JPH081014B2 - Method for producing latent bulky polyester composite yarns for woven and knitted fabrics - Google Patents

Method for producing latent bulky polyester composite yarns for woven and knitted fabrics

Info

Publication number
JPH081014B2
JPH081014B2 JP3170559A JP17055991A JPH081014B2 JP H081014 B2 JPH081014 B2 JP H081014B2 JP 3170559 A JP3170559 A JP 3170559A JP 17055991 A JP17055991 A JP 17055991A JP H081014 B2 JPH081014 B2 JP H081014B2
Authority
JP
Japan
Prior art keywords
yarn
multifilament
polyester
denier
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3170559A
Other languages
Japanese (ja)
Other versions
JPH04352836A (en
Inventor
隆嘉 藤田
久雄 西中
順雄 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP3170559A priority Critical patent/JPH081014B2/en
Publication of JPH04352836A publication Critical patent/JPH04352836A/en
Publication of JPH081014B2 publication Critical patent/JPH081014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はソフトで柔軟、且つドラ
イタッチと適度なはり、腰、ドレープ性を有する絹様織
編物用ポリエステル複合糸条の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polyester composite yarn for a silk-like woven or knitted fabric, which is soft and flexible, has a dry touch, and has suitable beam, waist and drape properties.

【0002】[0002]

【従来の技術】これまでポリエステルマルチフィラメン
トはそのすぐれた特性を生かし衣料用途をはじめ工業資
材用としても各種の用途に使用されている。衣料用途と
しては絹様風合はその一つのターゲットとして各社で検
討が進められ一部の分野では絹を凌駕する特性風合が得
られている。例えば熱収縮特性を異にする複数本のマル
チフィラメントからなる複合糸条はふくらみ、嵩高、ウ
ォーム感などすぐれた特性、風合を示し広く使用されて
いる。しかし糸条を構成するマルチフィラメントが全て
熱により収縮する場合には、編織物の組織の拘束力のた
め、糸のもっている収縮率差が充分確保できないととも
に糸の収縮のため編織物が硬くなる傾向にあり、このた
め目付を小さくして収縮代をもたせたり、風合を確保す
るためにアルカリ減量率を大きくするなどの対策を実施
してきた。しかし熱収縮率の大きなフィラメントは一般
に熱処理すると硬化し風合面で充分に満足できるものは
得られていない。これに対して熱処理により伸長するポ
リエステルフィラメントと収縮するフィラメントの混合
糸も知られており、例えば特開昭55−62240号公
報、特開昭56−112537号公報、特開昭60−2
8515号公報などがある。これらのものは前記の収縮
糸同士のものに比べるとはるかにソフトで柔軟な風合が
得られたものの、伸長し突出したフィラメントからなる
ループによりヌメリ感が出たり、熱処理により大きな糸
長差が発現するので糸が分離し、後工程での取扱性に問
題があった。
2. Description of the Related Art Up to now, polyester multifilaments have been used for various purposes such as clothing and industrial materials by taking advantage of their excellent characteristics. As a clothing use, silk-like texture is being investigated by each company as one of the targets, and in some fields, a characteristic texture that surpasses silk is obtained. For example, composite yarns composed of a plurality of multifilaments having different heat shrinkage properties are widely used because they exhibit excellent properties such as bulge, bulkiness, and warmth, and feel. However, when all of the multifilaments that make up the yarn shrink due to heat, the difference in shrinkage ratio of the yarn cannot be secured due to the binding force of the structure of the knitted fabric, and the knitted fabric becomes hard due to the shrinkage of the yarn. For this reason, measures such as reducing the basis weight to allow a shrinkage allowance and increasing the alkali reduction rate to secure the texture have been implemented. However, a filament having a large heat shrinkage is generally cured by heat treatment, and a satisfactory texture surface has not been obtained. On the other hand, a mixed yarn of a polyester filament which is elongated by heat treatment and a filament which is contracted by heat treatment is also known, for example, JP-A-55-62240, JP-A-56-112537, and JP-A-60-2.
No. 8515 is available. Although these yarns are much softer and softer than those of the above-mentioned shrink yarns, they have a slimy feel due to the loops of elongated and protruding filaments, and a large difference in yarn length due to heat treatment. Since it was expressed, the yarn was separated, and there was a problem in handleability in the subsequent process.

【0003】[0003]

【発明が解決しようとする課題】本発明はポリエステル
フィラメントにおける前記従来の欠点を解消したもので
あってソフト、柔軟さ、上品なドライタッチと適度なは
り、腰、ドレープ性を有するとともに、後工程通過性に
問題のない新規なポリエステル複合糸条の製造方法を提
供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned conventional drawbacks of polyester filaments, and has softness, flexibility, elegant dry touch, moderate beam, waist, and drapeability, and a post-process. It is an object of the present invention to provide a novel method for producing a polyester composite yarn, which has no problem in passage property.

【0004】[0004]

【課題を解決するための手段】本発明はかかる問題点を
解決するために次のような構成を有する。即ち紡速15
00〜4000m/minで紡糸した未延伸糸をガラス
転移温度以上で延伸して得られた破断伸度が30〜45
%、△n0.10〜0.14のポリエステルマルチフィ
ラメント延伸糸を非接触ヒーターにて下記〔A〕式の
(1)式および(2)式を同時に満足するヒーター温度
T(℃)かつ、20〜60%のオーバーフィード率でリ
ラックス熱処理を施し、かくして得た下記〔B〕式を満
足するポリエステルマルチフィラメントAを下記〔B〕
式を満足するポリエステルマルチフィラメントBとをA
/B=20〜80%/80〜20%(デニール比)とな
るように合わせて交絡度20〜100コ/mで交絡処理
することを特徴とする織編物用潜在嵩高性ポリエステル
複合糸条の製造法である。尚、紡速とは紡糸捲取速度を
いう。 〔A〕75log{(D×Vy )1/2 /HL}+4.7
(Vy )1/2 ≧ T≧25log{(D×Vy )1/2 /HL}+4.7
(Vy )1/2 …(1) T≦Tm−10…(2) D:リラックス後デニール Vy :リラックス引取ローラー速度(m/min) HL:リラックス非接触式ヒーター長(m) Tm:融点(℃) Tg:2次転移点温度(℃) 〔B〕SHW(A)≧0%、SHD(A)≦0% SHW(B)≧0% SHD(B)−SHD(A)≧5% DE(A)≧50% SHW:熱水(100℃)収縮率(%) SHD:乾熱(160℃)収縮率(%) DE:破断伸度(%)
The present invention has the following structure in order to solve such problems. That is, spinning speed 15
The elongation at break obtained by stretching the undrawn yarn spun at 00 to 4000 m / min at a glass transition temperature or higher is 30 to 45.
%, Δn 0.10 to 0.14 polyester multifilament drawn yarn with a non-contact heater at a heater temperature T (° C.) that satisfies the following formulas (1) and (2) of the formula [A] and 20 Polyester multifilament A satisfying the following formula [B] was obtained by subjecting it to relax heat treatment at an overfeed rate of -60%
A with a polyester multifilament B that satisfies the formula
/ B = 20 to 80% / 80 to 20% (denier ratio), and a entanglement treatment with a degree of entanglement of 20 to 100 co / m. It is a manufacturing method. The spinning speed refers to the spinning winding speed. [A] 75 log {(D × Vy) 1/2 /HL}+4.7
(Vy) 1/2 ≧ T ≧ 25 log {(D × Vy) 1/2 /HL}+4.7
(Vy) 1/2 (1) T≤Tm-10 (2) D: Denier after relaxation Vy: Relax take-up roller speed (m / min) HL: Relax non-contact heater length (m) Tm: Melting point ( C) Tg: Second-order transition temperature (C) [B] SHW (A) ≧ 0%, SHD (A) ≦ 0% SHW (B) ≧ 0% SHD (B) −SHD (A) ≧ 5% DE (A) ≧ 50% SHW: Hot water (100 ° C.) shrinkage rate (%) SHD: Dry heat (160 ° C.) shrinkage rate (%) DE: Breaking elongation (%)

【0005】本発明のポリエステル複合糸条の製造方法
について説明する。本発明のポリエステル複合糸条の製
造装置の略側面を図1に例示する。自発伸長性に優れた
ポリエステルマルチフィラメントAを製造するには、ま
ず紡速1500〜4000m/minで紡糸した未延伸
糸を延伸温度Tg〜Tg+20℃かつ延伸後の破断伸度
30〜45%、△n0.10〜0.14の範囲で延伸す
れば良い。紡糸速度1500m〜min未満では延伸後
物性が不安定であり、かつ太さ斑が大きくなるので好ま
しくない。また4000m/minを越えると延伸後の
熱収縮率が低く自発伸長性が低くなり、織編物としての
風合が所定のものにならない。好ましくは2000〜4
000m/minである。延伸温度は延伸安定性のため
Tg以上の温度が好ましく、Tg+20℃以上の温度で
は結晶化が進み、自発伸長性が低下する。また延伸温度
は自発伸長性発現にとって重要であるが、延伸時の糸切
れ等操業性の面では破断伸度30%以上にする必要があ
る。破断伸度45%以上では糸斑の発生が見られ好まし
くない。合わせて△nを0.10〜0.14の範囲にす
ることが必要であり、この範囲外ではリラックス熱処理
による自発伸長性の安定性に欠ける。次に自発伸長性を
与える非接触式ヒーターによるリラックス熱処理は下記
(1)式、(2)式を同時に満足するヒーター温度T
(℃)かつオーバーフィード率20〜60%で行うこと
が必要である。 75log{(D×Vy )1/2 /HL}+4.7(Vy
1/2 ≧T≧ 25log{(D×Vy )1/2 /HL}+4.7(Vy
1/2 …(1) T≦Tm−10…(2) D:リラックス後デニール Vy :リラックス引取ローラー速度(m/min) HL:リラックス非接触式ヒーター長(m) Tm:融点(℃) Tg:2次転移点温度(℃) ヒーター温度は自発伸長性に対して、デニールとリラッ
クス処理速度および非接触式ヒーター長に対して本発明
者らは(1)式の関係を見つけ出した。(1)式範囲よ
り高ければ結晶化の進行により、自発伸長性が低下し、
また低ければ自発伸長性の発現は弱くなる。また(1)
式と(2)式を同時に満足することが必要であるが、ヒ
ーター温度を(Tm−10)℃以上にするとドッフィン
グ停台時にヒーターの熱により、ヒーター内停止中にマ
ルチフィラメントが溶断し、再起動性が低下し、工業的
には使用できない。尚、リラックス取引ローラー速度V
yは10〜1500m/min、リラックス非接触式ヒ
ーター長HLは0.1〜2mが好ましい。
A method for producing the polyester composite yarn of the present invention will be described. A schematic side view of the apparatus for producing a polyester composite yarn of the present invention is illustrated in FIG. In order to produce a polyester multifilament A having excellent spontaneous stretchability, first, an unstretched yarn spun at a spinning speed of 1500 to 4000 m / min is stretched at a stretching temperature of Tg to Tg + 20 ° C. and a breaking elongation of 30 to 45% after stretching. n may be stretched in the range of 0.10 to 0.14. A spinning speed of less than 1500 m to min is not preferable because the physical properties after stretching are unstable and the thickness unevenness becomes large. On the other hand, if it exceeds 4000 m / min, the heat shrinkage rate after stretching becomes low and the spontaneous stretchability becomes low, so that the texture of the woven or knitted fabric does not become a predetermined feeling. Preferably 2000-4
000 m / min. The stretching temperature is preferably Tg or higher for stretching stability, and at a temperature of Tg + 20 ° C. or higher, crystallization progresses and spontaneous stretchability decreases. Further, the drawing temperature is important for the expression of spontaneous elongation, but in view of operability such as yarn breakage during drawing, the elongation at break must be 30% or more. When the elongation at break is 45% or more, yarn unevenness is observed, which is not preferable. In addition, Δn needs to be in the range of 0.10 to 0.14, and outside this range, the stability of spontaneous elongation due to the relaxation heat treatment is lacking. Next, the relaxation heat treatment by the non-contact type heater that gives spontaneous elongation is performed by the heater temperature T satisfying the following expressions (1) and (2) at the same time.
(C) and the overfeed rate of 20 to 60% are required. 75 log {(D × Vy) 1/2 /HL}+4.7 (Vy
) 1/2 ≥ T ≥ 25 log {(D x Vy) 1/2 / HL} + 4.7 (Vy
) 1/2 (1) T ≦ Tm-10 (2) D: Denier after relaxation Vy: Relax take-up roller speed (m / min) HL: Relax non-contact heater length (m) Tm: Melting point (° C.) Tg: Second-order transition temperature (° C.) The present inventors found the relationship of the equation (1) with respect to the spontaneous elongation of the heater temperature, the denier and the relaxation treatment rate, and the length of the non-contact heater. If it is higher than the range of formula (1), spontaneous elongation is lowered due to progress of crystallization,
If it is low, the spontaneous elongation is weakly expressed. Also (1)
It is necessary to satisfy both equation (2) and equation (2) at the same time, but if the heater temperature is (Tm-10) ° C or higher, the multifilament will melt during the stop inside the heater due to the heat of the heater when the doffing is stopped, and The startability is reduced and it cannot be used industrially. In addition, relax transaction roller speed V
The y is preferably 10 to 1500 m / min, and the relaxed non-contact heater length HL is preferably 0.1 to 2 m.

【0006】オーバーフィード率は自発伸長性の発現お
よびリラックス熱処理の操業性安定化のため20〜60
%が良い。なおヒーターは接触式ヒーターではマルチフ
ィラメント走行抵抗によりヒーター入口の糸張力が不足
して、ローラー捲付、糸切れが発生するので非接触式ヒ
ーターにする必要がある。このポリエステルマルチフィ
ラメントAを、該ポリエステルマルチフィラメントAと
異なるポリエステルマルチフィラメントとデニール比で
20〜80%/80〜20%となるように合わせて交絡
度20〜100コ/mで交絡処理する。ここで異なるポ
リエステルマルチフィラメントとは、例えばSHW.S
HD等の熱収縮特性が少なくとも1つでも異なったもの
を指す。
The overfeed rate is 20 to 60 in order to exhibit spontaneous elongation and stabilize the operability of the relaxation heat treatment.
% Is good. It is necessary to use a non-contact heater as the heater because a contact type heater has a shortage of yarn tension at the heater inlet due to running resistance of the multi-filament and roller winding and yarn breakage occur. The polyester multifilament A is entangled with a polyester multifilament different from the polyester multifilament A so as to have a denier ratio of 20 to 80% / 80 to 20% and an entanglement degree of 20 to 100 co / m. Here, the different polyester multifilament is, for example, SHW. S
A material having at least one different heat shrink property such as HD.

【0007】染色、セット処理を施し、糸長差により、
ふくらみ、張り、腰、バルキー性が良好な織編物とする
ためにはポリエステルマルチフィラメントB成分として
沸水収縮率5%以上、160℃乾熱収縮率7%以上であ
ればよい。共に、これより低い場合は十分な糸長差が得
られず、良好な風合の織編物が得られない。尚、沸水収
縮率は5〜60%、160℃乾熱収縮率は7〜80%が
好ましい。勿論、ポリエステルマルチフィラメントが所
謂シックアンドシン糸や自発伸長性糸であってもよい
が、前者の場合は熱水収縮率が5〜30%、後者の場合
は160℃乾熱収縮率が0%以下で且つマルチフィラメ
ントAとの伸長差が少なくとも5%あればよい。
Dyeing and setting processing is performed, and due to the difference in yarn length,
The polyester multifilament B component may have a boiling water shrinkage of 5% or more and a 160 ° C. dry heat shrinkage of 7% or more in order to obtain a woven or knitted fabric having good bulge, tension, waist and bulkiness. If both are lower than the above range, a sufficient yarn length difference cannot be obtained, and a woven or knitted fabric having a good feel cannot be obtained. The boiling water shrinkage is preferably 5 to 60%, and the 160 ° C dry heat shrinkage is preferably 7 to 80%. Of course, the polyester multifilament may be so-called thick and thin yarn or spontaneously stretchable yarn, but in the former case, the hot water shrinkage rate is 5 to 30%, and in the latter case, the 160 ° C dry heat shrinkage rate is 0%. It is sufficient that the elongation difference with the multifilament A is at least 5%.

【0008】またデニール比で20〜80%となるよう
に混織することも重要であり、自発伸長性ポリエステル
マルチフィラメントが20%未満ではふくらみ、バルキ
ー性が不足し、80%を越えると、張り、腰がないもの
になる。交絡度は撚糸、整経、製織での取り扱い性およ
び織編物での均一な外観を得るために20〜100コ/
mとする必要がある。20コ/m以下では、ポリエステ
ルマルチフィラメントAとポリエステルマルチフィラメ
ントBとが分離し易く、次工程の取り扱い性が低下す
る。100コ/mを越えると織編物で均一な外観が得ら
れない。以上の構成により取り扱い性、自発伸長性の発
現性、生産性に優れたポリエステルマルチフィラメント
AとポリエステルマルチフィラメントBとの複合糸条を
得ることができる。
It is also important to mix and weave so that the denier ratio becomes 20 to 80%, and if the spontaneously extensible polyester multifilament is less than 20%, the bulge and bulkiness are insufficient, and if it exceeds 80%, the tension is increased. , Will be stiff. The degree of entanglement is 20 to 100 / in order to obtain twisting, warping, handleability in weaving, and uniform appearance in a woven or knitted fabric.
It must be m. When it is 20 co / m or less, the polyester multifilament A and the polyester multifilament B are easily separated from each other, and the handling property in the next step is deteriorated. If it exceeds 100 k / m, a woven or knitted product cannot have a uniform appearance. With the above configuration, it is possible to obtain a composite yarn of polyester multifilament A and polyester multifilament B excellent in handleability, expression of spontaneous elongation and productivity.

【0009】次に、本発明の製造方法により得られた複
合糸条について述べる。図2は本発明のポリエステル複
合糸条を熱処理して糸長差を発現せしめた後のモデル図
である。図2においてAは主として鞘部を構成するマル
チフィラメントであって、高温熱処理により実質的に伸
長している(自発伸長後のマルチフィラメント)。Bは
芯部を構成するマルチフィラメントであって、熱処理に
より収縮したマルチフィラメントである(熱収縮後のマ
ルチフィラメント)。まず本発明で最も重要な要件であ
る構成マルチフィラメントの熱収縮特性について述べ
る。本発明のポリエステル複合糸条を構成するマルチフ
ィラメントAは通常のサイジングなどの工程では、マル
チフィラメントBとの収縮率差は小さく、しかも実質的
に収縮挙動を示す。このため布帛で同じ糸長差を発現さ
せるときにも糸段階ではサイジングしても糸長差(ふく
らみ、ループ等)は余り発現せず通常の全て熱収縮する
異収縮混織糸に比べても製織時にははるかに取扱性、製
織性が良好となるのである。すなわち糸の状態で糸長差
(ループ)が発現すると当然のことながらビーミング、
製織の際ループがこすれ合ってガイド、コームなどにひ
っかかったり、開口が悪くなり工程通過性が著しく低下
する。更に通常の熱収縮マルチフィラメントはサイジン
グなどで熱処理をうけると、それでほぼ熱セットが固定
されファイナルセットなどで160〜180℃程度の高
温熱処理をうけても糸長差は最初の熱セット時以上あま
り発現しないが、本発明の複合糸条の如く、熱水では収
縮するがファイナルセットに相当する高温熱処理で伸長
するマルチフィラメントを含むことにより、全体として
収縮した布表面より高温での仕上加工によりマルチフィ
ラメントAがループ状に突出し、あたかもピーチの表面
のようにソフトで柔軟なタッチが得られるのである。こ
のためにSHW(A)≧0%、SHD(A)≦0%であ
ればよい。更にふくらみ、嵩高性をもたせるためにSH
D(B)−SHD(A)≧5%が適当であり、5%未満
ではふくらみ、嵩高性が劣るので本発明からは除外され
る。ただ余り大きいと表面からの突出ループが大きくな
りすぎアイロンなどの際“てかり”などの問題が発生し
易いので50%以下が好ましい。又同様の理由でSHW
(A)は5%以下、SHD(A)は−15%以上が好ま
しい。次にマルチフィラメントAの破断伸度が50%以
上であるのはソフトで柔軟な風合を得るためである。一
般にポリエステルではソフトな風合を得るためにはフィ
ラメントのSHWは小さく、破断伸度が大きい方が得ら
れ易い。これまでに詳述した如く布帛の表面をループを
形成して覆うのは自発伸長マルチフィラメントであり、
このマルチフィラメントのタッチが布帛のタッチを決め
るからである。しかしあまり破断伸度が大きすぎると取
扱性が悪くなるので100%以下、更に好ましくは80
%以下が良い。
Next, the composite yarn obtained by the manufacturing method of the present invention will be described. FIG. 2 is a model diagram after the polyester composite yarn of the present invention is heat-treated to develop a yarn length difference. In FIG. 2, A is a multifilament that mainly constitutes the sheath portion and is substantially elongated by the high temperature heat treatment (multifilament after spontaneous elongation). B is a multifilament that constitutes the core portion, and is a multifilament contracted by heat treatment (multifilament after heat contraction). First, the heat shrinkage property of the constituent multifilament, which is the most important requirement in the present invention, will be described. The multifilament A constituting the polyester composite yarn of the present invention shows a small difference in shrinkage rate from the multifilament B in a usual process such as sizing, and substantially exhibits shrinkage behavior. Therefore, even when the same yarn length difference is expressed in the fabric, even when sizing at the yarn stage, the yarn length difference (bulges, loops, etc.) does not appear so much, and even compared with the normal all-shrink heterogeneous mixed yarns. During weaving, the handling and weaving properties are much better. That is, when a yarn length difference (loop) appears in the yarn state, it is natural that beaming,
During weaving, the loops rub against each other, catching on guides, combs, etc., and the opening becomes poor, resulting in a marked decrease in process passability. Furthermore, when heat treatment is applied to ordinary heat-shrinkable multifilaments, the heat setting is almost fixed, and even if the heat treatment is performed at a high temperature of 160 to 180 ° C in the final set, the difference in yarn length is much longer than that at the first heat setting. Although it does not develop, like the composite yarn of the present invention, it contains multifilaments that shrink in hot water but expand in high-temperature heat treatment corresponding to the final set, so that multi-filament is produced by finishing at a temperature higher than the shrinked fabric surface. The filament A protrudes like a loop, and a soft and soft touch is obtained as if it were the surface of peach. Therefore, SHW (A) ≧ 0% and SHD (A) ≦ 0% are sufficient. SH for further bulge and bulkiness
D (B) -SHD (A) ≧ 5% is suitable, and if it is less than 5%, it swells and the bulkiness is poor, so it is excluded from the present invention. However, if it is too large, the protruding loop from the surface becomes too large, and problems such as "shining" tend to occur when ironing, so 50% or less is preferable. For the same reason, SHW
(A) is preferably 5% or less, and SHD (A) is preferably -15% or more. Next, the breaking elongation of the multifilament A is 50% or more in order to obtain a soft and soft texture. Generally, in polyester, in order to obtain a soft feeling, the SHW of the filament is small and the breaking elongation is easily obtained. As described in detail above, it is the spontaneously extending multifilament that covers the surface of the fabric by forming a loop.
This is because the touch of the multifilament determines the touch of the cloth. However, if the elongation at break is too large, the handling property becomes poor, so 100% or less, more preferably 80%.
% Or less is good.

【0010】次にマルチフィラメントBの破断伸度は4
0%以下が好ましく、捲返し、製編織なとの後工程で複
合糸条が伸長されることによる糸斑が発生しないためで
ある。更に布帛にしたあと製品でのひざ抜けなどの問題
を防止するためである。又複合糸条の破断強力も熱収縮
マルチフィラメントにほぼ依存するので熱収縮マルチフ
ィラメントの破断強度は、少なくとも4g/デニールで
且つ複合糸条のデニール比率で20%以上でなければな
らない。もちろん破断強度が高ければマルチフィラメン
トBの比率は若干低くてもよいが20%未満ではマルチ
フィラメントBの収縮力が小さくなり糸長差によるふく
らみが発現されないので本発明からは除外される。尚、
マルチフィラメントBの熱水収縮率および160℃乾熱
収縮率は、それぞれ5〜60%、7〜80%が好まし
い。
Next, the breaking elongation of the multifilament B is 4
It is preferably 0% or less, because yarn unevenness due to stretching of the composite yarn in a post-process such as winding and knitting or weaving does not occur. Further, it is for preventing a problem such as the removal of a knee in the product after forming the cloth. Also, the breaking strength of the composite yarn depends substantially on the heat-shrinking multifilament, and therefore the breaking strength of the heat-shrinking multifilament must be at least 4 g / denier and 20% or more in terms of the denier ratio of the composite yarn. Of course, if the breaking strength is high, the ratio of the multifilament B may be slightly low, but if it is less than 20%, the shrinkage force of the multifilament B becomes small and the bulge due to the difference in the yarn length is not expressed, so it is excluded from the present invention. still,
The hot water shrinkage and the 160 ° C. dry heat shrinkage of the multifilament B are preferably 5 to 60% and 7 to 80%, respectively.

【0011】また、マルチフィラメントBの繊維軸方向
に太さムラを有する所謂シックアンドシン糸であっても
よい。但し、その場合、熱水収縮率は5〜30%であれ
ばよい。シックアンドシン糸は、後加工後の糸物性の保
持といった面から考えると配向度(△n)はシン部が1
5〜60×10-3以上、さらに好ましくは160×10
-3以上がよい。一般にシックアンドシン糸を染色すると
濃淡差を呈するが、その濃淡差が強過ぎるといった欠点
があったが、かかる発明の混織糸は熱処理することによ
りシックアンドシン糸が内層部に、マルチフィラメント
Aは外層部に配され、シックアンドシン糸の強過ぎる濃
淡差がほどよくマルチフィラメントA糸にかくされてナ
チュラルな色調差となる。
Further, a so-called thick and thin yarn having uneven thickness in the fiber axis direction of the multifilament B may be used. However, in that case, the hot water shrinkage may be 5 to 30%. The thick and thin yarn has a degree of orientation (Δn) of 1 at the thin portion in terms of maintaining the physical properties of the yarn after post-processing.
5 to 60 × 10 −3 or more, more preferably 160 × 10
-3 or more is good. Generally, when a thick and thin yarn is dyed, a difference in shade is exhibited, but there is a drawback in that the difference in shade is too strong. However, the mixed woven yarn of the present invention is heat treated to give the thick and thin yarn in the inner layer portion and the multifilament A. Is arranged in the outer layer portion, and the excessively strong shade difference of the thick and thin yarn is moderately covered by the multifilament A yarn, resulting in a natural color difference.

【0012】次にマルチフィラメントAは、単糸デニー
ルは3デニール以下のものから構成される必要がある。
3デニールを越えると破断伸度が大きく、ヤング率が低
くても風合が粗硬になるので本発明からは除外される。
しかしあまり細くなると後述する異形断面のフィラメン
トにしても張り、腰がなくなるため0.2デニール以上
が好ましい。但し、3デニール以上のものが混じってい
てもよく(デニールミックス)、平均で3デニール以下
ならばよい。更にフィラメントは断面の外周面に少なく
とも1つの凹部を有する異形断面であることが好まし
い。特に本発明の複合糸条の如く破断伸度が大きいフィ
ラメントはソフトだがヌメリ感が出易いので断面形状を
異形にすることによりフィラメント間で点接触部が増加
し、かわいたドライタッチとなるのである。ここでいう
異形断面とは断面の外周面に少なくとも1つの凹部を有
する三角、六角、偏平、それらの中空等の断面形状をい
うが本発明で用いるフィラメントAの単糸の断面形状の
代表例を図3に示す。又このような風合、効果をもたせ
るためにはこれらの単糸の10本以上のフィラメントか
らなることが好ましい。
Next, the multifilament A must be composed of a single yarn denier of 3 denier or less.
If it exceeds 3 denier, the elongation at break is large and the texture becomes coarse and hard even if the Young's modulus is low, so it is excluded from the present invention.
However, if it becomes too thin, even filaments having a modified cross-section, which will be described later, become tense and lose stiffness, so 0.2 denier or more is preferable. However, 3 denier or more may be mixed (denier mix), and 3 denier or less may be averaged. Furthermore, the filament preferably has a modified cross section having at least one recess on the outer peripheral surface of the cross section. In particular, a filament having a large breaking elongation, such as the composite yarn of the present invention, is soft but tends to have a slimy feel. Therefore, by making the cross-sectional shape different, the number of point contact portions between filaments increases, resulting in a dry touch. . The irregular cross-section as used herein refers to a cross-sectional shape such as a triangle, a hexagon, a flat shape, or a hollow thereof having at least one recess on the outer peripheral surface of the cross section. As shown in FIG. Further, in order to provide such a feeling and effect, it is preferable to consist of 10 or more filaments of these single yarns.

【0013】次に本複合糸条は実質的に芯/鞘構造をと
るのはマルチフィラメントAが複合糸条の表層部に多く
存在することにより、布帛表面よりループが突出し易い
からである。また、ここでいう実質的に芯/鞘構造をと
るとは、複合糸条の或る界面で芯部と鞘部に即ちマルチ
フィラメントBとマルチフィラメントAとに二分されて
いる構造のみを意味しているのではなく、複合糸条全体
に特に境界面付近で両成分が混在しており、マルチフィ
ラメントBが主として芯部にマルチフィラメントAが主
として鞘部に配する構造をも意味しており、該複合糸条
の中心から半径1/3内は重量比率でマルチフィラメン
トBがマルチフィラメントAより大きく、複合糸条の表
面から半径1/3内はマルチフィラメントAがマルチフ
ィラメントBより大きいものは本発明の範囲内である。
尚、芯/鞘構造および前述したデニール比率の測定は該
複合糸条をエポキシ樹脂で固定し、ランダムに100回
断面を切断したものを光学顕微鏡で観測し、これより平
均値および状態を求める。又交絡度20〜100で絡合
されていることも必須である。交絡度が20未満ではマ
ルチフィラメント同士、しごかれると糸長差で糸が分離
し易く、工程通過性を著しく阻害する。逆に交絡度が1
00を越えると布帛でインターレース斑が目立つととも
に、マルチフィラメントAのモノフィラメントが切断
し、毛羽になることもあり好ましくないのである。
Next, the reason why this composite yarn has a substantially core / sheath structure is that the multifilament A is present in a large amount in the surface layer portion of the composite yarn, so that the loop easily projects from the surface of the fabric. Further, the term "substantially having a core / sheath structure" as used herein means only a structure in which a composite yarn is divided into a core portion and a sheath portion, that is, a multifilament B and a multifilament A at a certain interface. Rather, both components are mixed in the entire composite yarn particularly near the boundary surface, which means a structure in which the multifilament B is mainly arranged in the core part and the multifilament A is mainly arranged in the sheath part, Within the radius 1/3 from the center of the composite yarn, the multifilament B is larger than the multifilament A in weight ratio, and within the radius 1/3 from the surface of the composite yarn, the multifilament A is larger than the multifilament B. It is within the scope of the invention.
The core / sheath structure and the above-mentioned denier ratio are measured by fixing the composite yarn with an epoxy resin and randomly cutting a section 100 times and observing it with an optical microscope to obtain the average value and state. It is also essential that they are entangled with a degree of entanglement of 20 to 100. When the degree of entanglement is less than 20, multifilaments are entangled, and when entangled, the yarns are likely to separate due to the difference in yarn length, which significantly impairs the process passability. Conversely, the degree of confounding is 1
If it exceeds 00, interlaced spots are conspicuous on the fabric, and the monofilaments of the multifilament A may be cut and become fluff, which is not preferable.

【0014】次に内層部を構成するマルチフィラメント
Bの断面は特に限定はないが、嵩高性をもたせるために
は中空糸を、ドライハンドをさらに強調するためにはマ
ルチフィラメントAと同様に断面の外周面に少なくとも
1つの凹部を有する異形断面糸なども好ましい。更に本
発明のポリエステル複合糸条にはマルチフィラメントA
成分とマルチフィラメントB成分の両方又は一方に必要
に応じ5−ナトリウムスルホン酸金属塩、イソフタル酸
などの共重合物や微粉不活性物質を含んだポリエステル
繊維を含んでもよい。
Next, the cross section of the multifilament B constituting the inner layer portion is not particularly limited, but the cross section of the multifilament B is the same as that of the multifilament A in order to further enhance the dry hand, in order to give bulkiness. A modified cross-section yarn having at least one recess on the outer peripheral surface is also preferable. Further, the polyester composite yarn of the present invention has a multifilament A
If necessary, a polyester fiber containing a copolymer of 5-sodium sulfonic acid metal salt, isophthalic acid or the like or a fine powder inactive substance may be contained in either or both of the component and the multifilament B component.

【0015】次に本複合糸条は加撚された状態であるの
も好ましい。しかしあまり強撚されると糸長差が発現し
難いので15000/(D)1/2 (T/m)以下が好ま
しいが、ソフト、柔軟さを要求しない場合は必ずしもこ
れに限定されない。
Next, it is preferable that the present composite yarn is in a twisted state. However, if the yarn is twisted too much, a difference in yarn length is less likely to occur, so 15000 / (D) 1/2 (T / m) or less is preferable, but it is not necessarily limited to this when softness and flexibility are not required.

【0016】以下の実施例により本発明の構成および作
用効果を説明するが、本発明はもとより下記実施例によ
り制約を受けるものではない。
The constitutions and effects of the present invention will be explained with reference to the following examples, but the present invention is not limited by the following examples.

【0017】[0017]

【実施例】なお、本発明で実施した測定方法は以下の通
りである。
EXAMPLES The measuring methods carried out in the present invention are as follows.

【0018】(1)破断伸度 JIS−L−1013(1981)に準じ、東洋ボール
ドウィン社製テンシロンを用いて試料長(ゲージ長)2
00mm、引張速度200mm/分でS−S曲線を測定
し、破断伸度を算定した。
(1) Elongation at break In accordance with JIS-L-1013 (1981), using Tensilon manufactured by Toyo Baldwin Co., Ltd., sample length (gauge length) 2
The S-S curve was measured at 00 mm and a pulling speed of 200 mm / min to calculate the breaking elongation.

【0019】(2)熱収縮率(SHW)、乾熱収縮率
(SHD) JIS−L−1073に準じ、次によった。即ち適当な
枠周のラップリールで初荷重1/10g/デニールで8
回捲のカセをとり、カセに1/30g/デニールの荷重
をかけその長さL0 (mm)を測定する。ついでその荷
重をとり除き、1/1000g/デニールの荷重をかけ
た状態でカセを沸騰水中に30分間浸漬する。その後カ
セを沸騰水から取り出し、冷却後再び1/30gデニー
ルの荷重をかけてその時の長さL1 (mm)を測定す
る。ついで60℃で30分乾燥した後1/1000g/
デニールの荷重をかけた状態で乾熱160℃のオーブン
中で熱処理する。ついで冷却後再び1/30g/デニー
ルの荷重をかけてそのときの長さL2 (mm)を測定す
る。熱水収縮率(SHW)、乾熱収縮率(SHD)は次
式により算出される。 SHW=(L0 −L1 )×100÷L0 SHD (L0 −L2 )×100÷L0
(2) Heat Shrinkage (SHW), Dry Heat Shrinkage (SHD) According to JIS-L-1073, the following was obtained. That is, with a lap reel with an appropriate frame circumference, 8 with an initial load of 1/10 g / denier
The wound roll is removed, a load of 1/30 g / denier is applied to the roll, and the length L 0 (mm) is measured. Then, the load is removed, and the skein is immersed in boiling water for 30 minutes while applying a load of 1/1000 g / denier. After that, the case is taken out of the boiling water, and after cooling, a load of 1/30 g denier is applied again and the length L 1 (mm) at that time is measured. Then, after drying at 60 ° C for 30 minutes, 1/1000 g /
Heat treatment is performed in an oven having a dry heat of 160 ° C. under a denier load. Then, after cooling, a load of 1/30 g / denier is applied again, and the length L 2 (mm) at that time is measured. The hot water shrinkage rate (SHW) and the dry heat shrinkage rate (SHD) are calculated by the following equations. SHW = (L 0 −L 1 ) × 100 ÷ L 0 SHD (L 0 −L 2 ) × 100 ÷ L 0

【0020】(3) 交絡度 適当な長さの糸をとり出し、下端に1/10g/デニー
ルの荷重をかけて垂直につり下げる。ついで適当な針を
糸中につき出し、ゆっくり持ち上げ荷重が持ち上がるま
でに移動する距離L(cm)を100回測定し、これよ
り平均値L(cm)を求め、次式により算出する。 交絡度=100÷(2×L)
(3) Degree of entanglement A thread of an appropriate length is taken out and vertically suspended by applying a load of 1/10 g / denier to the lower end. Then, an appropriate needle is put into the thread, and the distance L (cm) that is slowly lifted and the load is lifted is measured 100 times. From this, an average value L (cm) is calculated and calculated by the following formula. Entanglement degree = 100 ÷ (2 × L)

【0021】実施例1〜3比較例1〜8 熱伸長マルチフィラメントとして通常のポリエステルを
常法で紡糸捲取速度3000m/minで延伸−リラッ
クス後のデニール、DE、SHW、SHDが表1の物性
になる如く、紡糸吐出量、延伸倍率、リラックス率、リ
ラックス温度、セット時間を変更して得た、又熱収縮マ
ルチフィラメントは市販の東洋紡株製、東洋紡エステル
を使用し、図1の延伸−リラックス機で加工した。ここ
でエアーノズル7はファイバーガイド社製エアージェッ
トFG−1を使用し、目標の交絡度が得られる如くエア
ー圧、フィードローラー6とデリベリーローラー8の間
フィード比を調整した。使用した原糸物性と得られた複
合糸条の糸質及び該糸条を用いて通常の方法で撚糸後サ
イジング工程に供し、次いでデシンを製織し染色仕上げ
した織物の風合を判定した。又工程通過性として特に撚
糸、捲返し、製織性について判定し、工程通過性、風合
の面から見た総合判定を各々表1〜3に記載した。実施
例1、2は本発明の範囲内で風合、工程通過性とも良好
であった。比較例1は熱伸長マルチフィラメントのSH
Wが負で(熱伸長する)サイジングでもループが発生
し、製織でも開口が悪く工程通過性に問題があった。比
較例2は熱伸長マルチフィラメントが収縮せず布帛表面
に突出したループがなく、通常の異収縮混繊維を同じ風
合しか得られなかった。比較例3は熱伸長マルチフィラ
メントの破断伸度が40%と低いために表面タッチは、
やや粗硬で良くなかった。比較例4は熱収縮マルチフィ
ラメントの破断伸度が50%と大きいため複合糸の破断
伸度も大きく張力による斑が発生し、布でもパッカリン
グが発生した。比較例5は熱収縮マルチフィラメントの
比率(複合糸デニールに対する比率)が18%と低いた
めに、複合糸の強力が低く糸切れが発生するとともに、
風合面でもはり、腰がなく満足のいくものではなかっ
た。比較例6は逆に熱収縮フィラメント比率が90%と
大きいために布帛表面に突出する熱収縮フィラメントが
少なく、ふくらみ、バルキー感に劣ったものであった。
比較例7は交絡度が低いために糸が分離し工程通過性が
悪かった。比較例8は交絡度が130と高いために布帛
にインターレースマークと称するモアレ斑が発生した。
Examples 1 to 3 Comparative Examples 1 to 8 Normal polyester as a heat-expandable multifilament is stretched at a spinning winding speed of 3000 m / min by a conventional method. Denier after relaxation-DE, SHW, SHD are shown in Table 1 as physical properties. As shown in FIG. 1, the spinning discharge amount, the draw ratio, the relaxation rate, the relaxing temperature, and the set time were changed, and the heat-shrinkable multifilament was commercial Toyobo Co., Ltd. Machined. Here, as the air nozzle 7, an air jet FG-1 manufactured by Fiber Guide was used, and the air pressure and the feed ratio between the feed roller 6 and the delivery roller 8 were adjusted so that the target degree of entanglement could be obtained. The physical properties of the raw yarn used, the yarn quality of the obtained composite yarn, and the yarn were subjected to a sizing step after twisting by a usual method, and then the texture of the woven fabric dyed and finished with decin was judged. Further, as the process passability, in particular, twisted yarn, rewinding, and weaving property were determined, and comprehensive determinations in terms of process passability and feeling are shown in Tables 1 to 3, respectively. Examples 1 and 2 had good feeling and process passability within the scope of the present invention. Comparative Example 1 is a heat-expanded multifilament SH
A loop was generated even when sizing when W was negative (expanded by heat), and the opening was poor even in weaving, and there was a problem in process passability. In Comparative Example 2, the heat-expandable multifilament did not shrink and there was no protruding loop on the surface of the fabric, and the ordinary heterogeneous-shrink mixed fiber was obtained only with the same feel. In Comparative Example 3, the elongation at break of the heat-extended multifilament is as low as 40%, so the surface touch is
It was a little rough and not good. In Comparative Example 4, since the breaking elongation of the heat-shrinkable multifilament was as high as 50%, the breaking elongation of the composite yarn was also large and unevenness due to tension was generated, and puckering was also generated on the cloth. In Comparative Example 5, since the ratio of the heat-shrinkable multifilament (ratio to the composite yarn denier) is as low as 18%, the strength of the composite yarn is low and the yarn breakage occurs.
The texture was good, and I was not satisfied with it. On the contrary, in Comparative Example 6, since the heat shrink filament ratio was as large as 90%, there were few heat shrink filaments protruding to the surface of the fabric, and the bulge and bulkiness were inferior.
In Comparative Example 7, since the degree of entanglement was low, the yarn was separated and the process passability was poor. In Comparative Example 8, since the degree of entanglement was as high as 130, moire spots called interlaced marks were generated on the cloth.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】 D:トータルデニール Fil:フィラメント数 断面形状:△ 図3、1の三角断面、○ 丸断面 布帛風合:10名による触感官能評価による4段階評価 ◎ ソフト感、はり、腰、ドレープ感ともすべて良好 ○ ソフト感に欠ける △ ソフト感、ドレープ感に欠ける × ごわごわしている 工程通過性:織機稼動率 ◎ 98%以上 ○ 95%以上 △ 90%以上 × 90%未満 総合判定:布帛風合、工程通過性について判定 ◎ 共に良好 △ どちらか一方もしくは両方に欠点がある × どちらか一方もしくは両方が非常に悪いD: Total denier Fil: Number of filaments Cross-sectional shape: △ Triangular cross-section of Fig. 3, 1 ○ Round cross-section Fabric texture: 4-step evaluation by tactile sensory evaluation by 10 persons ◎ Soft feeling, elasticity, waist, drape feeling All are good ○ Lack of softness △ Lack of softness and drape × Roughness Process passability: Loom operating rate ◎ 98% or more ○ 95% or more △ 90% or more × less than 90% Overall judgment: Fabric texture Judgment of process passability ◎ Both are good △ Either one or both have defects × Either one or both are very bad

【0026】実施例3〜7、比較例9〜17 極限粘度0.63ポリエチレンテレフタレートを常法に
よりホール数18の紡糸ノズルを用いて紡速および吐出
量を変更し表4の未延伸糸を得た。つづいて表5、6表
に示す条件にて混繊糸をつくり、通常の方法で製織、染
色仕上げを実施した。この間、工程通過性として延伸操
業性、リラックス熱処理操業性、製織等の後加工通過性
をまた織物風合、外観について評価した結果も合わせて
表5、6に示す。混繊糸の作成については図1に示す延
伸、リラックス、混繊機を使用した。交絡度の調製につ
いてはフィーバーガイド社製エアージェットFG−1を
使用し、エアー圧および処理張力を調製により実施し
た。実施例3〜7は本発明の範囲内で、工程通過性、織
かつ織物外観、風合いが優れたものであった。比較例9
は延伸温度がガラス転移温度(約70℃)に比べ低く、
延伸操業性に劣り、織物外観も劣るものとなった。比較
例10、11は延伸後の破断伸度が本発明外であり、比
較例10は延伸後の破断伸度が高く、延伸時に太さ斑の
発生が見られ、風合および織物外見の均一感で満足しう
るものではなかった。また比較例11は延伸後の破断伸
度が低くかつ△nも本発明外であるが、延伸操業性が悪
く、それにともない工程通過性も低下をきたした。比較
例12、13はリラックス熱処理温度が本発明外であ
り、比較例12はリラックス熱処理温度が低く自発伸長
性に欠け織物風合は満足できるものではなかった。また
比較例13はリラックス熱処理温度が高く、ドッフィン
グ停台時に溶断糸切れが発生し、織物風合も若干不満足
なものであった。比較例14、15はリラックス熱処理
時のオーバーフィード率が本発明外であり、比較例14
は自発伸長性の不足により風合が満足いくものではなか
った。比較例15はオーバーフィード率が高く、リラッ
クス熱処理操業性に低下をきたし、さらに混繊糸にルー
プが多く後加工通過性、織物風合に欠けるものであっ
た。比較例16、17は自発伸長性マルチフィラメント
と熱処理性マルチフィラメントの混繊デニール比が本発
明外であり、比較例16は熱収縮性マルチフィラメント
の比率が高く、織物のソフト感に欠けるものであった。
また比較例17は熱収縮マルチフィラメントの比率が低
く張り腰に欠けるものであった。
Examples 3 to 7 and Comparative Examples 9 to 17 Intrinsic viscosity of 0.63 polyethylene terephthalate was changed by a conventional method using a spinning nozzle having 18 holes to change the spinning speed and discharge rate to obtain undrawn yarns in Table 4. It was Subsequently, a mixed yarn was prepared under the conditions shown in Tables 5 and 6, and weaving and dyeing were performed by usual methods. During this period, as the process passability, stretching operability, relax heat treatment operability, post-processing passability such as weaving, and evaluation results of the texture and appearance of the fabric are also shown in Tables 5 and 6. For the preparation of the mixed fiber, the drawing, relaxing and mixing machine shown in FIG. 1 was used. For the adjustment of the degree of entanglement, an air jet FG-1 manufactured by Fever Guide was used, and the air pressure and the processing tension were adjusted. Examples 3 to 7 were excellent in process passability, woven and woven fabric appearance, and texture within the scope of the present invention. Comparative Example 9
Has a lower stretching temperature than the glass transition temperature (about 70 ° C),
The drawing operability was poor, and the appearance of the woven fabric was also poor. In Comparative Examples 10 and 11, the breaking elongation after stretching is outside the scope of the present invention, and in Comparative Example 10, the breaking elongation after stretching is high, uneven thickness is observed during stretching, and the texture and the appearance of the fabric are uniform. I was not satisfied with the feeling. Further, in Comparative Example 11, the breaking elongation after stretching was low and Δn was outside the scope of the present invention, but the stretching operability was poor and the process passability was also reduced accordingly. In Comparative Examples 12 and 13, the relax heat treatment temperature was outside the scope of the present invention, and in Comparative Example 12, the relax heat treatment temperature was low and the spontaneous stretchability was lacking, and the fabric texture was not satisfactory. In Comparative Example 13, the relaxation heat treatment temperature was high, fusible yarn breakage occurred when the doffing was stopped, and the texture of the fabric was slightly unsatisfactory. In Comparative Examples 14 and 15, the overfeed rate during the relaxation heat treatment was outside the scope of the present invention, and Comparative Example 14
The texture was not satisfactory due to lack of spontaneous elongation. In Comparative Example 15, the overfeed rate was high, the relaxation heat treatment operability was deteriorated, and moreover, there were many loops in the mixed fiber and the post-processability and the texture of the woven fabric were poor. In Comparative Examples 16 and 17, the mixed fiber denier ratio of the spontaneously extensible multifilament and the heat-treatable multifilament is outside the scope of the present invention, and in Comparative Example 16, the ratio of the heat-shrinkable multifilament is high and the woven fabric lacks softness there were.
Further, in Comparative Example 17, the ratio of heat-shrinkable multifilaments was low, and the elasticity was lacking.

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【表5】 [Table 5]

【0029】[0029]

【表6】 [Table 6]

【0030】Den:トータルデニール fil:フィラメント数 ◎ ○ △ × 延伸操業性:延伸糸切率 2%以下 5%以下 10%以下 11%以上リラックス 操業性:リラックス 糸切率 2%以下 5%以下 10%以下 11%以上 後工程通過性:織機稼動率 98%以上 95%以上 90%以上 90%未満 織物風合い:10名による触感官能評価による4段階評
価 ◎ ソフト感、張り、腰、ドレープ感ともすべて良好 ○ ソフト感に欠ける △ ソフト感、ドレープ感に欠ける × ごわごわしている 織物外観:検反機にて織物のイラツキ、ストリーク、そ
の他の欠点を4段階に評価した ◎ ナ シ ○ わずかに目立つ △ 目立つ × 著しく目立つ 総 合:工程操業性・通過性及び織物風合・外観の総
合的な判定 ◎ すべて良好 △ 一部欠点がある × 一部非常に悪い
Den: Total denier fil: Number of filaments ◎ ○ △ × Stretching operability: Stretching thread cutting rate 2% or less 5% or less 10% or less 11% or more Relaxing operability: Relaxing thread cutting rate 2% or less 5% or less 10 % Or less 11% or more Post-process passability: Loom operation rate 98% or more 95% or more 90% or more and less than 90% Woven texture: Tactile feel by 10 people 4-level evaluation by sensory evaluation ◎ Soft feeling, tension, waist, drape feeling are all Good ○ Lack of softness △ Lack of softness and drape × Rugged Appearance: Irritation, streak, and other defects of the fabric were evaluated in 4 levels by a tester ◎ None ○ Slightly noticeable △ Conspicuous × Remarkably conspicuous Total: Comprehensive judgment of process operability / passability and fabric texture / appearance ◎ All good △ Some defects × Some very bad

【0031】[0031]

【発明の効果】このように本発明のポリエステル複合糸
条は従来の異収縮混繊維糸(熱伸長糸も含む)に比べて
ソフト、柔軟性、且つドライタッチと適度な張り、腰、
ドレープ性を有し、しかも工程通過性が優れているとい
う顕著な効果を奏するのである。
As described above, the polyester composite yarn of the present invention is softer and more flexible than the conventional hetero-shrink mixed fiber yarn (including heat-extended yarn), and has a dry touch and an appropriate tension, waist,
It has a remarkable effect of having drapeability and excellent process passability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における製造装置の一例を示す略側面
図。
FIG. 1 is a schematic side view showing an example of a manufacturing apparatus according to the present invention.

【図2】本発明により得られた複合糸条を熱処理して糸
長差を発現させた側面図。
FIG. 2 is a side view in which the composite yarn obtained by the present invention is heat-treated to develop a yarn length difference.

【図3】本発明におけるフィラメントの単糸の断面形状
の代表例。
FIG. 3 is a typical example of a cross-sectional shape of a filament single yarn in the present invention.

【符号の説明】[Explanation of symbols]

A:熱伸長マルチフィラメント B:熱収縮マルチフィラメント C:本発明のポリエステル複合糸条 3:ホットローラー 5:非接触ヒーター 7:エアージェットノズル A: Heat-expandable multifilament B: Heat-shrinkable multifilament C: Polyester composite yarn of the present invention 3: Hot roller 5: Non-contact heater 7: Air jet nozzle

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D02G 3/34 D02J 1/00 K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location D02G 3/34 D02J 1/00 K

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 紡速1500〜4000m/minで紡
糸した未延伸糸をガラス転移温度以上で延伸して得られ
た破断伸度が30〜45%、△n0.10〜0.14の
ポリエステルマルチフィラメント延伸糸を非接触ヒータ
ーにて下記〔A〕式の(1)および(2)を同時に満足
するヒーター温度T(℃)かつ、20〜60%のオーバ
ーフィード率でリラックス熱処理を施し、かくして得た
下記〔B〕式を満足するポリエステルマルチフィラメン
トAを下記〔B〕式を満足するポリエステルマルチフィ
ラメントBとをA/B=20〜80%/80〜20%
(デニール比)となるように合わせて交絡度20〜10
0コ/mで交絡処理することを特徴とする織編物用潜在
嵩高性ポリエステル複合糸条の製造法。 〔A〕75log{(D×Vy )1/2 /HL}+4.7
(Vy )1/2 ≧ T≧25log{(D×Vy )1/2 /HL}+4.7
(Vy )1/2 …(1) T≦Tm−10…(2) D:リラックス後デニール Vy :リラックス引取ローラー速度(m/min) HL:リラックス非接触式ヒーター長(m) Tm:融点(℃) Tg:2次転移点温度(℃) 〔B〕SHW(A)≧0%、SHD(A)≦0% SHW(B)≧0% SHD(B)−SHD(A)≧5% DE(A)≧50% SHW:熱水(100℃)収縮率(%) SHD:乾熱(160℃)収縮率(%) DE:破断伸度(%)
1. A polyester multi having a breaking elongation of 30 to 45% and a Δn of 0.10 to 0.14 obtained by drawing an undrawn yarn spun at a spinning speed of 1500 to 4000 m / min at a glass transition temperature or higher. The filament drawn yarn is subjected to a relaxation heat treatment with a non-contact heater at a heater temperature T (° C.) satisfying the following formulas (1) and (2) at the same time and an overfeed rate of 20 to 60%, thus obtained. A polyester multifilament A satisfying the following formula [B] and a polyester multifilament B satisfying the following formula [B] are A / B = 20 to 80% / 80 to 20%
The degree of entanglement is 20 to 10 according to the (denier ratio).
A process for producing a latent bulky polyester composite yarn for a woven or knitted fabric, which comprises performing an entanglement treatment at 0 k / m. [A] 75 log {(D × Vy) 1/2 /HL}+4.7
(Vy) 1/2 ≧ T ≧ 25 log {(D × Vy) 1/2 /HL}+4.7
(Vy) 1/2 (1) T≤Tm-10 (2) D: Denier after relaxation Vy: Relax take-up roller speed (m / min) HL: Relax non-contact heater length (m) Tm: Melting point ( C) Tg: Second-order transition temperature (C) [B] SHW (A) ≧ 0%, SHD (A) ≦ 0% SHW (B) ≧ 0% SHD (B) −SHD (A) ≧ 5% DE (A) ≧ 50% SHW: Hot water (100 ° C.) shrinkage rate (%) SHD: Dry heat (160 ° C.) shrinkage rate (%) DE: Breaking elongation (%)
JP3170559A 1991-06-14 1991-06-14 Method for producing latent bulky polyester composite yarns for woven and knitted fabrics Expired - Fee Related JPH081014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3170559A JPH081014B2 (en) 1991-06-14 1991-06-14 Method for producing latent bulky polyester composite yarns for woven and knitted fabrics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3170559A JPH081014B2 (en) 1991-06-14 1991-06-14 Method for producing latent bulky polyester composite yarns for woven and knitted fabrics

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63218941A Division JPH01250425A (en) 1987-11-16 1988-08-31 Latently bulky polyester conjugated yarn for woven and knitted fabric and production thereof

Publications (2)

Publication Number Publication Date
JPH04352836A JPH04352836A (en) 1992-12-07
JPH081014B2 true JPH081014B2 (en) 1996-01-10

Family

ID=15907101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3170559A Expired - Fee Related JPH081014B2 (en) 1991-06-14 1991-06-14 Method for producing latent bulky polyester composite yarns for woven and knitted fabrics

Country Status (1)

Country Link
JP (1) JPH081014B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50148651A (en) * 1974-05-17 1975-11-28
JPS5493120A (en) * 1977-12-26 1979-07-24 Teijin Ltd Production of crimped yarn of self-stretching polyester
JPS6028515A (en) * 1983-07-22 1985-02-13 Toyobo Co Ltd Conjugated polyester filament

Also Published As

Publication number Publication date
JPH04352836A (en) 1992-12-07

Similar Documents

Publication Publication Date Title
JP3275478B2 (en) Composite yarn for knitted fabric
JP2001303375A (en) Conjugated elastic yarn and method for manufacturing the same
JP5217068B2 (en) Loop yarn, production method thereof, and woven / knitted fabric
JP2770412B2 (en) Composite multifilament
JPH0978382A (en) Polyester combined filament yarn
JPH081014B2 (en) Method for producing latent bulky polyester composite yarns for woven and knitted fabrics
JPH09143827A (en) Polyester-based multifilament composite yarn and woven or knitted fabric using the same
JP2770414B2 (en) Polyester composite yarn for woven or knitted fabric
JPH07243138A (en) Latent-bulky polyester conjugate filament for woven fabric
JP2737999B2 (en) Polyester composite yarn for woven or knitted fabric
JP2770423B2 (en) Latent bulky polyester composite yarn for woven or knitted fabric
JPH07316939A (en) Production of latent bulky conjugate polyester yarn for woven or knit fabric
JP2910053B2 (en) Polyester composite yarn
JP2738013B2 (en) Latent bulky thermoplastic synthetic fiber composite yarn for woven or knitted fabric
JPH07138834A (en) Bulky conjugate yarn for woven or knit fabric
JP2820589B2 (en) Latent bulky mixed yarn
JP2833052B2 (en) Polyester composite yarn
JP3508326B2 (en) Polyester-based multifilament composite yarn and polyester-based composite fiber woven / knitted fabric using the yarn
JP2970431B2 (en) Latent bulky composite yarn
JP2770415B2 (en) Latent bulky polyester composite yarn for woven or knitted fabric
JP3303489B2 (en) Polyester composite yarn
JPH0418051B2 (en)
JPH0841752A (en) Hard twist polyester yarn fabric
JP3484822B2 (en) Polyester multifilament composite yarn and method for producing the same
JPH038824A (en) Polyester conjugated yarn

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees