JPH08101068A - Color measuring apparatus - Google Patents

Color measuring apparatus

Info

Publication number
JPH08101068A
JPH08101068A JP23733394A JP23733394A JPH08101068A JP H08101068 A JPH08101068 A JP H08101068A JP 23733394 A JP23733394 A JP 23733394A JP 23733394 A JP23733394 A JP 23733394A JP H08101068 A JPH08101068 A JP H08101068A
Authority
JP
Japan
Prior art keywords
signal
color
hue
saturation
analog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23733394A
Other languages
Japanese (ja)
Inventor
Koji Kameoka
孝治 亀岡
Yoshitaka Motonaga
佳孝 元永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Misuzu Erie Co Ltd
Original Assignee
Misuzu Erie Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Misuzu Erie Co Ltd filed Critical Misuzu Erie Co Ltd
Priority to JP23733394A priority Critical patent/JPH08101068A/en
Publication of JPH08101068A publication Critical patent/JPH08101068A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a color measuring apparatus for measuring the true color of an object conveniently with high accuracy regardless of the number and position of illuminators or the image pickup position. CONSTITUTION: The color measuring apparatus comprises a coordinate conversion circuit for receiving analog R, G, B coordinate system signals influenced by illumination from a camera 1 and converting them into a brightness (lightness) color component and a color component insusceptible to the brightness (hue and color saturation), a signal processing section 200 for statistically processing the converted color components to analyze the density frequency, and an output section 300 for displaying or printing an output signal from the signal processing section 200.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は物体の色彩測定装置に関
し、特に不均一な形状を有する物体の色彩測定装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a color measuring device for an object, and more particularly to a color measuring device for an object having a non-uniform shape.

【0002】[0002]

【従来の技術】テレビカメラ等を用いて物体を撮影し、
その色彩を測定・評価することは従来から行われてい
る。例えば、特公昭61−7360号公報には、プリン
スメロンをITVカメラで撮影し、その画像信号を基に
果実の色や模様を測定し、果実の等級を判定する技術が
開示されている。
2. Description of the Related Art An object is photographed using a television camera or the like,
Measurement and evaluation of the color have been performed conventionally. For example, Japanese Examined Patent Publication No. 61-7360 discloses a technique in which Prince Melon is photographed by an ITV camera, the color and pattern of the fruit are measured based on the image signal, and the grade of the fruit is determined.

【0003】また、分光測色法を用いて色彩を測定する
ことも行われている。分光測色法は、測定点の分光反射
率特性を求め、人間の色知覚に準じた処理を行い、色を
算出する方法である。
In addition, the color is also measured by using a spectrophotometric method. The spectrocolorimetric method is a method of obtaining a spectral reflectance characteristic at a measurement point, performing processing according to human color perception, and calculating a color.

【0004】[0004]

【発明が解決しようとする課題】しかし、カメラ等の画
像信号を用いて物体の色彩を測定するには、照明および
撮影の条件設定が非常に困難である。すなわち、カメラ
から得られる画像信号は通常赤(R)、緑(G)、青
(B)の信号だが、これら色情報には明るさ(=照明)
の成分が含まれている。これは、例えば、赤い球体を上
方から撮影した場合、照明に近い部分から白→明るい赤
→暗い赤→黒と撮影されることからも理解される。さら
に、被測定物の形状が均一な場合はまだ良いが、被測定
物の形状が均一でない場合は、影の影響により一層測定
が困難になり、たとえ実際は同一色の物体でも、測定結
果はばらついたものになってしまう。
However, in order to measure the color of an object using an image signal from a camera or the like, it is very difficult to set the conditions for illumination and photographing. That is, the image signals obtained from the camera are usually red (R), green (G), and blue (B) signals, but these color information have brightness (= illumination).
Contains the ingredients of. This can be understood from the fact that, for example, when a red sphere is photographed from above, it is photographed as white → bright red → dark red → black from a portion close to the illumination. Furthermore, it is still good if the shape of the measured object is uniform, but if the shape of the measured object is not uniform, the measurement becomes more difficult due to the effect of shadows, and even if the object is actually the same color, the measurement results will vary. It becomes a thing.

【0005】一方分光測色法は、一点の測定データ量が
大きいこと、一度に測定できる範囲が非常にせまいこと
から、広範囲の色測定や色斑の測定が困難だった。
On the other hand, in the spectrophotometric method, it is difficult to measure a wide range of colors and color spots because the amount of measurement data at one point is large and the range that can be measured at one time is very small.

【0006】[0006]

【課題を解決する手段】本発明の目的は、照明の数や位
置、撮影位置に依らず、物体の真の色彩を精度良く、か
つ簡便に測定できる色彩測定装置を提供することにあ
る。このため、本発明においては、カメラ等の撮像手段
から得られる、照明の影響を含んだR,G,B座標系の
信号から、明るさ(明度)成分と、明るさに影響されな
い色成分(色相および彩度)成分とを求める信号処理部
を設けるとともに、信号処理部の出力信号から、被測定
体の色彩の濃度頻度分布および色斑を検出する統計処理
部を設けることにより、目的を達成している。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a color measuring device capable of accurately and simply measuring the true color of an object regardless of the number and position of illuminations and the photographing position. For this reason, in the present invention, the brightness (brightness) component and the color component not affected by the brightness (from the signal of the R, G, B coordinate system including the influence of illumination, which is obtained from the image pickup means such as a camera ( The objective is achieved by providing a signal processing unit that obtains the (hue and saturation) component and a statistical processing unit that detects the color density frequency distribution and color spots of the measured object from the output signal of the signal processing unit. are doing.

【0007】ここで、本願の動作原理について説明す
る。前述したように、カメラ等で得られるR,G,B信
号は、照明の影響を含んでいる。そこで、この信号を明
るさの成分と、そのほかの成分、すなわち被測定体本来
の色彩を表す成分とに分離し、この色彩を表す成分を基
に色彩測定を行う。具体的には次の式に基づいて分離を
行う。
Here, the operating principle of the present application will be described. As described above, the R, G, B signals obtained by the camera or the like include the influence of illumination. Therefore, this signal is separated into a brightness component and another component, that is, a component representing the original color of the measured object, and color measurement is performed based on this component representing the color. Specifically, the separation is performed based on the following formula.

【0008】以下の各式において、R,G,Bはそれぞ
れデジタル変換されたR,G,B信号値を0から1の範
囲に規格化した値を表す。また、関数min(R,G,
B)はR,G,B各値の最小値を、同様にmid(R,
G,B)は中間値を、max(R,G,B)は最大値を
表す。変換後のHSL座標系は、
In each of the following equations, R, G, and B represent values obtained by normalizing the digitally converted R, G, and B signal values in the range of 0 to 1, respectively. Also, the function min (R, G,
B) is the minimum value of R, G, B values, and similarly, mid (R,
G, B) represents an intermediate value, and max (R, G, B) represents a maximum value. The converted HSL coordinate system is

【0009】[0009]

【数2】 [Equation 2]

【0010】この変換により、R,G,Bの直交座標系
(図3(a))から規格化されたHSL座標系(図3
(b))に座標変換される。図3(b)から判るよう
に、変換後のHSL座標系において、明るさを表す明度
(L)は、円柱の中心線上の値であるため、中心線から
半径方向への変位で示される彩度(S)、中心線を原点
とする円における円周角で示される色相(H)とは独立
している。 そこで、明度を除いた彩度および色相の値
を用い、被測定体の色彩を測定することによって、どの
ような照明条件であっても、また形状の異なる場合であ
っても同一色の物質に対しては同一測定結果を得ること
ができる。
By this conversion, the R, G, B orthogonal coordinate system (FIG. 3A) is standardized to the HSL coordinate system (FIG. 3A).
The coordinates are converted into (b)). As can be seen from FIG. 3B, in the HSL coordinate system after conversion, the lightness (L) representing the brightness is a value on the center line of the cylinder, and therefore the color indicated by the displacement in the radial direction from the center line. The degree (S) is independent of the hue (H) indicated by the circumferential angle of a circle whose origin is the center line. Therefore, by measuring the color of the object to be measured using the values of saturation and hue excluding lightness, it is possible to obtain the same color substance regardless of the lighting conditions or the shape. The same measurement result can be obtained.

【0011】[0011]

【実施例】次に、図面を参照して、本発明を詳細に説明
する。図1は、本発明の色彩測定装置の一実施例の構成
を示す概略図である。色彩測定装置は、撮像部100、
信号処理部200、および表示部300から構成されて
いる。 撮像部100は、CCD等の撮像素子を用いた
カメラ1と、このカメラ1を支持するとともにカメラ1
の放熱を促進する冷却ケース11と、冷却ケース11を
保持し、カメラの撮像面を測定台13に対して平行かつ
所定距離に支持するカメラ支持台12と、キセノンラン
プ等、発行色温度が既知のランプを有し、光ファイバー
等の導光手段で測定台13を照らす照明手段5とから構
成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of an embodiment of the color measuring device of the present invention. The color measuring device includes an imaging unit 100,
The signal processing unit 200 and the display unit 300 are included. The image pickup unit 100 supports a camera 1 using an image pickup device such as a CCD, and supports the camera 1 and the camera 1
The cooling case 11 that promotes heat dissipation from the camera, the camera support 12 that holds the cooling case 11 and supports the imaging surface of the camera in parallel with the measurement table 13 at a predetermined distance, and the xenon lamp, etc. And a lighting means 5 for illuminating the measuring table 13 with a light guide means such as an optical fiber.

【0012】信号処理部200は、カメラ1からのアナ
ログ信号を受けて、後述するように種々の信号処理を行
い、その結果をCRTおよび/またはプリンタから構成
される出力部300に出力する。次に、図2をも参照し
て、動作について説明する。図2は、図1における信号
処理部200のブロック図である。
The signal processing section 200 receives the analog signal from the camera 1, performs various signal processing as described later, and outputs the result to an output section 300 composed of a CRT and / or a printer. Next, the operation will be described with reference to FIG. FIG. 2 is a block diagram of the signal processing unit 200 in FIG.

【0013】カメラ1は、例えばR(赤)、G(緑)、
B(青)にそれぞれ対応し、所定の画素数を有する3枚
のCCDを有し、被測定体の撮像面についてR,G,B
のアナログ信号を独立して発生する。これらの信号は、
信号処理部200の画像入力部210に入力する。R,
G,Bの各信号は画像入力部210で、それぞれ第1〜
第3のアナログ/デジタル(A/D)変換回路211〜
213により、例えば一画素毎に256段階のデジタル
値に変換される。このデジタル値は、それぞれ第1〜第
3のフレームメモリ214〜216に書き込まれた後、
信号処理回路220で座標変換等の信号処理が施され
る。
The camera 1 is, for example, R (red), G (green),
It has three CCDs each corresponding to B (blue) and having a predetermined number of pixels.
The analog signal of is independently generated. These signals are
The image is input to the image input unit 210 of the signal processing unit 200. R,
The G and B signals are respectively input to the image input unit 210 from the first to the first.
Third analog / digital (A / D) conversion circuit 211 to
By 213, for example, each pixel is converted into a digital value of 256 steps. The digital values are written in the first to third frame memories 214 to 216, respectively,
The signal processing circuit 220 performs signal processing such as coordinate conversion.

【0014】座標変換回路221は、画素毎にR,G,
B各色のデジタル信号を基に、H,S,L座標系の信号
に変換する。座標変換後、H,S,L各値は、デジタル
R,G,B値と同様、H,S,L信号用に設けた第4か
ら第6のフレームメモリ222から224に書き込まれ
る。次に、統計処理部225は、第4のフレームメモリ
222から色相(H)データを、第5のフレームメモリ
223から彩度(S)データを読みだし、濃度頻度分布
の解析を行う。濃度頻度分布は、正規分布の重ね合わせ
であると仮定し、式
The coordinate conversion circuit 221 has R, G, and
Based on the digital signal of each color B, it is converted into a signal of H, S, L coordinate system. After the coordinate conversion, the H, S, and L values are written in the fourth to sixth frame memories 222 to 224 provided for the H, S, and L signals, similarly to the digital R, G, and B values. Next, the statistical processing unit 225 reads the hue (H) data from the fourth frame memory 222 and the saturation (S) data from the fifth frame memory 223, and analyzes the density frequency distribution. Assuming that the concentration frequency distribution is a superposition of normal distributions,

【0015】[0015]

【数3】 (Equation 3)

【0016】で示される正規分布関数を用い、重回帰計
算により、平均値(μ)および分散(σ2 )を求める。
また、分散から標準偏差(σ)も求められる。平均値が
撮像面の色成分、分散が色斑の程度を示す。これら解析
結果は、必要に応じて出力部300で表示および/また
は印刷される。これら一連の動作は、図示しない制御装
置により制御される。制御装置としては、市販の汎用マ
イクロコンピュータを用いることができる。
The mean value (μ) and the variance (σ 2 ) are determined by multiple regression calculation using the normal distribution function represented by
Also, the standard deviation (σ) can be obtained from the variance. The average value indicates the color component of the imaging surface, and the dispersion indicates the degree of color spots. These analysis results are displayed and / or printed on the output unit 300 as needed. These series of operations are controlled by a control device (not shown). A commercially available general-purpose microcomputer can be used as the control device.

【0017】次に、本装置を用いた応用例について説明
する。被測定体に、トマトを用い、その熟れ具合による
測定結果の変化を調べた。A/D変換は一画素あたり
R,G,B各256段階とし、照明にはキセノンランプ
(色温度5500K)の拡散光を用いた。ランプは、測
定台に対して正反射となるよう、測定台に対し鉛直にセ
ットした。また、正確な測定を期すため、照度0(暗
闇)におけるカメラのオフセット出力を測定しておき、
色彩測定値からこのオフセットを取り除く処理を行っ
た。
Next, application examples using this apparatus will be described. Tomato was used as the object to be measured, and changes in the measurement results depending on the ripeness thereof were examined. A / D conversion was performed in 256 steps for each of R, G, and B per pixel, and diffused light from a xenon lamp (color temperature 5500K) was used for illumination. The lamp was set vertically with respect to the measuring table so as to have regular reflection on the measuring table. Also, in order to ensure accurate measurement, the offset output of the camera at an illuminance of 0 (dark) is measured,
A process of removing this offset from the color measurement value was performed.

【0018】未熟トマトを10℃の恒温室に保存し、追
熟過程における表面色を毎日測定し、経時変化を観察し
た。未熟トマトとして、やや赤く色づきはじめたトマト
(実験1)と、ほとんど緑色のトマト(実験2)を用い
た。背景を黒としてトマト画像を取得し、得られた画像
のうち完全反射部分を除去した。完全反射部分の除去
は、色差を利用し、白より色差がある程度大きな部分を
完全反射部と見なすことにより行った。
The unripe tomatoes were stored in a thermostatic chamber at 10 ° C., the surface color was measured every day during the ripening process, and the change with time was observed. As immature tomatoes, tomatoes that started to turn slightly red (Experiment 1) and almost green tomatoes (Experiment 2) were used. A tomato image was obtained with a black background, and the completely reflected portion was removed from the obtained image. The removal of the completely reflected portion was performed by utilizing the color difference and regarding the portion having a color difference to some extent as compared with white as the completely reflected portion.

【0019】次に、背景からトマトの画像を抜き出し、
画素毎にアナログRGB信号をディジタル化し、さらに
HSL信号へ変換した。色相(H)および彩度(S)に
ついて平均値と標準偏差をそれぞれ求めた。図4に色相
の標準偏差、図5に色相の平均値、図6に彩度の標準偏
差、図7に彩度の平均値のそれぞれにおける経時変化を
示す。
Next, extract the tomato image from the background,
The analog RGB signal was digitized for each pixel and further converted into an HSL signal. The average value and standard deviation of the hue (H) and the saturation (S) were obtained. FIG. 4 shows the standard deviation of hue, FIG. 5 shows the average value of hue, FIG. 6 shows the standard deviation of saturation, and FIG. 7 shows the change over time of the average value of saturation.

【0020】図4において、観測開始から約10日間の
内は、測定開始時の熟し具合の差から標準偏差のばらつ
きが認められる。特にほとんど緑色のトマトを使った実
験2では、始めは比較的均一な緑色のため標準偏差は低
いが、赤く色づき始めるに従い、色むらが生じ、標準偏
差が大きくなる。しかし、実が熟してくると、ほぼ均一
な赤色に変化し、実験1とほぼ同様の標準偏差に収束す
る。
In FIG. 4, within about 10 days from the start of observation, variations in standard deviation are recognized due to the difference in ripening condition at the start of measurement. Especially in Experiment 2 in which almost green tomatoes were used, the standard deviation was low at the beginning due to the relatively uniform green color, but as the coloration began to become red, color unevenness occurred and the standard deviation increased. However, when the fruit became ripe, it turned into a substantially uniform red color, and converged to a standard deviation almost the same as in Experiment 1.

【0021】また、図5からも実験開始時の色相は異な
っても、最終的にはほぼ同じ色相に収束していることが
わかる。また、図6および図7の彩度については若干個
体差が認められるが、やはりほぼ同様な変化を見せてい
ることがわかる。
Further, it can be seen from FIG. 5 that although the hues at the start of the experiment are different, they finally converge to almost the same hue. Further, although there are some individual differences in the saturation in FIGS. 6 and 7, it can be seen that almost the same changes are exhibited.

【0022】[0022]

【発明の効果】この様に、本願発明によれば、形状にば
らつきがある物体について、ほぼ同一の色彩測定結果を
得ることが出来るため、例えば予め好ましい熟度の果実
の色相と彩度を本発明の装置で測定し、その測定値を基
準として選別を行うことにより、従前の類似装置に比べ
飛躍的に精度の高い選別が実現できる。
As described above, according to the present invention, it is possible to obtain substantially the same color measurement results for objects having different shapes. Therefore, for example, the hue and saturation of a fruit having a preferable ripeness can be obtained in advance. By measuring with the device of the present invention and performing the selection based on the measured value, it is possible to realize the selection with extremely high precision as compared with the conventional similar device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による色彩測定装置の構成例を示す図で
ある。
FIG. 1 is a diagram showing a configuration example of a color measuring device according to the present invention.

【図2】図1における信号処理部のブロック図である。FIG. 2 is a block diagram of a signal processing unit in FIG.

【図3】(a),(b)は画像信号の表示座標を示す図
である。
3A and 3B are diagrams showing display coordinates of an image signal.

【図4】応用例における色相の標準偏差の経時変化を示
す図である。
FIG. 4 is a diagram showing a change with time of a standard deviation of hue in an application example.

【図5】応用例における色相の平均値の経時変化を示す
図である。
FIG. 5 is a diagram showing a change with time of an average value of hues in an application example.

【図6】応用例における彩度の標準偏差の経時変化を示
す図である。
FIG. 6 is a diagram showing a change with time of a standard deviation of saturation in an application example.

【図7】応用例における彩度の平均値の経時変化を示す
図である。
FIG. 7 is a diagram showing a change with time of an average value of saturation in an application example.

【符号の説明】[Explanation of symbols]

1 カメラ 5 照明手段 11 冷却ケース 12 カメラ支持台 13 測定台 200 信号処理部 300 表示部 DESCRIPTION OF SYMBOLS 1 camera 5 illumination means 11 cooling case 12 camera support stand 13 measurement stand 200 signal processing section 300 display section

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定物を所定の方向から撮影し、その
画像信号をアナログRGB信号として出力するテレビカ
メラ手段と、 前記被測定物を所定の方向から照らす照明手段と、 前記アナログRGB信号を受け、前記アナログ信号を色
相(H)信号、彩度(S)信号、明度(L)信号に変換
する信号変換手段と、 前記色相信号および彩度信号の平均値および分散を求
め、出力する演算手段と、 前記色相信号および彩度信号の平均値および分散を表示
又は印字する出力手段とから構成されることを特徴とす
る色彩測定装置。
1. A television camera means for photographing an object to be measured from a predetermined direction and outputting an image signal thereof as an analog RGB signal, an illuminating means for illuminating the object to be measured from a predetermined direction, and the analog RGB signal. A signal converting means for receiving and converting the analog signal into a hue (H) signal, a saturation (S) signal, and a brightness (L) signal, and an operation for obtaining and outputting an average value and a variance of the hue signal and the saturation signal. A color measuring device comprising: a means and an output means for displaying or printing an average value and a variance of the hue signal and the saturation signal.
【請求項2】 前記信号変換手段が、前記アナログRG
B信号を所定の精度でディジタル信号に変換し、ディジ
タルRGB信号として出力するアナログ/ディジタル変
換手段と、 前記ディジタルRGB信号を下式に従って前記色相信
号、彩度信号および明度信号に変換する変換演算部とか
ら構成されることを特徴とする請求項1記載の色彩測定
装置。 【数1】 ただし、各式において、R,G,Bはそれぞれデジタル
変換されたR,G,B信号値を0から1の範囲に規格化
した値を表す。また、関数min(R,G,B)はR,
G,B各値の最小値を、同様にmid(R,G,B)は
中間値を、max(R,G,B)は最大値を表す。
2. The analog RG, wherein the signal conversion means is
An analog / digital conversion means for converting the B signal into a digital signal with a predetermined accuracy and outputting it as a digital RGB signal, and a conversion operation section for converting the digital RGB signal into the hue signal, the saturation signal and the lightness signal according to the following formula. The color measuring device according to claim 1, wherein the color measuring device comprises: [Equation 1] However, in each equation, R, G, and B represent values obtained by normalizing the digitally converted R, G, and B signal values in the range of 0 to 1, respectively. Also, the function min (R, G, B) is R,
Similarly, mid (R, G, B) represents an intermediate value, and max (R, G, B) represents a maximum value of G and B values.
JP23733394A 1994-09-30 1994-09-30 Color measuring apparatus Pending JPH08101068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23733394A JPH08101068A (en) 1994-09-30 1994-09-30 Color measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23733394A JPH08101068A (en) 1994-09-30 1994-09-30 Color measuring apparatus

Publications (1)

Publication Number Publication Date
JPH08101068A true JPH08101068A (en) 1996-04-16

Family

ID=17013831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23733394A Pending JPH08101068A (en) 1994-09-30 1994-09-30 Color measuring apparatus

Country Status (1)

Country Link
JP (1) JPH08101068A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093370A (en) * 2002-08-15 2012-05-17 Qinetiq Ltd Histological assessment
CN103115682A (en) * 2013-01-15 2013-05-22 北京林业大学 Device capable of identifying color automatically
JP2020176976A (en) * 2019-04-22 2020-10-29 マクタアメニティ株式会社 Afterripening degree determination device
JP2021089179A (en) * 2019-12-03 2021-06-10 マクタアメニティ株式会社 Afterripening degree determination device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093370A (en) * 2002-08-15 2012-05-17 Qinetiq Ltd Histological assessment
CN103115682A (en) * 2013-01-15 2013-05-22 北京林业大学 Device capable of identifying color automatically
JP2020176976A (en) * 2019-04-22 2020-10-29 マクタアメニティ株式会社 Afterripening degree determination device
JP2021089179A (en) * 2019-12-03 2021-06-10 マクタアメニティ株式会社 Afterripening degree determination device

Similar Documents

Publication Publication Date Title
US7057641B2 (en) Method for using an electronic imaging device to measure color
US4812904A (en) Optical color analysis process
US5850472A (en) Colorimetric imaging system for measuring color and appearance
US10168215B2 (en) Color measurement apparatus and color information processing apparatus
KR100278642B1 (en) Color image processing apparatus and method
US7995838B2 (en) Color chart processing apparatus, color chart processing method, and color chart processing program
USRE42715E1 (en) Vision system and method for process monitoring
US7884968B2 (en) System for capturing graphical images using hyperspectral illumination
JP2002533665A (en) Method and apparatus for determining the appearance of an object
JPH08297054A (en) Color sensation measuring system
TW200805198A (en) Measuring method and measuring device using color image
JP2001008220A (en) Color reproduction system
JP2002267574A (en) Colorimetry device for color display device, colorimetry, image quality adjustment/inspection device, and image quality adjustment/inspection method
JP2002529727A (en) Method and apparatus for measuring the chromaticity of colored surfaces
JPH10221036A (en) Method and apparatus for automatically identifying kind of part
JP2003024283A (en) Skin surface state observing apparatus
WO1996041299A1 (en) Inspection system for exterior article surfaces
JPH08101068A (en) Color measuring apparatus
EP4224129A1 (en) Image analysis method, image analysis device, program, and recording medium
JP2019046134A (en) Image inspection device, and image inspection method
JP2022006624A (en) Calibration device, calibration method, calibration program, spectroscopic camera, and information processing device
JPH08114503A (en) Colorimetry device
JP2004040417A (en) Imaging apparatus, and white balance correction method
JPH05332838A (en) Color shading appearance inspection device
KR100459014B1 (en) Method and apparatus for distribution analysis of surface color