JPH08101351A - Three-dimensional endoscope - Google Patents

Three-dimensional endoscope

Info

Publication number
JPH08101351A
JPH08101351A JP6261801A JP26180194A JPH08101351A JP H08101351 A JPH08101351 A JP H08101351A JP 6261801 A JP6261801 A JP 6261801A JP 26180194 A JP26180194 A JP 26180194A JP H08101351 A JPH08101351 A JP H08101351A
Authority
JP
Japan
Prior art keywords
image pickup
shafts
human body
endoscope
dimensional endoscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6261801A
Other languages
Japanese (ja)
Inventor
Masahiro Saito
正弘 斉藤
Tatsuo Kimura
辰男 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP6261801A priority Critical patent/JPH08101351A/en
Publication of JPH08101351A publication Critical patent/JPH08101351A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

PURPOSE: To hardly cause halation and to easily grasp peripheral circumstances by turnably fitting and inserting both shafts to which both image pickup parts are respectively connected in a scope frame body and fitting and inserting an illuminating means so that its front edge may be positioned astern of both image pickup parts. CONSTITUTION: When this three-dimensional endoscope is inserted in and pulled out of the inside of a human body, an image pickup surface 2a and an image pickup surface 3a are set in a leg closed state so as to be inserted and pulled out. A center distance between both of them is the shortest. Next, in the case of diagnosing or performing an operation on the inside of the human body, image pickup parts 2 and 3 connected to the shafts 4 and 5 piercing the inside of the scope frame body 1 are set in a leg opened state through the shafts 4 and 5 by rotating handy levers 4a and 5a on the outside of the human body. Then, the center distance between the image pickup parts 2 and 3 becomes long and enough to stereoscopically view a diseased part. In such a case, the center distance between the image pickup parts 2 and 3 is selected at an optional position by the levers 4a and 5a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、立体視により体内の
病変の診断や治療を行うために用いられる内視鏡、より
詳しくは診断対象をより立体的に視覚で捉えることの出
来る3次元内視鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an endoscope used for diagnosing and treating lesions in the body by stereoscopic vision, and more specifically, a three-dimensional internal view capable of visually recognizing a diagnosis target in a three-dimensional manner. Regarding the endoscope.

【0002】[0002]

【従来の技術】近年、人体内部の病変の診断や手術を行
うために光ファイバや固体撮像素子を組み込んだ内視鏡
を人体内に挿入し治療を行うことが多くなっている。従
来の3次元内視鏡は図9に示すように、内視鏡枠体10
の先端部10aに2つの撮像面(対物レンズ)11及び
12を配置すると共にこの撮像面と同一平面に光ファイ
バによる照明13及び14も配置される。
2. Description of the Related Art In recent years, an endoscope incorporating an optical fiber or a solid-state image pickup device has been often inserted into a human body for treatment in order to diagnose a lesion in a human body or perform an operation. As shown in FIG. 9, a conventional three-dimensional endoscope has an endoscope frame 10
Two image pickup surfaces (objective lenses) 11 and 12 are arranged at the front end portion 10a of the optical fiber, and illuminations 13 and 14 by optical fibers are also arranged on the same plane as these image pickup surfaces.

【0003】一般に2つの撮像面(対物レンズ)を配置
して対象物を見る場合、この対象物に対する2つの撮像
面の視線がなす角度(輻輳角)は対象物までの距離に反
比例して変化する。そしてこのような輻輳角の変化から
2つの撮像面と対象物までの絶対距離の変化を知覚する
ことが出来る。この場合、2つの撮像面の間隔(距離)
が短いと奥行き感覚に乏しくなり、広すぎると近くに存
在する対象物の焦点が合わせにくくなる。
Generally, when viewing an object with two imaging surfaces (objective lenses) arranged, the angle (convergence angle) formed by the lines of sight of the two imaging surfaces with respect to the object changes in inverse proportion to the distance to the object. To do. Then, from such a change in the convergence angle, a change in the absolute distance between the two imaging surfaces and the object can be perceived. In this case, the distance (distance) between the two imaging planes
If is short, the sense of depth is poor, and if it is too wide, it becomes difficult to focus on an object in the vicinity.

【0004】[0004]

【発明が解決しようとする課題】図9に示す3次元内視
鏡では、内視鏡自体可能な限り径を小さくしてあるため
2つの撮像面(対物レンズ)11と12との距離が小さ
くなっている。従って2つの撮像面11と12が極く近
距離にあることは輻輳角が十分に取れないことを意味し
ている。このような内視鏡を用いて手術する際には立体
視する場合でもかなり奥行き感覚に乏しい状況となり、
結局は単眼視と変わらない手術となる。また、照明にお
いても観察領域の凹凸が表現されにくい状況となる場合
が多い。
In the three-dimensional endoscope shown in FIG. 9, since the diameter of the endoscope itself is made as small as possible, the distance between the two image pickup surfaces (objective lenses) 11 and 12 is small. Has become. Therefore, the fact that the two image pickup surfaces 11 and 12 are extremely close to each other means that the convergence angle cannot be sufficiently obtained. When performing an operation using such an endoscope, even in the case of stereoscopic vision, there is a considerable lack of depth perception.
In the end, the surgery is the same as monocular surgery. Further, even in illumination, it is often the case that unevenness in the observation region is difficult to be expressed.

【0005】更に、上記するように撮像面11及び12
と照明13及び14とが同一平面内にあると、観察領域
の中心部が明るく周辺部がやや暗くなる傾向がある。即
ち、モニタ−画像にいわゆるハレ−ションが生じたよう
な状態となり、周辺部の状況(不正出血、患部の存在)
を把握しにくくなる。そしてハレ−ションを抑えるため
に中央部が暗くなるように調整すると周辺部はより一層
暗くなるという問題が生じる。
Further, as described above, the imaging surfaces 11 and 12
And the illuminations 13 and 14 are in the same plane, the central portion of the observation region tends to be bright and the peripheral portions to be slightly dark. In other words, a so-called halo appears on the monitor image, and the situation in the peripheral area (unauthorized bleeding, presence of affected area)
Becomes difficult to grasp. If the central portion is adjusted to be dark in order to suppress halation, the peripheral portion becomes even darker.

【0006】この発明は上記する課題に着目してなされ
たものであり、内視鏡自体の径が小さくても輻輳角をよ
り一層大きくすることが可能で、光ファイバ下の照明で
も凹凸のある部分はそのまま観察することが出来て、ハ
レ−ションも生じにくく周辺の状況も把握しやすい3次
元内視鏡を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and it is possible to further increase the convergence angle even if the diameter of the endoscope itself is small, and the illumination under the optical fiber has unevenness. It is an object of the present invention to provide a three-dimensional endoscope in which a part can be observed as it is, and halation is less likely to occur and the surrounding situation can be easily grasped.

【0007】[0007]

【課題を解決するための手段】即ち、この発明は上記す
る課題を解決するために、3次元内視鏡を構成する手段
が、スコ−プ枠体に、スコ−プ枠体に、2つの撮像部を
それぞれ連結した2本のシャフトを回動自在に嵌挿する
と共に、照明手段をその前端部が前記二つの撮像部の後
方に位置するように嵌挿したことを特徴とする。或いは
前記スコ−プ枠体に、2つの撮像部をそれぞれ前後して
連結した2本のシャフトを回動自在に嵌挿すると共に、
光ファイバ等による照明をその前端部が前記二つの撮像
部の後方に位置するように嵌挿したことを特徴とする。
That is, in order to solve the above-mentioned problems, the present invention provides a means for constructing a three-dimensional endoscope, including a scoop frame, a scoop frame and two means. It is characterized in that two shafts, which respectively connect the image pickup portions, are rotatably fitted and the lighting means is fitted so that the front end portion thereof is located behind the two image pickup portions. Alternatively, two shafts, in which two image pickup units are connected to each other in the front and rear direction, are rotatably fitted and inserted into the scope frame,
It is characterized in that illumination by an optical fiber or the like is inserted so that its front end portion is located behind the two image pickup portions.

【0008】[0008]

【作用】3次元内視鏡を上記手段としたときの作用につ
いて添付図とその符号を用いて説明する。3次元内視鏡
を上記手段とすれば、この3次元内視鏡を人体内部に出
し入れするときは撮像面2aと撮像面3aとは図3に示
すように『閉脚状態』として出し入れする。このとき両
者の中心距離はLであり最近接状態にある。次に人体内
部で診察したり手術する際には体外にある手元のレバ−
4a及び5aを回してスコ−プ枠体1内を貫通するシャ
フト4及びシャフト5を介してこれらのシャフトに連結
した撮像部2及び撮像部3を『開脚状態』とする。する
とこれらの撮像部2及び3の中心距離はL’と大きくな
り患部を立体視するのに十分な距離となる。この場合、
これらの撮像部2及び3の中心距離は手元レバ−4a及
び5aによりLとL’の間の任意の位置を選択すること
が出来る。更に、照明に関しても光ファイバ8の先端部
のガラスロッド8aは前記撮像部2及び3よりも後方に
位置しており、ここから光を投射するようになってい
る。従って人体内部における観察面における光度分布が
より均一となり、ハレ−ションを起こすこともなくな
る。また、後方のやや斜め方向から照明されるので、観
察面の凹凸の陰影がより強調され立体視しやすくなる。
即ち、丁度撮影対象をTVカメラの背後から照明してい
る状態となり均一に照らすことが出来る。
The operation when the three-dimensional endoscope is used as the above means will be described with reference to the accompanying drawings and the reference numerals. If the three-dimensional endoscope is used as the above means, when the three-dimensional endoscope is taken in and out of the human body, the image pickup surface 2a and the image pickup surface 3a are put in and taken out in a "closed leg state" as shown in FIG. At this time, the center distance between them is L, which is the closest state. Next, when performing a medical examination or an operation inside the human body, the lever at the outside of the body
The image pickup section 2 and the image pickup section 3 connected to these shafts through the shaft 4 and the shaft 5 penetrating the inside of the scope frame 1 by turning 4a and 5a are set to the "open leg state". Then, the center distance between the imaging units 2 and 3 becomes L ', which is a sufficient distance for stereoscopically viewing the affected area. in this case,
The center distance between these image pickup units 2 and 3 can be selected at an arbitrary position between L and L ′ by levers 4a and 5a at hand. Further, regarding illumination, the glass rod 8a at the tip of the optical fiber 8 is located rearward of the image pickup units 2 and 3, and light is projected from here. Therefore, the luminous intensity distribution on the observation surface inside the human body becomes more uniform, and halation does not occur. In addition, since the light is illuminated from a slightly obliquely rearward direction, the shadow of the unevenness of the observation surface is further emphasized, which facilitates stereoscopic viewing.
That is, the object to be photographed is just illuminated from behind the TV camera and can be illuminated uniformly.

【0009】[0009]

【実施例】以下、この発明の具体的実施例について図面
を参照しながら説明する。図1はこの発明の3次元内視
鏡の平面図、図2は側面図、図3は図1のP矢視正面図
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view of a three-dimensional endoscope of the present invention, FIG. 2 is a side view, and FIG. 3 is a front view seen from the arrow P of FIG.

【0010】1はスコ−プ枠体であって上部にはシャフ
ト5を内部に貫通させて嵌め入れたシャフト4が嵌挿し
てある。これらのシャフト4及び5の後方にはそれぞれ
レバ−4a及びレバ−5aが設けられ、シャフト4及び
5はこれらのレバ−により回動自在としてスコ−プ枠体
1に嵌め入れられている。前記シャフト4には撮像面
(対物レンズ)2a及び画像を電気信号に変える撮像素
子(CCD)2b等を備えた撮像部2が、前記シャフト
5には同様に撮像面(対物レンズ)3aと撮像素子(C
CD)3b等を備えた撮像部3がそれぞれ連結具6及び
7により連結されている。
Reference numeral 1 is a scoop frame, and a shaft 4 having a shaft 5 inserted therein is inserted into the upper part thereof. Lever-4a and lever-5a are provided at the rear of these shafts 4 and 5, respectively, and the shafts 4 and 5 are rotatably fitted in the scoping frame body 1 by these levers. The shaft 4 is provided with an image pickup unit 2 including an image pickup surface (objective lens) 2a and an image pickup device (CCD) 2b for converting an image into an electric signal, and the shaft 5 is similarly picked up with an image pickup surface (objective lens) 3a. Element (C
The image pickup section 3 including a CD) 3b and the like is connected by connecting tools 6 and 7, respectively.

【0011】図3に示す前記撮像面(対物レンズ)2a
及び3aは丁度閉脚状態にある。そして前記シャフト4
及び5の後方に設けたレバ−4a及び5aを回動すると
これらの撮像面(対物レンズ)2aと3aとの距離Lを
大きく開脚状態とすることが出来る。図4はこれらの撮
像面(対物レンズ)2aと3aとを最大限の距離L’と
した状態の正面図である。尚、前記シャフト5はシャフ
ト4に嵌挿され相互に回動自在となるようにスコ−プ枠
体1に嵌め入れてあるが、別々に独立して回動するよう
なシャフトを嵌挿しても良い。
The image pickup surface (objective lens) 2a shown in FIG.
And 3a are just in the closed state. And the shaft 4
By rotating levers 4a and 5a provided at the rear of 5 and 5, the distance L between the image pickup surfaces (objective lenses) 2a and 3a can be largely opened. FIG. 4 is a front view of a state in which these image pickup surfaces (objective lenses) 2a and 3a are set to the maximum distance L '. The shaft 5 is fitted in the shaft 4 and fitted in the scoping frame body 1 so as to be rotatable relative to each other. good.

【0012】図5は視差角と立体感との関係について示
した図である。この図でAとBは所定距離離れた撮像面
(視点)とし、PとQを観察点とし、このPとQとの奥
行きをdとする。また、一方の撮像点(この場合はB)
が図のように横方向に一定距離移動した点をB’とす
る。この場合、視差角はそれぞれ、角度QBP=θ、角
度QB’P=θ’、として表わされる。そして奥行きd
に対して視差角が大きいほど、即ち、θ<θ’となる程
より細かく奥行き情報(d/θ>d/θ’)が得られ
る。しかしあまり大きく取りすぎると視機能のアンバラ
ンスが起こり立体視できなくなるので注意する必要があ
る。前記撮像面(対物レンズ)2aと3aはそれぞれ丁
度このAとBに相当する。
FIG. 5 is a diagram showing the relationship between the parallax angle and the stereoscopic effect. In this figure, A and B are image pickup surfaces (viewpoints) separated by a predetermined distance, P and Q are observation points, and the depth between P and Q is d. Also, one imaging point (B in this case)
Let B ′ be the point that has moved a certain distance in the lateral direction as shown in the figure. In this case, the parallax angles are represented as the angle QBP = θ and the angle QB′P = θ ′, respectively. And the depth d
On the other hand, as the parallax angle is larger, that is, as θ <θ ′, more detailed depth information (d / θ> d / θ ′) can be obtained. However, it should be noted that if it is taken too large, imbalance in visual function will occur and stereoscopic viewing will not be possible. The image pickup surfaces (objective lenses) 2a and 3a correspond to A and B, respectively.

【0013】上記するように前記撮像部2及び3はスコ
−プ枠体1の端面1aより前方に並べて併置してある
が、これらの撮像部2及び3は、撮像素子(CCD)2
b及び3b上に結像するための対物レンズ2a及び3
a、図示しない撮像素子(CCD)2b及び3b制御回
路、等より構成されている。そして図示しないが、前記
撮像素子(CCD)2b及び3bからの画像信号は体外
にある3次元ディスプレイ装置(液晶表示装置等のモニ
タ−装置)に表示される。この場合、立体視する方法と
しては時分割シャッタ式両眼差視法等がある。
As described above, the image pickup units 2 and 3 are arranged side by side in front of the end surface 1a of the scoop frame 1, and these image pickup units 2 and 3 are arranged in the image pickup device (CCD) 2.
b and 3b objective lenses 2a and 3 for imaging
a, an image pickup device (CCD) 2b and a 3b control circuit (not shown), and the like. Although not shown, the image signals from the image pickup devices (CCD) 2b and 3b are displayed on a three-dimensional display device (monitor device such as a liquid crystal display device) outside the body. In this case, as a method for stereoscopic viewing, there is a time division shutter type binocular parallax method or the like.

【0014】更に、前記スコ−プ枠体1の内部には前記
シャフト4及び5と平行して腹腔内の照明用として光フ
ァイバ8が嵌挿してある。この光ファイバ8は図示しな
い光源装置に接続して光を導入し、その端部のガラスロ
ッド(プリズム)8aでやや斜方向に照射する。このガ
ラスロッド8aはスコ−プ枠体1の端面1aと殆ど同じ
位置となるようにしてある。従って、この光ファイバ8
は前記シャフト4及び5に取り付けた撮像部2及び3よ
りも背後に位置して光を投射することになる。
Further, an optical fiber 8 for illuminating the abdominal cavity is inserted inside the scope frame 1 in parallel with the shafts 4 and 5. The optical fiber 8 is connected to a light source device (not shown) to introduce light, and the glass rod (prism) 8a at the end thereof irradiates the light in a slightly oblique direction. The glass rod 8a is located at almost the same position as the end surface 1a of the scope frame 1. Therefore, this optical fiber 8
Will project light behind the imaging units 2 and 3 attached to the shafts 4 and 5.

【0015】次に、この発明の3次元内視鏡を以上のよ
うに構成したときの動作について説明する。この3次元
内視鏡を人体内部に出し入れするときは撮像面2aと撮
像面3aとは図3に示すように『閉脚状態』として出し
入れする。このとき両者の中心距離はLであり最近接状
態にある。次に人体内部で診察したり手術する際には体
外にある手元のレバ−4a及び5aを回してスコ−プ枠
体1内を貫通するシャフト4及びシャフト5を介してこ
れらのシャフトに連結した撮像部2及び撮像部3を『開
脚状態』とする。するとこれらの撮像部2及び3の中心
距離はL’と大きくなり患部を立体視するのに十分な距
離となる(図4参照)。この場合、これらの撮像部2及
び3の中心距離は手元レバ−4a及び5aによりLと
L’の間の任意の位置を選択することが出来るというメ
リットがある。尚、シャフト4及び5の駆動は手動でも
良いし駆動装置を用いても良い。
Next, the operation of the three-dimensional endoscope of the present invention constructed as above will be described. When the three-dimensional endoscope is put in and taken out of the human body, the image pickup surface 2a and the image pickup surface 3a are put in and out in a "closed leg state" as shown in FIG. At this time, the center distance between them is L, which is the closest state. Next, when examining or operating inside the human body, the levers 4a and 5a outside the body are rotated and connected to these shafts through the shaft 4 and the shaft 5 penetrating the inside of the scope frame 1. The image capturing unit 2 and the image capturing unit 3 are set to the “open leg state”. Then, the center distance between these imaging units 2 and 3 becomes L ', which is a sufficient distance for stereoscopically viewing the affected area (see FIG. 4). In this case, the center distance between the image pickup units 2 and 3 has an advantage that any position between L and L'can be selected by the levers 4a and 5a at hand. The shafts 4 and 5 may be driven manually or by using a driving device.

【0016】更に、照明に関しては、光ファイバ8の先
端部のガラスロッド8aは前記撮像部2及び3よりも後
方に位置しており、ここから光を投射するようになって
いる。従って腹腔内における観察面での光度分布がより
均一となり、ハレ−ションを起こすこともなくなる。ま
た、後方のやや斜め方向から照明されるので、観察面の
凹凸の陰影がより強調され立体視しやすくなる。即ち、
丁度撮影対象をTVカメラの背後から照明している状態
となり均一に照らすことが出来る。
Further, regarding illumination, the glass rod 8a at the tip of the optical fiber 8 is located rearward of the image pickup units 2 and 3, and light is projected from there. Therefore, the luminous intensity distribution on the observation surface in the abdominal cavity becomes more uniform, and halation does not occur. In addition, since the light is illuminated from a slightly obliquely rearward direction, the shadow of the unevenness of the observation surface is further emphasized, which facilitates stereoscopic viewing. That is,
It is possible to illuminate the subject just behind the TV camera and illuminate it evenly.

【0017】図6は従来の3次元内視鏡と今回の発明の
3次元内視鏡との観察領域での光度分布を比較した図で
ある。曲線Aは今回の発明の3次元内視鏡による光度分
布であり、曲線Bは従来の3次元内視鏡による光度分布
である。この図からも明らかなように今回の3次元内視
鏡による方が周囲まで均一に照明することが出来る。
FIG. 6 is a diagram comparing the light intensity distributions in the observation region between the conventional three-dimensional endoscope and the three-dimensional endoscope of the present invention. The curve A is the light intensity distribution by the three-dimensional endoscope of the present invention, and the curve B is the light intensity distribution by the conventional three-dimensional endoscope. As is clear from this figure, the three-dimensional endoscope used this time can evenly illuminate the surroundings.

【0018】図7はこの発明の3次元内視鏡の変形実施
例の一部平面図であり、図8は側面図である。この実施
例でもスコ−プ枠体1の上部にシャフト5を内部に貫通
させて嵌め入れたシャフト4を嵌挿し、これらのシャフ
ト4及び5と平行して人体内部の照明用として光ファイ
バ8が嵌め入れてある。そして一方のシャフト5の前方
に一方の撮像部3を配置し、他方のシャフト4にこの撮
像部3より後方にずらせて他方の撮像部2を連結具6、
7により固定する。また、光ファイバ8の端部のガラス
ロッド8aはスコ−プ枠体1の端部1aとほぼ同じ位置
として前記撮像部2及び3のいずれよりも後方となるよ
うにしてある。
FIG. 7 is a partial plan view of a modified embodiment of the three-dimensional endoscope of the present invention, and FIG. 8 is a side view. Also in this embodiment, the shaft 4 is inserted into the upper portion of the scoop frame 1 by inserting the shaft 5 therein, and an optical fiber 8 for illuminating the inside of the human body is provided in parallel with the shafts 4 and 5. It is fitted. Then, one image pickup unit 3 is arranged in front of the one shaft 5, the other shaft 4 is displaced rearward of the image pickup unit 3, and the other image pickup unit 2 is connected to the coupling tool 6,
Fix with 7. Further, the glass rod 8a at the end of the optical fiber 8 is located at substantially the same position as the end 1a of the scoop frame 1 so as to be behind the image pickup units 2 and 3.

【0019】この実施例は、例えば撮像部2及び3の内
部に組み込む撮像素子(CCD)2b及び3bの画素数
を多くする必要があり該撮像素子(CCD)2b及び3
b自体が大きくなってしまったような場合であってスコ
−プ枠体1の径を大きくしたくないときに便利である。
この場合、2つの撮像面2a及び3aに前後の差が生
じ、その結果画像の大きさに差が生じたとしても、その
差が数%以内であれば立体視する上では問題はない。ま
た、そのような場合の誤差は対物レンズの視差角や倍率
でうまくコントロ−ルすることが出来る。
In this embodiment, it is necessary to increase the number of pixels of the image pickup devices (CCD) 2b and 3b incorporated in the image pickup units 2 and 3, for example.
This is convenient when the diameter b of the scoping frame body 1 does not need to be large even when b itself has become large.
In this case, even if there is a difference in front and back between the two imaging surfaces 2a and 3a, and as a result, a difference in image size occurs, if the difference is within several percent, there is no problem in stereoscopic viewing. The error in such a case can be well controlled by the parallax angle and magnification of the objective lens.

【0020】[0020]

【発明の効果】以上詳述したようにこの発明によれば、
手術や診断の際対象物を把握するとき輻輳角を大きく
し、また照明も後方やや斜めから照らすことが出来るの
で立体感をより一層明確にすることが出来る。従って、
手術する者にとっては作業が非常にしやすくなって手術
時間も短縮することが出来ることになり、患者にとって
も負担を一層軽減することになる。更に、照明位置は撮
像面より後方となるので観察領域をより均一に照明する
ことが出来るようになり、周辺領域も常に観察すること
が出来るようになる。その結果周辺領域の異変(不正出
血や気づかなかった患部等)が早期に発見出来るように
なり手術の安全にもつながることになる。
As described above in detail, according to the present invention,
When grasping an object during surgery or diagnosis, the angle of convergence can be increased, and the illumination can be illuminated from the rear or slightly obliquely, so that the three-dimensional effect can be further clarified. Therefore,
The operation is very easy for the operator, and the operation time can be shortened, and the burden on the patient is further reduced. Furthermore, since the illumination position is behind the image pickup surface, the observation area can be illuminated more uniformly, and the peripheral area can always be observed. As a result, abnormalities in the surrounding area (unauthorized bleeding, undiscovered affected area, etc.) can be detected at an early stage, leading to safety in surgery.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の3次元内視鏡の平面図である。FIG. 1 is a plan view of a three-dimensional endoscope of the present invention.

【図2】この発明の3次元内視鏡の側面図である。FIG. 2 is a side view of the three-dimensional endoscope of the present invention.

【図3】図1のP矢視正面図である。FIG. 3 is a front view taken along the arrow P of FIG.

【図4】この発明の3次元内視鏡に組み込んだ2つの撮
像面(対物レンズ)を最大限の距離とした状態の正面図
である。
FIG. 4 is a front view showing a state in which two image pickup surfaces (objective lenses) incorporated in the three-dimensional endoscope of the present invention are set to a maximum distance.

【図5】奥行きのある観察点を見る場合の視差角と立体
感との関係について示した図である。
FIG. 5 is a diagram showing a relationship between a parallax angle and a stereoscopic effect when viewing an observation point having a depth.

【図6】従来の3次元内視鏡と今回の発明の3次元内視
鏡との観察領域での光度分布を比較した図である。
FIG. 6 is a diagram comparing the light intensity distributions in the observation region between the conventional three-dimensional endoscope and the three-dimensional endoscope of the present invention.

【図7】この発明の3次元内視鏡の変形実施例の一部平
面図である。
FIG. 7 is a partial plan view of a modified example of the three-dimensional endoscope of the present invention.

【図8】この発明の3次元内視鏡の変形実施例の一部側
面図である。
FIG. 8 is a partial side view of a modified embodiment of the three-dimensional endoscope of the present invention.

【図9】従来の3次元内視鏡の一部斜視図である。FIG. 9 is a partial perspective view of a conventional three-dimensional endoscope.

【符号の説明】[Explanation of symbols]

1 スコ−プ枠体 2、3 撮像部 2a、3a 撮像面(対物
レンズ) 2b、3b 撮像素子(CCD) 4、5 シャフト 4a、5a レバ− 8 光ファイバ 8a ガラスロッド(プリ
ズム)
1 Scope frame 2, 3 Imaging part 2a, 3a Imaging surface (objective lens) 2b, 3b Imaging element (CCD) 4, 5 Shaft 4a, 5a Lever 8 Optical fiber 8a Glass rod (prism)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 スコ−プ枠体に、2つの撮像部をそれぞ
れ連結した2本のシャフトを回動自在に嵌挿すると共
に、照明手段をその前端部が前記二つの撮像部の後方に
位置するように嵌挿したことを特徴とする3次元内視
鏡。
1. A scoop frame is rotatably fitted with two shafts respectively connecting two image pickup units, and a front end portion of an illuminating unit is located behind the two image pickup units. A three-dimensional endoscope characterized by being inserted as described above.
JP6261801A 1994-09-30 1994-09-30 Three-dimensional endoscope Pending JPH08101351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6261801A JPH08101351A (en) 1994-09-30 1994-09-30 Three-dimensional endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6261801A JPH08101351A (en) 1994-09-30 1994-09-30 Three-dimensional endoscope

Publications (1)

Publication Number Publication Date
JPH08101351A true JPH08101351A (en) 1996-04-16

Family

ID=17366905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6261801A Pending JPH08101351A (en) 1994-09-30 1994-09-30 Three-dimensional endoscope

Country Status (1)

Country Link
JP (1) JPH08101351A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532240A (en) * 2004-04-14 2007-11-15 ユーエスジーアイ メディカル, インコーポレイテッド Method and apparatus for obtaining intraluminal access
WO2011062287A1 (en) * 2009-11-20 2011-05-26 国立大学法人東北大学 Insertion device and endoscope
CN102573602A (en) * 2009-08-27 2012-07-11 纳维瑞士股份公司 Endoscope and method for use thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532240A (en) * 2004-04-14 2007-11-15 ユーエスジーアイ メディカル, インコーポレイテッド Method and apparatus for obtaining intraluminal access
CN102573602A (en) * 2009-08-27 2012-07-11 纳维瑞士股份公司 Endoscope and method for use thereof
JP2013502939A (en) * 2009-08-27 2013-01-31 ナヴィスウィス エージー Endoscope and how to use the endoscope
WO2011062287A1 (en) * 2009-11-20 2011-05-26 国立大学法人東北大学 Insertion device and endoscope
US8944995B2 (en) 2009-11-20 2015-02-03 Tohoku University Insertion device and endoscope

Similar Documents

Publication Publication Date Title
EP0951861A1 (en) Medical observing instrument
WO1996037796A1 (en) Stereoscopic endoscope system and tv image pickup system for the endoscope
CA2627611A1 (en) Imaging system and method to improve depth perception
JP2003511174A (en) Stereo surgical microscope with information insertion device
CN107105987B (en) Image processing apparatus and its working method, recording medium and endoscope apparatus
EP2579768A1 (en) Integrated fiber optic ophthalmic intraocular surgical device with camera
JP2000171727A (en) Endoscopic device
US20230221539A1 (en) Surgical microscope having an illumination apparatus
JPH0595899A (en) Endoscope device
JPH0956669A (en) Microscopic device for operation
JP4879374B2 (en) Endoscope and endoscope apparatus
JPH0642644Y2 (en) Endoscopic bending device
JP4575208B2 (en) Electronic endoscope device
JP2006301523A (en) Medical microscope
JPH0850252A (en) Stereoscopic picture forming assembly for endoscope inspection probe
JPS63200115A (en) Endoscope device
JPH08101351A (en) Three-dimensional endoscope
WO2016181781A1 (en) Endoscope device
JPH05341207A (en) Stereoscopic endoscope device
JPH09248276A (en) Sight line variable hard mirror device
CN109965987A (en) Visor outside a kind of robot with common focus point migration function
JP2001087217A (en) Endoscope
JPH10126711A (en) Head mounted image display device
CN113576383A (en) Endoscope integrating illumination, imaging and treatment and imaging repair method
JPH05341210A (en) Stereoscopic endoscope device