention,
It is possible to provide a glass fiber-reinforced resin molded article having high mechanical strength and high heat resistance, which is obtained by keeping the fiber length of glass fiber long even when toning is performed.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08L 101/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C08L 101/00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (A)熱可塑性樹脂20〜94.99重
量%、(B)硫化亜鉛0.01〜10重量%、および
(C)平均繊維径が3〜20μmのガラス繊維5〜70
重量%からなる成形品中の平均繊維長が1〜10mmで
あることを特徴とするガラス繊維強化樹脂成形品。
1. A thermoplastic resin (A) of 20 to 94.99% by weight, (B) zinc sulfide of 0.01 to 10% by weight, and (C) an average fiber diameter of 3 to 20 μm of glass fibers 5 to 70.
A glass fiber reinforced resin molded product, characterized in that the average fiber length in the molded product composed of wt% is 1 to 10 mm.
【請求項2】 (A)熱可塑性樹脂20〜94.99重
量%、(B)硫化亜鉛0.01〜10重量%、(C)平
均繊維径が3〜20μmのガラス繊維5〜70重量%お
よび(D)硫化亜鉛100重量部に対して0.01〜1
0重量部のコバルト塩からなる成形品中の平均繊維長が
1〜10mmであることを特徴とするガラス繊維強化樹
脂成形品。
2. (A) 20 to 94.99% by weight of a thermoplastic resin, (B) 0.01 to 10% by weight of zinc sulfide, (C) 5 to 70% by weight of glass fiber having an average fiber diameter of 3 to 20 μm. And (D) 0.01 to 1 with respect to 100 parts by weight of zinc sulfide
A glass fiber reinforced resin molded product, characterized in that the average fiber length in the molded product consisting of 0 parts by weight of cobalt salt is 1 to 10 mm.
JP7179373A 1995-06-22 1995-06-22 Manufacturing method of glass fiber reinforced resin molded product Expired - Lifetime JP2813559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7179373A JP2813559B2 (en) 1995-06-22 1995-06-22 Manufacturing method of glass fiber reinforced resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7179373A JP2813559B2 (en) 1995-06-22 1995-06-22 Manufacturing method of glass fiber reinforced resin molded product

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15376691A Division JPH04353536A (en) 1991-05-30 1991-05-30 Glass-fiber reinforced resin composition

Publications (2)

Publication Number Publication Date
JPH08104774A true JPH08104774A (en) 1996-04-23
JP2813559B2 JP2813559B2 (en) 1998-10-22

Family

ID=16064726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7179373A Expired - Lifetime JP2813559B2 (en) 1995-06-22 1995-06-22 Manufacturing method of glass fiber reinforced resin molded product

Country Status (1)

Country Link
JP (1) JP2813559B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220535A (en) * 2001-01-25 2002-08-09 Idemitsu Petrochem Co Ltd Thermoplastic resin composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5478012B2 (en) 2007-11-15 2014-04-23 株式会社Adeka Resin composition and resin molded product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233150A (en) * 1984-05-07 1985-11-19 Mitsubishi Rayon Co Ltd Glass-fiber reinforced polyethylene terephthalate based resin composition colored to white
JPS63278959A (en) * 1987-05-12 1988-11-16 Kuraray Co Ltd Polyester resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233150A (en) * 1984-05-07 1985-11-19 Mitsubishi Rayon Co Ltd Glass-fiber reinforced polyethylene terephthalate based resin composition colored to white
JPS63278959A (en) * 1987-05-12 1988-11-16 Kuraray Co Ltd Polyester resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220535A (en) * 2001-01-25 2002-08-09 Idemitsu Petrochem Co Ltd Thermoplastic resin composition
JP4658344B2 (en) * 2001-01-25 2011-03-23 株式会社プライムポリマー Thermoplastic resin composition

Also Published As

Publication number Publication date
JP2813559B2 (en) 1998-10-22

Similar Documents

Publication Publication Date Title
US5750616A (en) Fiber-reinforced thermoplastic resin composite material
US5145891A (en) Polypropylene resin composition
JP3322880B2 (en) Scratch resistant polymer composition
JP2001316534A (en) Long-fiber reinforced polypropylene resin composition and molded product
US5145892A (en) Polypropylene resin composition
JPH10219026A (en) Glass fiber-reinforced resin composition
JPH0618929B2 (en) Glass fiber reinforced polypropylene composition
JPH1025349A (en) Masterbatch composition for polyolefin use
CN110982181A (en) Polypropylene composite material and preparation method and application thereof
JP2002241557A (en) Long fiber-reinforced polypropylene resin composition
CN112759845A (en) Polypropylene composite material and preparation method and application thereof
KR20160064391A (en) PP based natural fiber complex pellet, extrusion composition comprising the pellet, and molded product
JPH04353536A (en) Glass-fiber reinforced resin composition
JP2813559B2 (en) Manufacturing method of glass fiber reinforced resin molded product
JP3579770B2 (en) Crystalline thermoplastic resin columns reinforced with long fibers and plate-like inorganic fillers
CN113227219A (en) Polycarbonate resin composition, method for producing same, master batch pellet, and molded body
JPS62250053A (en) Polyamide resin composition
JP3189477B2 (en) Polypropylene resin molded product
CN1229437C (en) Polybutanediol terephthalate composition and its preparation method
JPH08259750A (en) Production of fiber-reinforced polypropylene composition
KR20210141580A (en) Polycarbonate resin composition and manufacturing method thereof, masterbatch pellets, and molded article
JP2648745B2 (en) Thermotropic liquid crystal polymer composition and method for producing the same
JPH11302464A (en) Polyamide fiber-reinforced polyolefin resin composition and its preparation
JP2001220517A (en) Organic fiber-resin composition and use thereof
JP3573219B2 (en) Method for producing matte thermoplastic resin molded product

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070807

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080807

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080807

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090807

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100807

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100807

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110807

Year of fee payment: 13

EXPY Cancellation because of completion of term