JPH0810243B2 - Dielectric breakdown detection method in surge voltage test - Google Patents

Dielectric breakdown detection method in surge voltage test

Info

Publication number
JPH0810243B2
JPH0810243B2 JP11210889A JP11210889A JPH0810243B2 JP H0810243 B2 JPH0810243 B2 JP H0810243B2 JP 11210889 A JP11210889 A JP 11210889A JP 11210889 A JP11210889 A JP 11210889A JP H0810243 B2 JPH0810243 B2 JP H0810243B2
Authority
JP
Japan
Prior art keywords
voltage
dielectric breakdown
surge voltage
circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11210889A
Other languages
Japanese (ja)
Other versions
JPH02291979A (en
Inventor
雄克 川村
Original Assignee
株式会社ビッグバーン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ビッグバーン filed Critical 株式会社ビッグバーン
Priority to JP11210889A priority Critical patent/JPH0810243B2/en
Publication of JPH02291979A publication Critical patent/JPH02291979A/en
Publication of JPH0810243B2 publication Critical patent/JPH0810243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気設備や電気・電子機器の耐サージ電圧試
験において、試験対象物にサージ電圧が印加されると、
絶縁破壊を起こすか否かを検出する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a surge withstand voltage test for electric equipment and electric / electronic equipment, when a surge voltage is applied to a test object,
The present invention relates to a method of detecting whether or not dielectric breakdown occurs.

〔従来の技術〕[Conventional technology]

一般に、電気設備や電気・電子機器の安全性を確かめ
るための試験の一つとして、耐サージ電圧試験が行なわ
れている。
Generally, a surge voltage withstanding test is performed as one of the tests for confirming the safety of electric equipment and electric / electronic devices.

而して、従来多く採用されている前記の試験方法とし
て、ストレージオシロスコープに高電圧用プローブを用
い、このプローブの先端の接触子をEUT/DUT(EUTは被試
機器、DUTは被試デバイス)とサージ電圧発生器から出
力を接続する接続点に同時に接続し、EUT/DUTの絶縁破
壊を検出する場合、EUT/DUTの端子電圧波形を常時監視
しつつ、印加するサージ電圧を徐々に上昇させながら、
或いはある一定のサージ電圧を固定した上で、絶縁破壊
が発生するまでサージ電圧の印加を繰返し、絶縁破壊が
発生したか否かを前記電圧波形における波形さい断の有
無により検出する方法や絶縁破壊時に生じる過渡的な異
常電流を検出する方法などがある。
As a test method that has been widely adopted in the past, a high voltage probe was used for the storage oscilloscope, and the contact at the tip of this probe was EUT / DUT (EUT is the device under test, DUT is the device under test). When simultaneously detecting the breakdown of the EUT / DUT by connecting the output from the surge voltage generator and the output from the surge voltage generator at the same time, gradually increase the applied surge voltage while constantly monitoring the EUT / DUT terminal voltage waveform. While
Alternatively, after fixing a certain surge voltage, repeatedly applying surge voltage until dielectric breakdown occurs, and detecting whether dielectric breakdown has occurred or not by detecting the presence or absence of a waveform break in the voltage waveform, or a dielectric breakdown There is a method of detecting a transient abnormal current that sometimes occurs.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

然し乍ら、前者の方法は、まず、EUT/DUTにサージ電
圧発生器からの出力を接続するに際して、高電圧に対す
る充分な絶縁性を配慮すると共に接続すべき対象に対す
る確実な導通を保持する必要があるが、高電圧プローブ
の接触子をEUT/DUTとサージ電圧発生器からの出力を接
続する接続点に同時に接続し、確実な絶縁性と導通性と
を共に満足させることは極めて困難であり、また、通
常、試験に用いられるサージ電圧は、数KVから数拾KV
で、これが一般屋内設備,家庭電気製品,通信機器,コ
ンピュータシステム及びそれらに用いられるデバイス類
或いはその他のAC100V乃至240V系統の電源供給を受けて
使用されるものを対象として用いられており、この他に
送・配電設備,機器を対象とする場合には、数百KV以上
にも達する高電圧が使用されるが、このように高いサー
ジ電圧を取り扱う試験作業に際して、試験者が受ける身
体的,精神的負担は極めて大きく、この作業状況におい
て、オシロスコープの波形を長時間に亘り常時監視して
いなければ、絶縁破壊の現象を認識し、把握することが
出来ず、従って、精度の高い試験結果を期待することは
極めて困難であるという問題点がある。
However, in the former method, first, when connecting the output from the surge voltage generator to the EUT / DUT, it is necessary to consider sufficient insulation against high voltage and maintain reliable conduction to the object to be connected. However, it is extremely difficult to simultaneously connect the contact of the high-voltage probe to the connection point that connects the output from the EUT / DUT and the surge voltage generator, and to satisfy both reliable insulation and conductivity. Usually, the surge voltage used in the test is several KV to several KV.
This is used for general indoor equipment, household appliances, communication equipment, computer systems, devices used for them, and other equipment that receives power from 100 to 240 VAC and is used. When targeting power transmission and distribution facilities and equipment, high voltage of several hundred KV or more is used, but the physical and mental conditions experienced by the tester during the test work dealing with such high surge voltage. In this work situation, unless the waveform of the oscilloscope is constantly monitored for a long time in this work situation, the phenomenon of dielectric breakdown cannot be recognized and understood, and therefore highly accurate test results can be expected. It is extremely difficult to do so.

また、後者の方法においては、過渡的な異常電流が定
常電流と比べて極めて大きい場合は良好な結果を得られ
るが、前記異常電流が定常電流とあまり変わらない場合
は、電流観測のみを単独に実施しても、絶縁破壊のすべ
てを漏れ無く検出出来ない場合があるという問題点があ
るのである。
Further, in the latter method, good results are obtained when the transient abnormal current is extremely larger than the steady current, but when the abnormal current does not differ much from the steady current, only current observation is performed. Even if it is carried out, there is a problem that it may not be possible to detect all of the dielectric breakdown without omission.

従って、本発明が解決しようとする課題は、従来技術
における上記のような問題点のない絶縁破壊検出方法を
提供することである。
Therefore, the problem to be solved by the present invention is to provide a dielectric breakdown detecting method which does not have the above-mentioned problems in the prior art.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は上述の課題を解決することを目的としてなさ
れたもので、その構成は、サージ電圧発生回路を試験対
象物に接続してサージ電圧を印加するとき、接続点にお
ける前記サージ電圧と電流を示す信号を電圧値により常
時検出して微分し、微分した両信号を差動増幅すると共
に、その増幅信号を絶縁破壊を示す基準電圧を示す信号
と比較することにより、前記サージ電圧と電流を示す信
号が急峻に変化する絶縁破壊が前記対象物に生じたこと
を検出することを特徴とするものである。
The present invention has been made for the purpose of solving the above-mentioned problems, and its configuration is such that, when a surge voltage generating circuit is connected to a test object and a surge voltage is applied, the surge voltage and the current at the connection point are The surge voltage and the current are indicated by constantly detecting and differentiating the indicated signal by the voltage value, differentially amplifying both differentiated signals, and comparing the amplified signal with the signal indicating the reference voltage indicating dielectric breakdown. It is characterized by detecting that a dielectric breakdown in which a signal sharply changes occurs in the object.

即ち、本発明の発明者は、物質の絶縁破壊について研
究を重ねた結果、 1 物質の絶縁破壊には印加電圧とその時間とが関係す
るから、絶縁破壊試験に際しては、サージ電圧波形が重
要な意味を持ち、一般に絶縁破壊は電圧に対し遅れ時間
を有するが、この遅れ時間は電圧波高値が高いほど短か
くなる、 2 サージ電圧印加によって絶縁破壊を生じた空間的領
域(気中、液中、固体中を問わず、電流密度の大きい領
域)は導電率が大となり、その結果、その極間の電圧は
低下する、 との結論を得、サージ電圧の時間的要素、即ち電圧波形
と絶縁破壊により生じる電流及びその時間的要素を図表
に表したところ、第1図に示す通りとなった。
That is, the inventor of the present invention has conducted extensive research on the dielectric breakdown of a substance, and as a result, the applied voltage and its time are related to the dielectric breakdown of a substance. Therefore, the surge voltage waveform is important in the dielectric breakdown test. It has meaning, and generally dielectric breakdown has a delay time with respect to voltage, but this delay time becomes shorter as the voltage peak value becomes higher. 2 Spatial region (distance in air or liquid It is concluded that, regardless of the solid state, the region where the current density is large) has a large conductivity, and as a result, the voltage between the electrodes decreases, and the time factor of the surge voltage, that is, the voltage waveform The current generated by the breakdown and its time factor are shown in the table as shown in FIG.

ここで、第1図について説明すれば、次の通りであ
る。
Here, the description of FIG. 1 is as follows.

第1図の上段にはサージ電圧波形として多く用いられ
ている標準波形(電気学会JEC−212)に規格化された波
形を細線で示してあり、横軸に時間、縦軸に電圧を表わ
している。第1図において電圧の最大波高値Pは、サー
ジ電圧印加後、時間t1が経過した時点の値である。
The upper part of Fig. 1 shows the waveform standardized in the standard waveform (JEC-212 of the Institute of Electrical Engineers), which is often used as the surge voltage waveform, in thin lines, with the horizontal axis representing time and the vertical axis representing voltage. There is. In FIG. 1, the maximum peak value P of the voltage is the value at the time when the time t 1 has elapsed after applying the surge voltage.

一般に用いられている絶縁物及びガス封止型放電管、
或は、種々の放電ギャップに関する絶縁破壊は、印加さ
れたサージ電圧波形がその最大波高値に達するまでの時
間t1から遅れ時間tdを経過した時間t2において発生す
る。この遅れ時間tdは必ずしも定まった時間ではなく、
大概の場合、ある統計的なゆらぎを持つものであり、そ
の傾向性としては、印加サージ電圧波高値が高いほどtd
値は小さくなり、また、ゆらぎも小さくなる。
Commonly used insulators and gas-sealed discharge tubes,
Alternatively, the dielectric breakdown regarding various discharge gaps occurs at time t 2 after elapse of delay time td from time t 1 until the applied surge voltage waveform reaches its maximum peak value. This delay time td is not always a fixed time,
In most cases, there is a certain statistical fluctuation, and the tendency is that the higher the applied surge voltage peak value, the higher the td.
The value becomes smaller and the fluctuation also becomes smaller.

いま、時間t2において絶縁破壊が生じると、その極間
の導電率は急激に高くなり、例えばガス封止型アレスタ
や、また例えば空気中ギャップなどにおいては、殆ど短
絡に近い導電率となって、極間の電圧は急速に低下する
と同時に、極間には第1図の下段に示すような電流が生
じる。尚、この電流値は時間t2における電圧値と回路イ
ンピーダンスの比によって決まる。
Now, when the breakdown occurs at time t 2, the conductivity of the machining gap becomes rapidly increased, for example, gas or sealed type arrester, also such as in the gap in the air, become almost close to short-circuit the conductivity At the same time, the voltage between the electrodes drops rapidly, and at the same time, a current as shown in the lower part of FIG. 1 is generated between the electrodes. The current value is determined by the ratio of the voltage value and the circuit impedance at time t 2 .

ここで重要なことは、時間t2に始まり、時間t3で電流
の最大値に達する間の電圧変化と電流変化を示す波形の
向きの関係であって、電圧の下降と電流の上昇とが相互
に時間的に完全に一致し、かつ、波形の向きが互いに逆
になることである。このような過渡的な状態における波
形の向きの関係は、絶縁破壊により生じる以外にないも
のと考えられる。第1図における太線の部分が波形が逆
向きの関係にあることを示すものである。
What is important here is the relationship between the direction of the voltage change and the direction of the waveform showing the current change starting from time t 2 and reaching the maximum value of the current at time t 3. That is, they completely coincide with each other in time and the directions of the waveforms are opposite to each other. It is conceivable that such a relationship in the direction of the waveform in a transient state is caused only by dielectric breakdown. The thick line portion in FIG. 1 indicates that the waveforms are in the opposite direction.

本発明は上記の原理を利用したもので、上記における
電圧と電流を示す波形が逆向きに表われたとき、それを
検出してその信号のみを、他の信号,雑音等から分離弁
別し、差動増幅回路等を介して絶縁破壊検出信号として
検出することにより、極めて簡易に且つ確実に試験対象
物の絶縁破壊を検出することが出来るというものであ
る。
The present invention utilizes the above principle, when the waveforms indicating the voltage and the current in the above are expressed in opposite directions, it is detected and only that signal is separated and discriminated from other signals, noise, etc., By detecting as a dielectric breakdown detection signal via a differential amplifier circuit or the like, the dielectric breakdown of the test object can be detected extremely easily and reliably.

〔実施例〕〔Example〕

次に本発明の実施の一例を図により説明する。 Next, an example of implementation of the present invention will be described with reference to the drawings.

第2図において、1はサージ電圧発生回路、2は試験
対象回路、3は非反転増幅器、4は反転増幅器、5,6は
微分回路、7は差動増幅回路、8はレベルコンパレータ
であり、サージ電圧発生回路1と試験対象回路2は、両
回路の間に抵抗R0,Rp,Riを介在させて接続し、この接続
部から検出用の電圧V及び電流Iを夫々に示す信号を電
圧値で取り出すようになっている。
In FIG. 2, 1 is a surge voltage generating circuit, 2 is a circuit under test, 3 is a non-inverting amplifier, 4 is an inverting amplifier, 5 and 6 are differentiating circuits, 7 is a differential amplifying circuit, and 8 is a level comparator. The surge voltage generating circuit 1 and the circuit under test 2 are connected by interposing resistors R 0 , Rp, Ri between the two circuits, and a signal indicating the detection voltage V and the current I is supplied from this connection portion. It is designed to be retrieved by value.

取り出される前記電圧Vを示す電圧値の信号は、分圧
抵抗Rd1,Rd2を経、非反転増幅器3,微分回路5を通り、
差動増幅回路7に入力され、また、取出される前記電流
Iを示す電圧値の信号は反転増幅器4,微分回路6を通っ
て、差動増幅回路7に入力されるようになっている。
The signal of the voltage value indicating the voltage V taken out passes through the voltage dividing resistors Rd 1 and Rd 2 and then passes through the non-inverting amplifier 3 and the differentiating circuit 5.
The signal of the voltage value indicating the current I that is input to the differential amplifier circuit 7 is also input to the differential amplifier circuit 7 through the inverting amplifier 4 and the differential circuit 6.

なお、抵抗R0,Rp,Ri,Rd1及びRd2の抵抗値は、絶縁破
壊が発生する以前の状態においては差動増幅回路7にお
ける前記検出用の電圧Vと検出用の電流Iを示す電圧入
力が等しくなるように選んでおく。これにより、絶縁破
壊が生じないとき、差動増幅回路7のA点には何の出力
も出ない。
The resistance values of the resistors R 0 , Rp, Ri, Rd 1 and Rd 2 indicate the detection voltage V and the detection current I in the differential amplifier circuit 7 before the dielectric breakdown occurs. Make sure that the voltage inputs are equal. As a result, when dielectric breakdown does not occur, no output is output to the point A of the differential amplifier circuit 7.

ところが、サージ電圧発生回路1から試験対象回路2
にサージ電圧を印加しているとき、対象回路2に絶縁破
壊が生じると、分圧抵抗Rd1,Rd2を通って検出される前
記電圧Vを示す検出電圧と、前記電流Iを示す検出電圧
は互に逆極性を示す。電圧Vを示す信号は、非反転増幅
器3,微分回路5を通し、また、電流Iを示す信号は反転
増幅器4,微分回路6を通すことにより、それぞれ相互に
波形の向きが異なる信号のみが他の信号や雑音等から分
離弁別されて差動増幅回路7に入力される。
However, from the surge voltage generation circuit 1 to the test target circuit 2
When a surge voltage is applied to the target circuit 2 and dielectric breakdown occurs in the target circuit 2, the detection voltage indicating the voltage V detected through the voltage dividing resistors Rd 1 and Rd 2 and the detection voltage indicating the current I are detected. Are opposite to each other. The signal indicating the voltage V is passed through the non-inverting amplifier 3 and the differentiating circuit 5, and the signal indicating the current I is passed through the inverting amplifier 4 and the differentiating circuit 6, so that only the signals whose waveform directions are different from each other. Are separated and discriminated from the signals and noises and are input to the differential amplifier circuit 7.

差動増幅回路7は、試験対象物2の絶縁体の絶縁破壊
が発生したときA点から出力があるように形成されてお
り、A点の出力はレベルコンパレータ8において基準電
圧ref.Vと比較,演算され、C点から検出信号として出
力されるようになっている。
The differential amplifier circuit 7 is formed so that there is an output from the point A when the dielectric breakdown of the insulator of the test object 2 occurs, and the output of the point A is compared with the reference voltage ref.V in the level comparator 8. , Is calculated, and is output as a detection signal from the point C.

尚、サージ電圧波形(原波形)、及び、第2図におけ
る,,,,及びの各部分での電圧波形は第
3図に示す通りである。
The surge voltage waveform (original waveform) and the voltage waveforms at each of ,,, and in FIG. 2 are as shown in FIG.

而して、C点での出力は、これをラッチ回路9に入力
して、絶縁破壊が発生したことを任意の時間保持するよ
うにすると共に、該ラッチ回路9に接続したドライバ10
を介してブザー11又は/及び発光ダイオード12等により
警報を発するようにすれば、絶縁破壊を明確に知ること
が出来る。
Then, the output at the point C is input to the latch circuit 9 so that the occurrence of the dielectric breakdown is held for an arbitrary time, and the driver 10 connected to the latch circuit 9 is held.
If a warning is issued by the buzzer 11 and / or the light emitting diode 12 or the like via the, the dielectric breakdown can be clearly known.

尚、前記ラッチ回路9にはリセットスイッチ13を接続
し、その操作によりラッチを解除するようにすれば、使
用上極めて便利である。また、上記実施例においては、
差動増幅器7を用いたが、本発明はこれに限られること
なく、他の適宜の手段を採用しても良い。
Incidentally, if a reset switch 13 is connected to the latch circuit 9 and the latch is released by its operation, it is extremely convenient in use. In the above embodiment,
Although the differential amplifier 7 is used, the present invention is not limited to this, and other appropriate means may be adopted.

例えば、差動入力式のオシロスコープを用いても同様
の効果を得られるが、この場合、オシロスコープのCRT
画面の読み取りを試験者に課さないようにするため、逆
位相波形のみを自動的に認識し、弁別する信号処理機能
をオシロスコープに付加する必要がある。
For example, the same effect can be obtained by using a differential input type oscilloscope, but in this case, the oscilloscope CRT
In order to prevent the tester from reading the screen, it is necessary to add a signal processing function to the oscilloscope that automatically recognizes and discriminates only the antiphase waveform.

〔発明の効果〕〔The invention's effect〕

本発明は上述の通りであって、絶縁破壊が生じるとそ
れに特有な電圧低下と電流上昇とを示す波形が、完全に
逆向きの関係において立上る(立下る)ことに着目し、
その現象のみを他の現象から分離弁別して取出すことに
より、自動的に絶縁破壊現象を検出することが出来るよ
うにしたので、電気設備及び電気・電子機器の耐サージ
電圧試験における絶縁破壊検出方法として好適である。
The present invention is as described above, and paying attention to the fact that when dielectric breakdown occurs, the waveforms showing the voltage drop and the current rise that are peculiar thereto rise (fall) in a completely opposite relationship,
By separating and extracting only that phenomenon from other phenomena, it has become possible to automatically detect the dielectric breakdown phenomenon.As a method for detecting dielectric breakdown in surge withstand voltage tests of electrical equipment and electric / electronic equipment, It is suitable.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法の原理を説明するための図、第2図
は本発明方法を実施する検出回路の一例を示す図、第3
図はサージ電圧の原波形、及び、第2図の検出回路にお
ける〜部に表われる波形を示す図、第4図は警報発
生回路の例を示す図である。 1……サージ電圧発生回路、2……試験対象回路、3…
…非反転増幅器、4……反転増幅器、5,6……微分回
路、7……差動増幅回路、8……レベルコンパレータ
FIG. 1 is a diagram for explaining the principle of the method of the present invention, FIG. 2 is a diagram showing an example of a detection circuit for carrying out the method of the present invention, and FIG.
FIG. 4 is a diagram showing the original waveform of the surge voltage and the waveforms appearing in the part of the detection circuit of FIG. 2, and FIG. 4 is a diagram showing an example of the alarm generation circuit. 1 ... Surge voltage generation circuit, 2 ... Test target circuit, 3 ...
… Non-inverting amplifier, 4 …… Inverting amplifier, 5,6 …… Differentiation circuit, 7 …… Differential amplification circuit, 8 …… Level comparator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】サージ電圧発生回路を試験対象物に接続し
てサージ電圧を印加するとき、接続点における前記サー
ジ電圧と電流を示す信号を電圧値により常時検出して微
分し、微分した両信号を差動増幅すると共に、その増幅
信号を絶縁破壊を示す基準電圧を示す信号と比較するこ
とにより、前記サージ電圧と電流を示す信号が急峻に変
化する絶縁破壊が前記対象物に生じたことを検出するこ
とを特徴とするサージ電圧試験における絶縁破壊検出方
法。
1. When a surge voltage generating circuit is connected to a test object and a surge voltage is applied, the signals indicating the surge voltage and current at the connection point are always detected by a voltage value and differentiated, and both signals are differentiated. Is differentially amplified, and the amplified signal is compared with a signal indicating a reference voltage indicating a dielectric breakdown, thereby confirming that the dielectric breakdown in which the signals indicating the surge voltage and the current change sharply occurs in the object. A method for detecting dielectric breakdown in a surge voltage test, which is characterized by detecting.
JP11210889A 1989-05-02 1989-05-02 Dielectric breakdown detection method in surge voltage test Expired - Lifetime JPH0810243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11210889A JPH0810243B2 (en) 1989-05-02 1989-05-02 Dielectric breakdown detection method in surge voltage test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11210889A JPH0810243B2 (en) 1989-05-02 1989-05-02 Dielectric breakdown detection method in surge voltage test

Publications (2)

Publication Number Publication Date
JPH02291979A JPH02291979A (en) 1990-12-03
JPH0810243B2 true JPH0810243B2 (en) 1996-01-31

Family

ID=14578355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11210889A Expired - Lifetime JPH0810243B2 (en) 1989-05-02 1989-05-02 Dielectric breakdown detection method in surge voltage test

Country Status (1)

Country Link
JP (1) JPH0810243B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019184246A (en) * 2018-04-02 2019-10-24 シンフォニアテクノロジー株式会社 Safety device for electrical device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
電気学会編「高電圧試験ハンドブック」(昭和58年3月30日オーム社発行)P.318

Also Published As

Publication number Publication date
JPH02291979A (en) 1990-12-03

Similar Documents

Publication Publication Date Title
US6031699A (en) Arc fault detector apparatus, means and system
US5047724A (en) Power cable arcing fault detection system
Stone Partial discharge. VII. Practical techniques for measuring PD in operating equipment
US6459273B1 (en) Arc fault detector method
US8098072B2 (en) Partial discharge coupler for application on high voltage generator bus works
US20020196031A1 (en) Parallel insulation fault detection system
CN109596956B (en) DC series arc detection method and device
CN111707910B (en) Porcelain insulator inner insulation detection method and porcelain insulator detection circuit
JPH02171649A (en) Method and apparatus for detecting defect of insulated cable
JPH0810243B2 (en) Dielectric breakdown detection method in surge voltage test
CN110988434A (en) High-precision broadband overvoltage measuring device, measuring circuit and measuring method
US10509067B2 (en) Method for AC arc fault detection using multidimensional energy points
Suwanasri et al. Partial discharge detection in high voltage equipment using high frequency current transducer
US4218649A (en) High voltage leakage and breakdown test circuit
JPH02201274A (en) Method of foreseeing ground fault of power cable
CN112363030A (en) Low-voltage bus duct insulation detection method in running state
Inwanna et al. A locating diagnosis of partial discharge on cross-bonding ground system
Keenan et al. Arc detectors
CN216285473U (en) Arc detection circuit and system based on digital processing technology
JP2929047B2 (en) Diagnosis method for insulation deterioration of power cable
CN211856705U (en) High-precision broadband overvoltage measuring mechanism
JPH01131467A (en) Discrimination device for external noise in partial discharging measurement
JP2006226917A (en) Withstand voltage testing instrument and disconnection detector
US20230051020A1 (en) System and method for detection and isolation of arc fault
Polyakov Research of Partial Discharge Registration Effectiveness Using HFCT Sensor