JPH08101360A - Fixing structure of optical element - Google Patents

Fixing structure of optical element

Info

Publication number
JPH08101360A
JPH08101360A JP23710894A JP23710894A JPH08101360A JP H08101360 A JPH08101360 A JP H08101360A JP 23710894 A JP23710894 A JP 23710894A JP 23710894 A JP23710894 A JP 23710894A JP H08101360 A JPH08101360 A JP H08101360A
Authority
JP
Japan
Prior art keywords
rotator
optical
holder
spacer
faraday rotator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23710894A
Other languages
Japanese (ja)
Other versions
JP3556284B2 (en
Inventor
Tomoyuki Hirose
友幸 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP23710894A priority Critical patent/JP3556284B2/en
Publication of JPH08101360A publication Critical patent/JPH08101360A/en
Application granted granted Critical
Publication of JP3556284B2 publication Critical patent/JP3556284B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To obviate the generation of the tensile stress by a thermal expansion difference of an azimuth rotator by arranging the azimuth rotator on the inner side of a Faraday rotator holder and another azimuth rotator holder, inserting a spacer on the inner side of both holders and holding the Faraday rotator and the azimuth rotator at their respective ends. CONSTITUTION: The Faraday rotator holder 1 is formed to a cylindrical shape and has a collar part 1a on the outer periphery at one end. The holder has a first stage 1b and a second stage 1c. The Faraday rotator 4 is held in the first step part 1b and the Faraday rotator 4 is joined by the low melting glass 6 of the second step part 1c. The one end 3a of the cylindrical spacer 3 is inserted into the Faraday rotator holder 1 and the Faraday rotator holder 1 and the spacer 3 are joined. On the other hand, the azimuth rotator holder 2 is placed with the azimuth rotator 5 in the step part 2a. The other end 3b of the spacer 3 is inserted into the inner periphery of the azimuth rotator holder 2 and the end 3b of the spacer 3 is pressed to the azimuth rotator 5 and is connected by a melting point 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバ通信等に用
いる光アイソレータや光サーキュレータを構成する光学
素子の固定構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure for fixing an optical element constituting an optical isolator or optical circulator used for optical fiber communication or the like.

【0002】[0002]

【従来の技術】レンズ等の光学素子をホルダーに固定す
る構造として、図5に示すように円筒状のホルダ31の
内周に環状の溝31aを形成し、この溝に低融点ガラス
33を充填して光学素子32を載置した状態で焼成し、
融着接合する構造がある(特開平3−271704号公
報参照)。
2. Description of the Related Art As a structure for fixing an optical element such as a lens to a holder, as shown in FIG. 5, an annular groove 31a is formed on the inner periphery of a cylindrical holder 31, and a low melting point glass 33 is filled in this groove. And firing with the optical element 32 mounted,
There is a structure for fusion bonding (see Japanese Patent Laid-Open No. 3-271704).

【0003】これを利用して、図6に示すように、ファ
ラデー回転子24を低融点ガラス26で固定したファラ
デー回転子ホルダ21と、旋光子25を低融点ガラス2
7で固定した旋光子ホルダ22とを溶接点28でYAG
溶接により固定した光学素子の固定構造が利用されてい
る。
Utilizing this, as shown in FIG. 6, the Faraday rotator holder 21 in which the Faraday rotator 24 is fixed by the low melting point glass 26 and the optical rotator 25 are set in the low melting point glass 2.
YAG at the welding point 28 with the optical rotator holder 22 fixed at 7.
A fixing structure of an optical element fixed by welding is used.

【0004】図6に示す光学素子は光アイソレータとし
て利用されている。つまり、ファラデー回転子24はガ
ーネットからなり、直線偏光の偏光面を45°回転させ
る作用を持つ。また旋光子25は水晶からなり、その結
晶軸に対してθの角度を持つ直線偏光が入射した場合、
この直線偏光の偏光面を2θ回転させて通過させる作用
を持つため、予めθが22.5°となるように設定して
おく。いま、図6中の矢印方向から入射した直線偏光は
ファラデー回転子24を通過する際に偏光面が45°回
転し、次に旋光子25を通過する際に−45°回転して
元の偏光方位と一致する。一方、矢印と逆方向に入射し
た直線偏光は旋光子25を通過する際に偏光面が45°
回転し、これがさらにファラデー回転子24を通過して
45°回転するために、入射前の偏光方位に対して90
°回転した状態となる。
The optical element shown in FIG. 6 is used as an optical isolator. That is, the Faraday rotator 24 is made of garnet and has the function of rotating the polarization plane of linearly polarized light by 45 °. The optical rotator 25 is made of crystal, and when linearly polarized light having an angle of θ with respect to its crystal axis is incident,
Since it has a function of rotating the plane of polarization of this linearly polarized light by 2θ and allowing it to pass, θ is set beforehand to be 22.5 °. Now, the linearly polarized light incident from the direction of the arrow in FIG. 6 rotates its polarization plane by 45 ° when passing through the Faraday rotator 24, and then rotates by −45 ° when passing through the optical rotator 25. Match the azimuth. On the other hand, the linearly polarized light incident in the direction opposite to the arrow has a polarization plane of 45 ° when passing through the optical rotator 25.
It rotates, and because it passes through the Faraday rotator 24 and rotates 45 °, it is
° It will be rotated.

【0005】このように、光の入射方向によって、出射
する光の偏光方向を直交させられるため、図6に示す光
学素子の両端に吸収方位を持つ偏光子を配置させれば、
一定方向のみの光を通過させ、逆方向は通過させないよ
うにすることができ、光アイソレータとすることができ
るのである。
As described above, the polarization direction of the emitted light can be made orthogonal depending on the incident direction of the light. Therefore, if polarizers having absorption azimuths are arranged at both ends of the optical element shown in FIG.
It is possible to allow light in only a certain direction to pass and not allow light in the opposite direction to pass, and it is possible to provide an optical isolator.

【0006】この光アイソレータを、例えばレーザ光源
の直後に接続しておけば、レーザ光源から発振された光
が反射して戻ってきてもレーザ光源に入射することがな
く、レーザ発振が不安定となることを防止できる。
If this optical isolator is connected, for example, immediately after the laser light source, even if the light emitted from the laser light source is reflected and returned, it does not enter the laser light source and the laser oscillation becomes unstable. Can be prevented.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、図6に
示す固定構造において、低融点ガラス27の熱膨張係数
は83×10-7/℃、旋光子ホルダ22の熱膨張係数は
100×10-7/℃であるのに対し、水晶から成る旋光
子25は300℃の熱膨張係数が300×10-7/℃と
高温時の熱膨張係数が高く、他部材との熱膨張差が大き
いものであった。そのため、低融点ガラス27を用いて
焼成、融着した後の冷却時に、旋光子25が大きく収縮
して、低融点ガラス27との間に引っ張り残留応力が生
じていた。
However, in the fixing structure shown in FIG. 6, the low-melting glass 27 has a coefficient of thermal expansion of 83 × 10 −7 / ° C., and the optical rotator holder 22 has a coefficient of thermal expansion of 100 × 10 −7. In contrast, the optical rotator 25 made of quartz has a high coefficient of thermal expansion at 300 ° C. of 300 × 10 −7 / ° C. and a high coefficient of thermal expansion at a high temperature, and a large difference in thermal expansion with other members. there were. Therefore, when the low melting point glass 27 is fired and fused and then cooled, the optical rotator 25 largely contracts, and a tensile residual stress is generated between the optical rotation element 25 and the low melting point glass 27.

【0008】その結果、旋光子25の複屈折率が変化し
て位相差が生じ、通常の消光比が約50dBであるのに
対し、消光比30dB以下と大きく劣化してしまうとい
う問題点があった。そして、消光比が小さくなると、例
えば光アイソレータとして用いた場合に、順方向損失特
性、逆方向損失特性ともに劣化してしまう等の不都合が
あった。
As a result, the birefringence of the optical rotator 25 changes to cause a phase difference, and the normal extinction ratio is about 50 dB, but the extinction ratio is greatly deteriorated to 30 dB or less. It was When the extinction ratio becomes small, there is a disadvantage that both the forward loss characteristic and the backward loss characteristic are deteriorated when used as an optical isolator, for example.

【0009】また、旋光子25は直線偏光の振動方位と
光学軸との成す角度により直線偏光を回転させる角度が
異なるため、光軸回りの回転調整が必要であるが、ファ
ラデー回転子24はどのような振動方位の直線偏光に対
しても所定の角度回転させる作用を持つため、回転調整
の必要はない。したがって、ファラデー回転子24と旋
光子25は一体化することが可能であるが、図6の構造
ではファラデー回転子24と旋光子25を別々に組み立
てて最後に接合していたため、作業工程が多いという問
題点もあった。
Further, since the angle of rotation of the linearly polarized light of the optical rotator 25 differs depending on the angle formed by the vibration direction of the linearly polarized light and the optical axis, it is necessary to adjust the rotation around the optical axis. Since it also has the effect of rotating the linearly polarized light having such an oscillation direction by a predetermined angle, it is not necessary to adjust the rotation. Therefore, the Faraday rotator 24 and the optical rotator 25 can be integrated, but in the structure of FIG. 6, the Faraday rotator 24 and the optical rotator 25 are separately assembled and finally joined, so that there are many work steps. There was also a problem.

【0010】本発明は上述の点に鑑みてなされたもので
あり、旋光子に熱膨張差による引っ張り応力が生じない
ような固定構造を提供することを目的とする。また、本
発明は、ファラデー回転子と旋光子を一体化した固定構
造を得ることを目的とする。
The present invention has been made in view of the above points, and an object thereof is to provide a fixing structure in which tensile stress due to a difference in thermal expansion does not occur in an optical rotator. Another object of the present invention is to obtain a fixing structure in which a Faraday rotator and an optical rotator are integrated.

【0011】[0011]

【課題を解決するための手段】上記に鑑みて本発明は、
ファラデー回転子と旋光子を同軸上に固定した構造にお
いて、筒状のファラデー回転子ホルダの内側段部にファ
ラデー回転子を配置するとともに、他の筒状の旋光子ホ
ルダの内側段部に旋光子を配置し、両方のホルダの内側
に筒状のスペーサを挿入して、該スペーサの各端部で上
記ファラデー回転子及び/又は旋光子を挟持して保持し
たことを特徴とする。
In view of the above, the present invention provides:
In the structure in which the Faraday rotator and the rotator are coaxially fixed, the Faraday rotator is placed in the inner step of the cylindrical Faraday rotator holder, and the rotator is placed in the inner step of the other cylindrical rotator holder. Is arranged, a cylindrical spacer is inserted into both holders, and the Faraday rotator and / or the optical rotator are sandwiched and held at each end of the spacer.

【0012】[0012]

【実施例】以下本発明実施例を図によって説明する。Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1に示すように、ファラデー回転子ホル
ダ1は金属製の円筒状体で一方端部の外周に鍔部1aを
備え、内周面に第1段部1bと第2段部1cを有してい
る。そして、第1段部1bにファラデー回転子4を保持
し、第2段部1cに備えた低融点ガラス6でファラデー
回転子4を接合してある。また、ファラデー回転子ホル
ダ1の内周には円筒状のスペーサ3の一方の端部3aを
挿入し、YAG溶接によりファラデー回転子ホルダ1と
スペーサ3を接合してある。
As shown in FIG. 1, the Faraday rotator holder 1 is a cylindrical member made of metal and has a flange 1a on the outer circumference at one end, and a first step 1b and a second step 1c on the inner peripheral surface. have. Then, the Faraday rotator 4 is held on the first step portion 1b, and the Faraday rotator 4 is joined by the low melting point glass 6 provided on the second step portion 1c. Further, one end 3a of the cylindrical spacer 3 is inserted into the inner circumference of the Faraday rotator holder 1, and the Faraday rotator holder 1 and the spacer 3 are joined by YAG welding.

【0014】一方、旋光子ホルダ2は金属製の円筒状体
で内周面に段部2aを備え、この段部2aに旋光子5を
載置してある。そして、上記スペーサ3の他方の端部3
bをこの旋光子ホルダ2の内周に挿入し、スペーサ3の
端部3bを旋光子5に押し当てた状態で、スペーサ3と
旋光子ホルダ2とを溶接点8でレーザ溶接により接続し
てある。このとき、旋光子5はスペーサ3と旋光子ホル
ダ2間に挟持されて保持されることになり、低融点ガラ
ス等を用いて固定されていない。
On the other hand, the optical rotator holder 2 is a cylindrical body made of metal and has a step portion 2a on its inner peripheral surface, and the optical rotator 5 is mounted on the step portion 2a. Then, the other end 3 of the spacer 3
b is inserted into the inner circumference of the optical rotator holder 2 and the end 3b of the spacer 3 is pressed against the optical rotator 5, and the spacer 3 and the optical rotator holder 2 are connected by laser welding at the welding point 8. is there. At this time, the optical rotator 5 is held by being sandwiched between the spacer 3 and the optical rotator holder 2, and is not fixed using a low melting point glass or the like.

【0015】さらに、上記ファラデー回転子ホルダ1の
外周に、ファラデー回転子4に磁界を印加するための永
久磁石7を装着してあるが、上記鍔部1aを備えてある
ことにより、永久磁石7が光軸方向にずれることはな
い。また、永久磁石7として焼結磁石を用いる場合は、
外部からの衝撃によって欠けやクラックが生じる事があ
るため、鍔部1aの外径を永久磁石7の外径よりも大き
くすることが望ましい。
Further, a permanent magnet 7 for applying a magnetic field to the Faraday rotator 4 is mounted on the outer periphery of the Faraday rotator holder 1, and the permanent magnet 7 is provided by including the collar portion 1a. Does not shift in the optical axis direction. When a sintered magnet is used as the permanent magnet 7,
It is desirable to make the outer diameter of the collar portion 1 a larger than the outer diameter of the permanent magnet 7 because chipping or cracking may occur due to external impact.

【0016】このような本発明の光学素子の固定構造に
よれば、ファラデー回転子4と旋光子5を一体化してあ
るため、製造工程が簡略化できる。また、ファラデー回
転子ホルダ1と旋光子ホルダ2のそれぞれの内周面にス
ペーサ3の両端部を挿入して接合する構造としてあるた
め、全体の同軸度を高くすることができる。
According to such a fixing structure of the optical element of the present invention, since the Faraday rotator 4 and the optical rotator 5 are integrated, the manufacturing process can be simplified. Moreover, since both ends of the spacer 3 are inserted into and joined to the inner peripheral surfaces of the Faraday rotator holder 1 and the optical rotator holder 2, the overall coaxiality can be increased.

【0017】さらに、旋光子5をスペーサ3と旋光子ホ
ルダ2で挟持して保持することにより、低融点ガラスを
用いないため旋光子5に熱膨張差による引っ張り応力が
生じることはない。
Further, since the optical rotator 5 is held by being sandwiched between the spacer 3 and the optical rotator holder 2, the tensile stress due to the difference in thermal expansion does not occur in the optical rotator 5 because the low melting point glass is not used.

【0018】なお、上記ファラデー回転子4は、入射し
た直線偏光の偏光面の角度を回転させる作用を有し、通
常ガーネットから成る。また、旋光子5は、結晶軸に対
してθの角度を持つ直線偏光が入射した場合、この直線
偏光の偏光面を2θ回転させて出射させる作用を持ち、
通常水晶等の1/2波長板から成る。
The Faraday rotator 4 has a function of rotating the angle of the plane of polarization of the incident linearly polarized light, and is usually made of garnet. Further, when the linearly polarized light having an angle of θ with respect to the crystal axis is incident, the optical rotator 5 has a function of rotating the polarization plane of this linearly polarized light by 2θ and emitting it.
Usually consists of a half-wave plate such as a crystal.

【0019】次に本発明の光学素子の固定構造の製造方
法を説明する。まず、図2(a)に図1とは上下を逆に
して示すように、ファラデー回転子ホルダ1の第1段部
1bにファラデー回転子4を、第2段部1cに低融点ガ
ラス6のプリフォームを配置した後、焼成してファラデ
ー回転子4を融着接合する。そして、ファラデー回転子
ホルダ1の外周に永久磁石7を装着し、さらにファラデ
ー回転子ホルダ1の内周にスペーサ3の端部3aを挿入
して、YAG溶接によりスペーサ3と回転子ホルダ1を
接合する。
Next, a method of manufacturing the optical element fixing structure of the present invention will be described. First, as shown in FIG. 2 (a), which is turned upside down from FIG. 1, the Faraday rotator 4 is attached to the first step 1b of the Faraday rotator holder 1, and the low melting point glass 6 is attached to the second step 1c. After arranging the preform, it is fired to fusion-bond the Faraday rotator 4. Then, the permanent magnet 7 is mounted on the outer circumference of the Faraday rotator holder 1, the end 3a of the spacer 3 is further inserted on the inner circumference of the Faraday rotator holder 1, and the spacer 3 and the rotor holder 1 are joined by YAG welding. To do.

【0020】次に、図2(b)に示すように、旋光子ホ
ルダ2の内周の段部2aに旋光子5を載置した後、図2
(a)に示す組立体におけるスペーサ3の他方の端部3
bを旋光子ホルダ2の内周面に挿入する。そして、スペ
ーサ3の端部3bを旋光子5に押し当てて、旋光子5に
位置ずれが起きず、かつ応力による複屈折が生じない範
囲で加圧した状態で、スペーサ3の側面と旋光子ホルダ
2の内周面との間の溶接点8でレーザ溶接により接合す
れば良い。
Next, as shown in FIG. 2 (b), after the optical rotator 5 is mounted on the step portion 2a on the inner circumference of the optical rotator holder 2,
The other end 3 of the spacer 3 in the assembly shown in (a)
Insert b into the inner peripheral surface of the optical rotator holder 2. Then, the end portion 3b of the spacer 3 is pressed against the optical rotator 5, and the side surface of the spacer 3 and the optical rotator 5 are pressed in a state in which the optical rotator 5 is not displaced and the stress does not cause birefringence. Laser welding may be performed at the welding point 8 between the holder 2 and the inner peripheral surface.

【0021】また、以上の実施例では、スペーサ3の大
径部の外径Aを永久磁石7の内径Bよりも大きくしてあ
るため、永久磁石7は鍔部1aとスペーサ3で両端を保
持することができる。ただし、他の実施例として、スペ
ーサ3の大径部の外径Aを永久磁石7の内径Bよりも小
さくすることもできる。この場合は、ファラデー回転子
ホルダ1とファラデー回転子4とスペーサ3を接合した
後で永久磁石7を装着することができる。
Further, in the above embodiment, since the outer diameter A of the large diameter portion of the spacer 3 is made larger than the inner diameter B of the permanent magnet 7, the permanent magnet 7 is held at both ends by the flange portion 1a and the spacer 3. can do. However, as another embodiment, the outer diameter A of the large diameter portion of the spacer 3 can be made smaller than the inner diameter B of the permanent magnet 7. In this case, the permanent magnet 7 can be mounted after the Faraday rotator holder 1, the Faraday rotator 4, and the spacer 3 are joined.

【0022】さらに、上記実施例ではファラデー回転子
ホルダ1とスペーサ3を溶接により接合した例を示した
が、スペーサ3の端部3aを長く延ばして、端部3aを
低融点ガラス6に接触させ、この低融点ガラス6でファ
ラデー回転子ホルダ1とスペーサ3をも接合するように
しても良い。
Further, in the above embodiment, an example in which the Faraday rotator holder 1 and the spacer 3 are joined by welding is shown. However, the end portion 3a of the spacer 3 is extended and the end portion 3a is brought into contact with the low melting point glass 6. The Faraday rotator holder 1 and the spacer 3 may also be joined with the low melting point glass 6.

【0023】また、上記実施例ではファラデー回転子4
は低融点ガラス6で固定した例を示したが、本発明の他
の実施例を図3に示すように、ファラデー回転子4もフ
ァラデー回転子ホルダ1とスペーサ3で挟持して保持す
ることもできる。しかも、図3の例では旋光子ホルダ2
の筒部2bを長くして、この筒部2bがファラデー回転
子ホルダ1の筒部1dを覆うようにし、両方の筒部2
b、1d間の溶接点9でレーザ溶接することにより全体
を接合してある。このような構造とすれば、一回の溶接
ですべての接合を行うことができ、製造が容易となる。
In the above embodiment, the Faraday rotator 4 is used.
Shows an example of fixing with the low melting point glass 6, but as shown in FIG. 3 of another embodiment of the present invention, the Faraday rotator 4 may be held by being held between the Faraday rotator holder 1 and the spacer 3. it can. Moreover, in the example of FIG.
The cylindrical portion 2b of the Faraday rotator holder 1 is made longer by covering the cylindrical portion 2b of the Faraday rotator holder 1.
The whole is joined by laser welding at a welding point 9 between b and 1d. With such a structure, all the joining can be performed by one welding, and the manufacturing becomes easy.

【0024】さらに、上記実施例では、ファラデー回転
子ホルダ1とスペーサ3を別体で形成して接合したもの
を示したが、予め両者を一体的に形成することもでき
る。
Further, although the Faraday rotator holder 1 and the spacer 3 are separately formed and joined in the above embodiment, they may be integrally formed in advance.

【0025】次に、本発明の固定構造を用いた光アイソ
レータを図4に示す。特定の振動方位の直線偏光を吸収
する偏光子11、12をそれぞれ低融点ガラスで融着接
合した偏光子ホルダ13、14の間に、上記本発明の光
学素子の固定構造10を配置し、両端の偏光子11、1
2の吸収方向が垂直となるように光軸回りに調整した
後、各部材をレーザ溶接で接合固定し、ケース15を装
着すれば光アイソレータを作製することができる。
Next, FIG. 4 shows an optical isolator using the fixing structure of the present invention. The fixing structure 10 of the optical element of the present invention is disposed between the polarizer holders 13 and 14 in which the polarizers 11 and 12 that absorb the linearly polarized light of a specific vibration direction are fusion-bonded to each other with a low-melting glass, and both ends are arranged. Polarizers 11 and 1
After adjusting around the optical axis so that the absorption direction of 2 becomes vertical, the respective members are joined and fixed by laser welding, and the case 15 is attached, whereby the optical isolator can be manufactured.

【0026】この光アイソレータは、予めファラデー回
転子4と旋光子5を一体化してあるため、製造が容易で
あり、また旋光子5の消光比が高いため、順方向損失特
性、逆方向損失特性を向上させることができる。
This optical isolator is easy to manufacture because the Faraday rotator 4 and the optical rotator 5 are integrated in advance, and since the extinction ratio of the optical rotator 5 is high, the forward loss characteristic and the reverse loss characteristic are obtained. Can be improved.

【0027】また、この他に、本発明の光学素子の固定
構造は、複数のポート間で光の入出力方向を切り換える
ために用いる光サーキュレータにも応用することができ
る。この光サーキュレータは、図示していないが、本発
明の光学素子の固定構造の前後に、ルチルや方解石等の
複屈折結晶体を備えて構成される。つまり、複屈折結晶
体は、直線偏光の偏光面の角度に応じて屈折率が異なる
ため、上記ファラデー回転子や旋光子によって直線偏光
の偏光面の角度を変化させ、複屈折結晶体によって、光
の出射方向を切り換えることができるのである。
In addition to this, the optical element fixing structure of the present invention can also be applied to an optical circulator used for switching the input / output direction of light between a plurality of ports. Although not shown, this optical circulator comprises birefringent crystal bodies such as rutile and calcite before and after the optical element fixing structure of the present invention. That is, since the birefringent crystal has a different refractive index depending on the angle of the plane of polarization of the linearly polarized light, the angle of the plane of polarization of the linearly polarized light is changed by the Faraday rotator or optical rotator, and the birefringent crystal causes The emission direction of can be switched.

【0028】ここで、図1に示す本発明の固定構造と、
比較例として図6に示す従来の固定構造について、旋光
子の消光比を測定した。なお、消光比とは、直線偏光が
光学素子を通過した時に不必要な成分が加わって楕円偏
光となるが、この時の楕円偏光の短軸に対する長軸の比
のことであり、消光比が大きいほど特性が優れているこ
とになる。その結果、図7に示すように、比較例では3
0dB以下の消光比であったのに対し、本発明実施例で
は35〜50dBと消光比を高くできることがわかっ
た。したがって、本発明の固定構造を光アイソレータに
用いれば、順方向の光の損失が小さく、逆方向の光を遮
断する効果が極めて高いことがわかる。
Here, the fixing structure of the present invention shown in FIG.
As a comparative example, the extinction ratio of the optical rotator was measured for the conventional fixed structure shown in FIG. Note that the extinction ratio is the ratio of the major axis to the minor axis of the elliptically polarized light, although an unnecessary component is added to the elliptically polarized light when the linearly polarized light passes through the optical element. The larger the value, the better the characteristics. As a result, as shown in FIG.
While the extinction ratio was 0 dB or less, it was found that the extinction ratio can be increased to 35 to 50 dB in the examples of the present invention. Therefore, it can be seen that when the fixed structure of the present invention is used for the optical isolator, the loss of light in the forward direction is small and the effect of blocking the light in the reverse direction is extremely high.

【0029】[0029]

【発明の効果】このように本発明によれば、ファラデー
回転子と旋光子を同軸上に固定した構造において、筒状
のファラデー回転子ホルダの内側段部にファラデー回転
子を配置するとともに、他の筒状の旋光子ホルダの内側
段部に旋光子を配置し、両方のホルダの内側に筒状のス
ペーサを挿入して、該スペーサの各端部で上記ファラデ
ー回転子及び/又は旋光子を挟持して保持したことによ
って、製造時の作業工程を簡略化し、ファラデー回転子
と旋光子との同軸度を高くすることができる。
As described above, according to the present invention, in the structure in which the Faraday rotator and the optical rotator are coaxially fixed, the Faraday rotator is arranged at the inner step of the cylindrical Faraday rotator holder, and The optical rotator is arranged on the inner step of the cylindrical optical rotator holder, and the cylindrical spacers are inserted inside both holders, and the Faraday rotator and / or the optical rotator is inserted at each end of the spacer. By sandwiching and holding, the working process at the time of manufacturing can be simplified and the coaxiality between the Faraday rotator and the optical rotator can be increased.

【0030】また、上記旋光子を旋光子ホルダとスペー
サで挟持して保持したことによって、旋光子を低融点ガ
ラスで接合しないために引っ張り応力が生じることがな
く、消光比を高くすることができる。その結果、光アイ
ソレータ等に応用した場合に順方向損失を小さくするこ
とができる。
Further, since the optical rotator is held by being sandwiched between the optical rotator holder and the spacer, tensile stress is not generated because the optical rotator is not bonded with the low melting point glass, and the extinction ratio can be increased. . As a result, the forward loss can be reduced when applied to an optical isolator or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光学素子の固定構造を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing a fixing structure of an optical element of the present invention.

【図2】(a)(b)は本発明の光学素子の固定構造の
製造工程を示す断面図である。
2A and 2B are cross-sectional views showing a manufacturing process of a fixing structure for an optical element of the present invention.

【図3】は本発明の他の実施例を示す断面図である。FIG. 3 is a sectional view showing another embodiment of the present invention.

【図4】本発明の光学素子の固定構造を用いた光アイソ
レータを示す断面図である。
FIG. 4 is a cross-sectional view showing an optical isolator using the optical element fixing structure of the present invention.

【図5】従来の光学素子の固定構造を示す断面図であ
る。
FIG. 5 is a cross-sectional view showing a conventional fixing structure for an optical element.

【図6】従来の光学素子の固定構造を示す断面図であ
る。
FIG. 6 is a cross-sectional view showing a conventional fixing structure for an optical element.

【図7】本発明実施例及び比較例における旋光子の消光
比を示すグラフである。
FIG. 7 is a graph showing the extinction ratio of the optical rotator in the example of the present invention and the comparative example.

【符号の説明】[Explanation of symbols]

1:ファラデー回転子ホルダ 2:旋光子ホルダ 3:スペーサ 4:ファラデー回転子 5:旋光子 6:低融点ガラス 7:永久磁石 1: Faraday rotator holder 2: Optical rotator holder 3: Spacer 4: Faraday rotator 5: Optical rotator 6: Low melting point glass 7: Permanent magnet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ファラデー回転子と旋光子を同軸上に固定
した構造において、筒状のファラデー回転子ホルダの内
側段部にファラデー回転子を配置するとともに、他の筒
状の旋光子ホルダの内側段部に旋光子を配置し、両方の
ホルダの内側に筒状のスペーサを挿入して、該スペーサ
の各端部で上記ファラデー回転子及び/又は旋光子を挟
持して保持したことを特徴とする光学素子の固定構造。
1. In a structure in which a Faraday rotator and an optical rotator are coaxially fixed, the Faraday rotator is arranged on the inner step of a cylindrical Faraday rotator holder, and the inner side of another cylindrical rotator holder. An optical rotator is arranged in the step portion, a cylindrical spacer is inserted into both holders, and the Faraday rotator and / or the optical rotator are held by being sandwiched at each end of the spacer. Fixing structure for optical elements.
JP23710894A 1994-09-30 1994-09-30 Optical element fixing structure Expired - Fee Related JP3556284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23710894A JP3556284B2 (en) 1994-09-30 1994-09-30 Optical element fixing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23710894A JP3556284B2 (en) 1994-09-30 1994-09-30 Optical element fixing structure

Publications (2)

Publication Number Publication Date
JPH08101360A true JPH08101360A (en) 1996-04-16
JP3556284B2 JP3556284B2 (en) 2004-08-18

Family

ID=17010538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23710894A Expired - Fee Related JP3556284B2 (en) 1994-09-30 1994-09-30 Optical element fixing structure

Country Status (1)

Country Link
JP (1) JP3556284B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100843407B1 (en) * 2006-10-10 2008-07-04 삼성전기주식회사 A Lens Barrel of Camera Module and Laser Apparatus for Assembling the Same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100843407B1 (en) * 2006-10-10 2008-07-04 삼성전기주식회사 A Lens Barrel of Camera Module and Laser Apparatus for Assembling the Same

Also Published As

Publication number Publication date
JP3556284B2 (en) 2004-08-18

Similar Documents

Publication Publication Date Title
US6621946B2 (en) Optical isolator
JPH10133146A (en) Capillary type optical isolator
EP0707230B1 (en) Optical isolator
JP3556284B2 (en) Optical element fixing structure
JPS6170516A (en) Semiconductor laser module with optical isolator
WO2017187886A1 (en) Optical isolator
JPH08146351A (en) Element for optical isolator and its production
US20020191881A1 (en) Optical isolator
JP3739686B2 (en) Embedded optical isolator
JPH0980269A (en) Optical coupling device
JPH10142558A (en) Optical isolator and its production
JP3570869B2 (en) Optical isolator element and method of manufacturing the same
JP2001044553A (en) Fiber stub optical device and optical module using the same
JP3973975B2 (en) Optical isolator
JP3588207B2 (en) Holding structure of polygonal optical element made of birefringent crystal
JP3075435B2 (en) Optical isolator
JP2895871B2 (en) Magneto-optical parts
JPH09292543A (en) Polarizing variable lens holder
JP2001013379A (en) Optical module
JP3260159B2 (en) Manufacturing method of magneto-optical component
JP2006220727A (en) Optical isolator, cap for optical system device with optical isolator, optical system device using cap for optical system device, and optical module using optical system device
JPH0743641A (en) Optical isolator equipped with lens
JPH0432816A (en) Light isolator
JPH06186502A (en) Optical isolator
JP4443212B2 (en) Method for manufacturing optical isolator element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Effective date: 20040402

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040506

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040512

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090521

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees