JPH08100998A - Cold-wall melting furnace and melting method capable of melting under ultra-high vacuum condition - Google Patents

Cold-wall melting furnace and melting method capable of melting under ultra-high vacuum condition

Info

Publication number
JPH08100998A
JPH08100998A JP6259690A JP25969094A JPH08100998A JP H08100998 A JPH08100998 A JP H08100998A JP 6259690 A JP6259690 A JP 6259690A JP 25969094 A JP25969094 A JP 25969094A JP H08100998 A JPH08100998 A JP H08100998A
Authority
JP
Japan
Prior art keywords
vacuum
melting furnace
cold wall
melting
torr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6259690A
Other languages
Japanese (ja)
Other versions
JP3374549B2 (en
Inventor
Masahiro Tadokoro
昌宏 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP25969094A priority Critical patent/JP3374549B2/en
Publication of JPH08100998A publication Critical patent/JPH08100998A/en
Application granted granted Critical
Publication of JP3374549B2 publication Critical patent/JP3374549B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PURPOSE: To enable a more high degree vacuum state to be realized by a method wherein an induction heating coil of a cold-wall vacuum induction melting furnace and an inter-furnace wiring are formed of a water-cooled copper pipe not covered with an insulation cover and further a composing element such as a vacuum tank is processed to have a smooth surface by an electrolytic grinding and a chemical grinding or the like. CONSTITUTION: An induction heating coil 8 of vacuum pipe arranged at an outer circumference of a main body 1 of a cold-wall vacuum melting crucible stored in a vacuum tank and a vacuum conduit 4 for electrically connecting between the induction heating coil 8 and a power supply and performing a cooling of the induction heating coil 8 ar formed of a bare copper pipe having no insulating coverage so as to eliminate a gas discharged out of an insulation covering layer. An inner surface of the vacuum tank and/or an entire surface of the main body 1 of the cold-wall vacuum melting crucible is smoothed through an electrolytic grinding plus complex grinding, and a glass-bead blast processing. With such an arrangement as above, gas discharged out of the surface of the main body 1 is reduced and a vacuum-reaching pressure is further reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は真空槽内に収容され10
-6Torrより低圧の超高真空下で操業可能なコールドウォ
ール真空誘導溶解炉と、このような溶解炉を使用して、
真空排気により10-4Torrより低圧で溶解を行うか、ま
たはこのような真空度に到達後、不活性ガスを導入し、
その雰囲気中で溶解し高純度、高融点の金属、活性金属
またはそれらの金属の合金を誘導加熱により溶製するコ
ールドウォール真空誘導溶解炉と溶解方法に関する。
BACKGROUND OF THE INVENTION The present invention is housed in a vacuum chamber.
A cold wall vacuum induction melting furnace that can be operated under ultra-high vacuum at a pressure lower than -6 Torr, and using such a melting furnace,
Dissolve at a pressure lower than 10 -4 Torr by evacuation, or introduce an inert gas after reaching such a vacuum degree,
The present invention relates to a cold wall vacuum induction melting furnace and a melting method for melting a high-purity, high-melting point metal, an active metal, or an alloy of these metals by induction heating.

【0002】[0002]

【従来の技術】電磁誘導加熱により金属や合金(以下単
に金属と略称する)を溶解するコールドウォール真空誘
導溶解炉としては、炉装入状態での到達圧力が10-4To
rrから精々10-5Torr台であった。本発明の主題である
コールドウォール誘導溶解炉の真空度を高める問題を検
討するのに先立って、理解を容易にするためコールドウ
ォール誘導溶解炉の全体的な構成と作用について説明す
る。コールドウォール溶解炉は、概念的には概略側断面
図として図1に、部分断面正面図として図2に、具体的
な構成が概略側断面図として図3に示される。図1と図
2を参照すると、コールドウォール誘導溶解炉のルツボ
本体1は、導電性と熱伝導度がともに良好な銅などの金
属で底付き中空円筒状に成形され、その側壁部、または
側壁の上端から底壁の一部までが、垂直に明けられ幅が
数mm程度の複数の狭いスリット2により、円周方向に分
割された複数のセグメント3とされ、それぞれのセグメ
ント3は中空にされ内部に冷却水の通路が設けられ、そ
の内部を流れる水で冷却される。ルツボ本体1の外周に
は誘導加熱コイル8が配置されて、装入された金属は溶
解されて溶湯9となるが、その上部は電磁誘導作用によ
り9cに示すように盛り上がって炉壁との接触が防止さ
れる。
2. Description of the Related Art As a cold wall vacuum induction melting furnace for melting a metal or an alloy (hereinafter simply referred to as a metal) by electromagnetic induction heating, the ultimate pressure in the furnace charging state is 10 -4 To.
It was in the 10 -5 Torr range from rr. Prior to examining the problem of increasing the vacuum degree of the cold wall induction melting furnace, which is the subject of the present invention, the overall structure and operation of the cold wall induction melting furnace will be described in order to facilitate understanding. The cold wall melting furnace is conceptually shown in FIG. 1 as a schematic side sectional view, as a partial sectional front view in FIG. 2, and as a schematic configuration in FIG. 3 as a schematic side sectional view. Referring to FIGS. 1 and 2, a crucible body 1 of a cold wall induction melting furnace is formed of a metal such as copper having good conductivity and thermal conductivity into a hollow cylindrical shape with a bottom, and a side wall portion or a side wall thereof. From the upper end to a part of the bottom wall are divided into a plurality of circumferentially divided segments 3 by a plurality of narrow slits 2 which are vertically opened and have a width of about several mm, and each segment 3 is hollow. A passage for cooling water is provided inside and is cooled by water flowing inside. An induction heating coil 8 is arranged on the outer periphery of the crucible body 1, and the charged metal is melted to form a molten metal 9, but the upper part thereof rises by electromagnetic induction action as shown at 9c to contact the furnace wall. Is prevented.

【0003】複数のセグメント3のそれぞれの内部に
は、冷却水を導入する空洞部11が明けられ、必要に応
じてその内部に冷却水パイプ11aが挿入され2重管構
造とされて炉壁と底壁とが水冷され、セグメント3の側
壁と炉底の部分が冷却される。これにより、溶湯9が炉
壁に溶着するのが防止され、一方炉底の部分は装入され
た金属が凝固した薄皮状のスカル5が形成されて、その
上に溶湯9を保持する容器の底としての役目を果たす。
このため、従来の炉体が耐火材料製であるため水冷でき
ない構造であったことから、炉体と溶融金属との高温下
での直接接触による汚染が生ずるのに対し、コールドウ
ォール溶解炉にはその懸念がないので、高純度や高融点
の金属、合金などの溶解に適した溶解炉として多用され
るようになった。図3は、上記の図1と図2に概略構造
を示したルツボ本体1の、外周に配置された中空管製の
誘導加熱コイル8の冷却を行う冷却水入口4aと出口4
bとを含む中空導管4と、セグメント3の側壁と炉底7
の冷却を行う冷却水入口9aと出口9bを備えた真空誘
導溶解炉10の構造を示す正面図である。
A hollow portion 11 for introducing cooling water is opened in each of the plurality of segments 3, and a cooling water pipe 11a is inserted into the inside of the hollow portion 11 if necessary to form a double pipe structure and to form a furnace wall. The bottom wall is water-cooled, and the side wall of the segment 3 and the furnace bottom are cooled. As a result, the molten metal 9 is prevented from being welded to the furnace wall, while a thin-skinned skull 5 in which the charged metal is solidified is formed at the bottom of the furnace, and a container for holding the molten metal 9 thereon is formed. Serves as the bottom.
For this reason, since the conventional furnace body was made of refractory material and had a structure that could not be water-cooled, pollution occurs due to direct contact between the furnace body and molten metal at high temperatures, whereas in a cold wall melting furnace Since there is no such concern, it has come to be widely used as a melting furnace suitable for melting high purity and high melting point metals and alloys. FIG. 3 shows a cooling water inlet 4a and an outlet 4 for cooling the induction heating coil 8 made of a hollow tube arranged on the outer periphery of the crucible body 1 whose schematic structure is shown in FIGS.
hollow conduit 4 including b, the side wall of the segment 3 and the bottom 7
It is a front view which shows the structure of the vacuum induction melting furnace 10 provided with the cooling water inlet 9a and the outlet 9b which cool.

【0004】[0004]

【発明が解決しようとする課題】従来のコールドウォー
ル溶解炉が前述のように装入状態での到達圧力が10-4
Torrから精々10-5Torr台の真空度で操業していた理由
としては、この種の溶解炉を使用して製造する超高純度
の金属の需要が少なかったため、 1)10-4Torrまでならば真空タンク内面に特別の処理
を施す必要がないこと、 2)コールドウォール誘導溶解炉の本体そのものからの
放出ガスが、かなり多かったため、10-4Torrまでなら
ば特別の処理を施す必要がないのに、10-4Torrより低
圧にするには誘導溶解炉本体からの放出ガスを低減する
ための特別の表面平滑処理を施す必要があったためであ
る。誘導溶解炉の本体から放出されるガスとしては、コ
ールドウォール溶解炉本体を構成する銅や、炉本体を収
容する真空槽を構成するステンレス鋼および電磁誘導加
熱コイルの絶縁部からと、この加熱コイルに電力を供給
する水冷ケーブルの表面のゴムその他の有機材料などの
絶縁層からとのガス放出が挙げられ、この絶縁層の材料
としては、シリコンゴムやガラス系テープによるテーピ
ングなど、若しくは特殊絶縁がなされている。このよう
に絶縁処理を必要とした理由としては、加熱コイルヘの
印加電圧が600−1000Vのため放電現象が発生す
るためである。
In the conventional cold wall melting furnace, the ultimate pressure in the charging state is 10 -4 as described above.
The reason for operating at a vacuum degree of 10 -5 Torr from Torr at all is that there is little demand for ultra-high-purity metal produced using this type of melting furnace, so if 1) up to 10 -4 Torr For example, it is not necessary to apply any special treatment to the inner surface of the vacuum tank. 2) Since the amount of gas released from the cold wall induction melting furnace itself was quite large, no special treatment was required up to 10 -4 Torr. However, in order to reduce the pressure below 10 -4 Torr, it was necessary to perform a special surface smoothing treatment to reduce the gas released from the induction melting furnace body. The gas released from the body of the induction melting furnace includes copper that constitutes the body of the cold wall melting furnace, the stainless steel that constitutes the vacuum chamber that houses the furnace body, and the insulating portion of the electromagnetic induction heating coil, and the heating coil. Gas emission from the insulating layer such as rubber or other organic material on the surface of the water-cooled cable that supplies electric power to the can be mentioned as the material of this insulating layer, such as taping with silicon rubber or glass tape, or special insulation. Has been done. The reason why the insulation treatment is required is that the discharge phenomenon occurs because the voltage applied to the heating coil is 600 to 1000V.

【0005】この放電現象は、パッシェンの法則に示さ
れるように、数Torrから10-1Torr台でコロナ放電が発
生し絶縁破壊に到るために、充分な絶縁が必要であっ
た。上記のパッシェンの法則は、次のように説明され
る。所定の電圧が印加された平行板電極間の間隙d(m
m)を一定に保ち、圧力Pを下げていくと、火花電圧は
次第に低下する。これは平均自由工程が小さくなるため
に電界により電子の加速が大きく、衝突電離が盛んにな
るためである。火花電圧は、Pとdとの積Pdがある値
に達した点で最小値を示し、それ以下の気圧では急速に
増加する。これは平均自由工程が小さくなり過ぎるため
に電子が電極間で行う衝突回数が減少するので、衝突電
離が不活発になるためである。例として、最小火花電圧
と、それを与えるPdの値は次に示される。雰囲気 電圧(V) Pd(Torr) 空気 330 5.67 N2 250 6.70 真空溶解装置用材料の放出ガス量Qは次に示される。 材料名 1)ステンレス鋼 排気開始後の時間 放出ガス量Q(Pa m3/s・m2 素材のまま 1hr 3.7x10-5 機械研磨 1hr 2.8x10-6 2) 素材のまま 1hr 5.3x10-5 機械研磨 1hr 4.7x10-6 上記1)のステンレス鋼は、主として真空槽(タンク)
を製作するために使用され、2)の銅は、コールドウォ
ール溶解炉の水冷されるルツボや誘導コイルの材料とし
て使用される。
This discharge phenomenon is shown in Paschen's law.
As you can see, the numbers Torr to 10-1Corona discharge from Torr stand
Insufficient insulation is required in order to cause insulation breakdown.
Was. Paschen's law above is explained as follows:
You. The gap d (m between the parallel plate electrodes to which a predetermined voltage is applied
m) is kept constant and the pressure P is lowered, the spark voltage becomes
Gradually decreases. This is because the mean free path becomes smaller
In addition, the acceleration of electrons due to the electric field is large, and the impact ionization is active.
This is because The spark voltage is a value that has a product Pd of P and d
Shows the minimum value at the point where
To increase. This is because the mean free path becomes too small
Since the number of collisions of electrons between the electrodes decreases,
This is because the separation becomes inactive. As an example, the minimum spark voltage
And the value of Pd that gives it is shown below.atmosphere Voltage (V) Pd (Torr)  Air 330 5.67 N2 250 6.70 The discharge gas amount Q of the vacuum melting apparatus material is shown below. Material name 1)Stainless steel Time after starting exhaust Amount of released gas Q (Pa m 3 / s ・ m 2 ) Raw material for 1 hr 3.7x10-Five Mechanical polishing 1hr 2.8x10-6 2)copper Raw material for 1 hr 5.3x10-Five Mechanical polishing 1hr 4.7x10-6 The stainless steel of 1) above is mainly used for vacuum tanks.
2) copper is used to make cold
As a material for crucibles and induction coils that are water-cooled in a melting furnace
Used.

【0006】高真空にするためには、真空にさらされる
材料から放出されるガス量が問題となり、これは真空タ
ンクの到達圧力に関係する。到達圧力をPとすると、P
は次式で示される。 P=Q/S+P0 ここに、Qは放出ガスの総量(Torr・l/s) Sは真空ポンプの実効排気速度(l/s) P0は真空ポンプの到達圧力(Torr) この式から明らかなように、到達圧力を下げるには炉体
やコイルを構成する材料からの放出ガスの総量Qを低下
させることが有効なことがわかる。また、P0を下げる
ためには到達圧力の低い真空ポンプを使用するのが当然
であり、この要求に合うものとしては油または水銀の蒸
気で噴流を作り拡散で飛び込んだ気体分子をとらえて運
び去る油拡散ポンプ(拡散ポンプまたはディフュージョ
ンポンプとも云う)、液体窒素により得られる低温で水
蒸気や有機蒸気(メタンを除く)を凝縮させて捕捉する
液体窒素トラップ(他の真空ポンプと併用する)および
液体水素あるいは液体ヘリウムの温度で固体表面に気体
を凝縮させるクライオポンプなどが挙げられる。
To achieve a high vacuum, the amount of gas released from the material exposed to the vacuum becomes a problem, which is related to the ultimate pressure of the vacuum tank. If the ultimate pressure is P, P
Is given by the following equation. P = Q / S + P 0 where Q is the total amount of released gas (Torr · l / s) S is the effective pumping speed of the vacuum pump (l / s) P 0 is the ultimate pressure of the vacuum pump (Torr) Thus, it can be seen that it is effective to reduce the total amount Q of the gas released from the materials forming the furnace body and the coil in order to reduce the ultimate pressure. In order to lower P 0 , it is natural to use a vacuum pump with a low ultimate pressure. To meet this requirement, a jet flow is created by vapor of oil or mercury and gas molecules that have jumped in by diffusion are caught and carried. An oil diffusion pump (also called a diffusion pump or diffusion pump) that leaves, a liquid nitrogen trap (used in combination with other vacuum pumps) and liquid that condenses and captures water vapor and organic vapors (excluding methane) at low temperature obtained by liquid nitrogen A cryopump for condensing a gas on a solid surface at the temperature of hydrogen or liquid helium can be used.

【0007】[0007]

【課題を解決するための手段】上記の解決すべき課題の
説明からも明らかなように、高真空を達成するには真空
槽と誘導コイルからの放出ガス量をある程度以下にする
必要がある。10-4Torr台の真空度から10-8あるいは
10-9Torr台の真空にするためには、 1)誘導コイルと、誘導コイルから電源への接続導体の
中真空槽内にある部分は、現状では市販品として放出ガ
ス量の低い満足すべき絶縁被覆材料の市販品は見当たら
ないため、誘導コイルと前記の導体部は絶縁することな
く使用し、印加電圧は600V以上であるため、10-4
Torrより低圧の高真空下で溶解するか、または前記の高
真空に到達後に不活性ガスを導入し200Torr以上の圧
力下で、放電を発生しない領域での溶解を行う。 2)水冷ルツボ、誘導コイルなどの銅製部材の表面処理
としては前記のガラスビーズのブラスト処理(以下GB
B処理と称する)、化学研磨、電解研磨、電解研磨と複
合研磨(以下電解研磨+複合研磨と称する)などを選択
して処理する。 3)真空槽内面の処理法として、その材質を18−8ス
テンレス鋼の代表的な鋼種であるSUS304とした場
合、電解研磨、電解研磨+複合研磨、GBB処理、鏡面
仕上げなどのいずれかの処理を到達圧力の値に応じ選択
して行う。いずれにしても、放出ガスを低下させる対策
として上記の処理を施す。
As is apparent from the above description of the problem to be solved, it is necessary to reduce the amount of gas discharged from the vacuum chamber and the induction coil to a certain level or less in order to achieve a high vacuum. In order to change from a vacuum of 10 -4 Torr level to a vacuum of 10 -8 Torr or 10 -9 Torr level, 1) the induction coil and the part of the connecting conductor from the induction coil to the power source in the middle vacuum chamber are: since at present not found commercial products of insulating coating material to be low satisfaction of released gas quantity commercially for the conductor portion between the induction coil is used without isolation, the applied voltage is more than 600V, 10 - Four
Melting is performed under a high vacuum at a pressure lower than Torr, or after reaching the above-mentioned high vacuum, an inert gas is introduced and the melting is performed in a region where discharge is not generated under a pressure of 200 Torr or more. 2) As the surface treatment of copper members such as water-cooled crucibles and induction coils, the above-mentioned blast treatment of glass beads (hereinafter referred to as GB
B treatment), chemical polishing, electrolytic polishing, electrolytic polishing and composite polishing (hereinafter referred to as electrolytic polishing + composite polishing), etc. are selected and processed. 3) As a method for treating the inner surface of the vacuum chamber, when the material is SUS304, which is a typical steel type of 18-8 stainless steel, any of electrolytic polishing, electrolytic polishing + composite polishing, GBB treatment, mirror finishing, etc. The processing is selected and performed according to the value of the ultimate pressure. In any case, the above process is performed as a measure to reduce the released gas.

【0008】[0008]

【作用】本発明のコールドウォール真空溶解炉は、ステ
ンレス鋼製の真空槽の内面と、コールドウォール溶解炉
の炉体と、誘導加熱コイルとが電解研磨、電解研磨+複
合研磨、化学研磨、GBB処理により表面が極めて平滑
に処理されているため表面に吸着した気体分子が少なく
されているのに加え、誘導加熱コイルと真空槽内の配線
部は絶縁被覆が施されていない裸導線を使用している。
従って、これらの部分から真空槽内に放出されるガスは
極めて微量となるので、真空槽内を10-4Torrからさら
に低い10-8あるいは10-9台の真空にすることがで
き、このような真空下で溶解するか、又はこのような真
空状態に到達後アルゴンガス、N2ガスなどの不活性ガ
スを導入し200Torr以上の圧力下で溶解を行うことに
より超高純度金属および合金の溶成を可能にする。ま
た、このような高真空下では真空槽内の酸素分圧をさら
に下げることが可能になるので、活性金属等の僅かな酸
化反応も防止できる。
In the cold wall vacuum melting furnace of the present invention, the inner surface of the stainless steel vacuum chamber, the furnace body of the cold wall melting furnace, and the induction heating coil are electrolytically polished, electrolytically polished + compositely polished, chemically polished, GBB. Since the surface is treated extremely smooth by the treatment, the gas molecules adsorbed on the surface are reduced, and the induction heating coil and the wiring part in the vacuum chamber use bare conductors without insulation coating. ing.
Therefore, the amount of gas released from these parts into the vacuum chamber is extremely small, and the vacuum chamber can be evacuated from 10 -4 Torr to a lower vacuum of 10 -8 or 10 -9 units. Under high vacuum, or after reaching such a vacuum state, an inert gas such as argon gas or N 2 gas is introduced and melting is performed under a pressure of 200 Torr or more to dissolve ultra-high purity metals and alloys. Enable Further, under such a high vacuum, the partial pressure of oxygen in the vacuum chamber can be further reduced, so that a slight oxidation reaction of the active metal or the like can be prevented.

【0009】[0009]

【実施例】【Example】

実施例1 コールドウォール溶解炉の誘導コイルと、誘導コイルか
ら真空槽の電源導入部までの間は、シリコンゴムなどの
有機絶縁材料で被覆された水冷ケーブルを使用せず無被
覆の銅パイプを使用した。これにより、放出ガスQを1
-4Torr・l/s台にすることができ、真空度を10-6Torr
より低く保った状態で溶解を行うことができた。 実施例2 誘導コイルと、誘導コイルから真空槽の電源導入部まで
の銅管、銅ブスバー、銅線などを無被覆としたのに加
え、真空槽を構成するSUS304(18−8ステンレ
ス鋼)の内面は、GBB処理により排気開始後1時間で
放出ガス量Qを、8×10-6Pa m3/s・m2とした。これ
により真空度を10-7Torrより低く保った状態で溶解を
行うことができた。
Example 1 An uncoated copper pipe is used between the induction coil of the cold wall melting furnace and a portion from the induction coil to the power source introduction part of the vacuum chamber without using a water cooling cable coated with an organic insulating material such as silicon rubber. did. As a result, the released gas Q is reduced to 1
It can be set to 0 -4 Torr.l / s and the degree of vacuum is 10 -6 Torr.
It was possible to carry out the dissolution while keeping it lower. Example 2 In addition to the induction coil and the copper tube from the induction coil to the power source introduction portion of the vacuum chamber, the copper bus bar, and the copper wire being uncoated, the SUS304 (18-8 stainless steel) forming the vacuum chamber was used. On the inner surface, the amount of released gas Q was set to 8 × 10 −6 Pa m 3 / s · m 2 one hour after the start of exhaustion by GBB treatment. As a result, it was possible to carry out the melting in a state where the degree of vacuum was kept lower than 10 −7 Torr.

【0010】実施例3 実施例1と同様、コールドウォール溶解炉の誘導コイル
から真空槽の電源導入部までの間は、無被覆の銅パイプ
を使用した。真空槽を構成するSUS304の内面は、
電解研磨により排気開始後1時間で放出ガス量Qを、6
×10-6Pa m3/s・m2とした。一方、コールドウォール
溶解炉の炉体を構成する銅については、GBB処理によ
り排気開始後1時間で放出ガス量Qを1×10-5Pa m3
/s・m2とした。これらの手段により、真空槽内全ての放
出ガスの総量Qtを9×10-5Torr・l/sとすることがで
き、真空度を10-6Torrより低く保つことができた。こ
の真空度に到達後アルゴンガスを導入し200Torrの圧
力で溶解を行った。
Example 3 As in Example 1, an uncoated copper pipe was used between the induction coil of the cold wall melting furnace and the power supply introduction section of the vacuum chamber. The inner surface of SUS304 that constitutes the vacuum chamber is
The amount Q of released gas is 6 after 1 hour from the start of evacuation by electrolytic polishing.
× 10 −6 Pa m 3 / s · m 2 On the other hand, regarding the copper that constitutes the furnace body of the cold wall melting furnace, the amount of released gas Q was 1 × 10 -5 Pa m 3 by GBB treatment one hour after the start of exhaust.
/ S · m 2 By these means, the total amount Qt of all the released gas in the vacuum chamber could be set to 9 × 10 −5 Torr · l / s, and the degree of vacuum could be kept lower than 10 −6 Torr. After reaching this vacuum degree, argon gas was introduced and dissolution was performed at a pressure of 200 Torr.

【0011】[0011]

【発明の効果】炉装入状態での到達圧力が10-4Torrか
ら精々10-5Torr台であった従来のコールドウォール真
空誘導溶解炉の、誘導加熱コイルと槽内配線には絶縁被
覆を施さない水冷銅パイプ、一方真空槽と炉体などの構
成部材の構造はそのままとするか、またはさらにこれら
の部材を組み立てる前に電解研磨、化学研磨、GBB処
理などを選択的に施し平滑表面にする処理を施すことに
より、これらの処理費の低額な増加のみで、これらの部
材の表面からの放出ガス量を極度に低減させる。これに
より真空槽内を10-4Torrからさらに低い10-8あるい
は10-9台の真空にすることが可能になり、超高純度金
属や活性金属よび合金の溶成が可能になるので産業上に
貢献すること多大である。
EFFECTS OF THE INVENTION In the conventional cold wall vacuum induction melting furnace, the ultimate pressure in the charged state of the furnace was from 10 -4 Torr to 10 -5 Torr at most, and the induction heating coil and the in-tank wiring were insulated. The water-cooled copper pipe that is not applied, while maintaining the structure of the components such as the vacuum chamber and the furnace body, or further applying electrolytic polishing, chemical polishing, GBB treatment, etc., to a smooth surface before assembling these components. By performing the treatment, the amount of gas released from the surfaces of these members is extremely reduced with only a small increase in the treatment cost. As a result, the vacuum chamber can be evacuated from 10 -4 Torr to a lower vacuum of 10 -8 or 10 -9 units, and it becomes possible to melt ultra-high purity metals, active metals and alloys, which is industrially possible. It is great to contribute to.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は従来のコールドウォール溶解炉の概要を
示す概略側断面図である。
FIG. 1 is a schematic side sectional view showing an outline of a conventional cold wall melting furnace.

【図2】図2は図1に示したコールドウォール溶解炉の
部分断面正面図である。
FIG. 2 is a partial sectional front view of the cold wall melting furnace shown in FIG.

【図3】図3は、従来のコールドウォール溶解炉の構造
を示す概略側断面図である。
FIG. 3 is a schematic side sectional view showing a structure of a conventional cold wall melting furnace.

【符号の説明】[Explanation of symbols]

1 ルツボ本体 2 スリット 3 セグメント 4 中空導管 8 誘導加熱コイル 1 Crucible body 2 Slit 3 Segment 4 Hollow conduit 8 Induction heating coil

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 真空に保持された真空槽と、この真空槽
内に設置され、高融点金属や活性金属などを溶解する真
空誘導溶解炉として垂直方向に延びるスリットにより分
離されて次々に隣接し、それぞれの内部が水冷された複
数のセグメントにより構成されるルツボの側壁と、該側
壁部下端に一体に形成される水冷ルツボ底板とを有する
底付円筒構造のルツボ本体と、前記ルツボ本体の外周に
配置された誘導加熱コイルとを含んで成るコールドウォ
ール真空誘導溶解炉であって:前記誘導加熱コイルが絶
縁被覆されてなく10-6Torrよりも低い真空に到達可能
なことを特徴とする超高真空下で溶解可能なコールドウ
ォール溶解炉。
1. A vacuum chamber maintained under vacuum and a vacuum induction melting furnace installed in the vacuum chamber for melting refractory metals, active metals, etc., separated by vertically extending slits and adjacent to each other. , A crucible body having a bottomed cylindrical structure having a side wall of the crucible each of which is composed of a plurality of water-cooled segments, and a water-cooled crucible bottom plate integrally formed at a lower end of the side wall, and an outer periphery of the crucible body. A cold wall vacuum induction melting furnace comprising an induction heating coil arranged in: a superheater, characterized in that said induction heating coil is uninsulated and is capable of reaching a vacuum below 10 -6 Torr. Cold wall melting furnace that can melt under high vacuum.
【請求項2】 請求項1記載のコールドウォール真空誘
導溶解炉において;さらに前記誘導加熱コイルから前記
真空槽の電源導入部までの槽内配線に絶縁被覆がされて
いなく、10-7Torrよりも低い真空に到達可能な超高真
空下で溶解可能なコールドウォール溶解炉。
2. The cold wall vacuum induction melting furnace according to claim 1, wherein the in-vessel wiring from the induction heating coil to the power source introduction section of the vacuum vessel is not covered with an insulating coating, and is less than 10 −7 Torr. Cold wall melting furnace that can melt under ultra-high vacuum that can reach low vacuum.
【請求項3】 請求項1または2に記載のコールドウォ
ール真空誘導溶解炉において;前記誘導加熱コイルの表
面がガラスビーズによるブラスト処理、化学研磨、電解
研磨、電解研磨と複合研磨などのいずれかにより処理さ
れ、10-8Torrよりも低い真空まで到達可能にされ超高
真空下で溶解可能なコールドウォール溶解炉。
3. The cold wall vacuum induction melting furnace according to claim 1 or 2, wherein the surface of the induction heating coil is blasted with glass beads, chemical polishing, electrolytic polishing, electrolytic polishing and complex polishing, or the like. A cold wall melting furnace that has been processed and is capable of reaching vacuums below 10 -8 Torr and capable of melting under ultra high vacuum.
【請求項4】 請求項1または2に記載のコールドウォ
ール真空誘導溶解炉において;前記真空槽がステンレス
鋼製であり、その内面が電解研磨、電解研磨と複合研
磨、ガラスビーズによるブラスト処理、鏡面処理などの
いずれかにより処理されて、10-10Torr台までの低い
真空に到達可能にされ超高真空下で溶解可能なコールド
ウォール溶解炉。
4. The cold wall vacuum induction melting furnace according to claim 1 or 2, wherein the vacuum chamber is made of stainless steel, and the inner surface thereof is electrolytically polished, electrolytically polished and combinedly polished, blasted with glass beads, and mirror finished. A cold wall melting furnace that can be melted under ultra-high vacuum by being treated by any of the treatments, and can reach a low vacuum of up to 10 -10 Torr.
【請求項5】 請求項1から4までのいずれかに記載の
コールドウォール真空誘導溶解炉において;前記ルツボ
が銅製であり、その表面がガラスビーズによるブラスト
処理、化学研磨、電解研磨、電解研磨と複合研磨などの
いずれかにより処理され10-10Torr台までの低い真空
まで到達可能にされ超高真空下で溶解可能なコールドウ
ォール溶解炉。
5. The cold wall vacuum induction melting furnace according to claim 1, wherein the crucible is made of copper, and the surface of the crucible is blasted with glass beads, chemical polishing, electrolytic polishing, and electrolytic polishing. Cold wall melting furnace that can be melted under ultra-high vacuum by being processed by any one of compound polishing etc. and capable of reaching a low vacuum of up to 10 -10 Torr level.
【請求項6】 請求項1から5までのいずれかに記載の
コールドウォール誘導溶解炉を使用する溶解方法であっ
て;溶解すべき金属または合金の種類によって定まる所
定の超高真空度において、高純度及び超高純度の金属、
合金を溶製するコールドウォール溶解方法。
6. A melting method using the cold wall induction melting furnace according to any one of claims 1 to 5, which is high in a predetermined ultra-high vacuum degree determined by the kind of metal or alloy to be melted. Pure and ultra high purity metals,
Cold wall melting method for melting alloy.
【請求項7】 請求項6に記載のコールドウォール真空
誘導溶解方法において;溶解すべき金属または合金の種
類によって定まる所定の超高真空度に到達後、不活性ガ
スを導入し200Torr以上の放電を発生しない領域で溶
解し、高純度及び超高純度の金属、合金または活性金属
を溶製するコールドウォール溶解方法。
7. The cold wall vacuum induction melting method according to claim 6, wherein after reaching a predetermined ultra-high vacuum degree determined by the kind of metal or alloy to be melted, an inert gas is introduced to discharge 200 Torr or more. A cold wall melting method in which a high-purity and ultra-high-purity metal, alloy, or active metal is melted in a region where it does not occur.
JP25969094A 1994-09-30 1994-09-30 Cold wall melting furnace and melting method capable of melting under ultra-high vacuum Expired - Fee Related JP3374549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25969094A JP3374549B2 (en) 1994-09-30 1994-09-30 Cold wall melting furnace and melting method capable of melting under ultra-high vacuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25969094A JP3374549B2 (en) 1994-09-30 1994-09-30 Cold wall melting furnace and melting method capable of melting under ultra-high vacuum

Publications (2)

Publication Number Publication Date
JPH08100998A true JPH08100998A (en) 1996-04-16
JP3374549B2 JP3374549B2 (en) 2003-02-04

Family

ID=17337573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25969094A Expired - Fee Related JP3374549B2 (en) 1994-09-30 1994-09-30 Cold wall melting furnace and melting method capable of melting under ultra-high vacuum

Country Status (1)

Country Link
JP (1) JP3374549B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0834582A3 (en) * 1996-10-04 1998-04-15 Shinko Electric Co. Ltd. Method of refining metal to high degree of purity and high-frequency vacuum induction melting apparatus
JP2010246591A (en) * 2009-04-10 2010-11-04 Tiger Vacuum Bottle Co Ltd Inner pot for electromagnetic induction heating electric rice cooker
JP2011076843A (en) * 2009-09-30 2011-04-14 Sinfonia Technology Co Ltd Water-cooled cable, and vacuum heating device
EP3517977A3 (en) * 2018-01-09 2019-10-30 Weston Aerospace Limited Magnetic gas turbine sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5974077A (en) * 1906-10-04 1999-10-26 Shinko Electric Co., Ltd. Method of refining metal to high degree of purity and high-frequency vacuum induction melting apparatus
EP0834582A3 (en) * 1996-10-04 1998-04-15 Shinko Electric Co. Ltd. Method of refining metal to high degree of purity and high-frequency vacuum induction melting apparatus
EP1114872A1 (en) * 1996-10-04 2001-07-11 Shinko Electric Co. Ltd. Baking method in a vacuum induction melting apparatus
EP1118684A1 (en) * 1996-10-04 2001-07-25 Shinko Electric Co. Ltd. High-frequency vacuum induction melting apparatus
JP2010246591A (en) * 2009-04-10 2010-11-04 Tiger Vacuum Bottle Co Ltd Inner pot for electromagnetic induction heating electric rice cooker
JP2011076843A (en) * 2009-09-30 2011-04-14 Sinfonia Technology Co Ltd Water-cooled cable, and vacuum heating device
EP3517977A3 (en) * 2018-01-09 2019-10-30 Weston Aerospace Limited Magnetic gas turbine sensor
US10976221B2 (en) 2018-01-09 2021-04-13 Weston Aerospace Limited Magnetic gas turbine sensor

Also Published As

Publication number Publication date
JP3374549B2 (en) 2003-02-04

Similar Documents

Publication Publication Date Title
US3793179A (en) Apparatus for metal evaporation coating
US4223048A (en) Plasma enhanced chemical vapor processing of semiconductive wafers
JPH0338339B2 (en)
EP0992606B1 (en) A method of applying a coating to a metallic article
EP0818801A2 (en) Plasma treating apparatus
EP1354979A1 (en) Method and device for producing organic el elements
US3491015A (en) Method of depositing elemental material from a low pressure electrical discharge
JP3374549B2 (en) Cold wall melting furnace and melting method capable of melting under ultra-high vacuum
JPH03285075A (en) Production of tungsten crucible
US3084037A (en) Gaseous ion purification process
TW438898B (en) Film growth method and film growth apparatus capable of forming magnesium oxide film with increased film growth speed
JP2001335854A (en) Apparatus and method for refining high purity metal
JP2960652B2 (en) Method and apparatus for purifying high purity metal
US3264095A (en) Method and apparatus for melting of metals to obtain utmost purity
US4540868A (en) Plasma gun that reduces cathode contamination
US2810667A (en) Process for heat-treating metals in a space containing a non-oxidizing protective gas atmosphere
US3595773A (en) Process for depositing on surfaces
JPH1053876A (en) Gas injector for plasma chemical vapor deposition
JP7212664B2 (en) Metal refining method and metal refining apparatus
JP2006029674A (en) Refining device and refining method
US5127941A (en) Process and device for separating the constituents of an alloy
JP2543382B2 (en) Method for removing impurities from molten metal
JPH04228566A (en) Conductive fiber coating method and apparatus by sputter ion plating
JPS6134507B2 (en)
JPS6139393B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071129

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131129

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees