JPH0799698B2 - Fuel cell temperature controller - Google Patents
Fuel cell temperature controllerInfo
- Publication number
- JPH0799698B2 JPH0799698B2 JP63225301A JP22530188A JPH0799698B2 JP H0799698 B2 JPH0799698 B2 JP H0799698B2 JP 63225301 A JP63225301 A JP 63225301A JP 22530188 A JP22530188 A JP 22530188A JP H0799698 B2 JPH0799698 B2 JP H0799698B2
- Authority
- JP
- Japan
- Prior art keywords
- heat medium
- fuel cell
- heat exchanger
- heat
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04029—Heat exchange using liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
- H01M8/04225—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、燃料電池の始動運転時に電池内温度をスム
ースに昇温できる温度調節装置に関する。Description: TECHNICAL FIELD The present invention relates to a temperature adjusting device capable of smoothly increasing the temperature inside a cell during a starting operation of a fuel cell.
燃料電池は電解液を含浸したマトリックスとマトリック
スを挟持した一対の燃料電極と酸化剤電極からなる単位
電池に複数個積層してスタックを構成し、このスタック
に水素リッチな燃料ガスと酸化剤としての空気とを供給
して電気化学反応を起こさせて発電する。A fuel cell is formed by stacking a plurality of unit cells consisting of a matrix impregnated with an electrolyte solution and a pair of fuel electrodes sandwiching the matrix and an oxidizer electrode to form a stack. Electricity is generated by supplying air with an electrochemical reaction.
燃料電池が負荷に電流を供給すると、電流が増加するに
従って燃料電池の内部抵抗,燃料ガスおよび酸化剤ガス
の電極への拡散抵抗および電極反応によるエネルギ損失
が増加し、出力電圧は漸次降下するようになり、電圧降
下分のエネルギ損失は熱として放出される。また燃料電
池の電極反応は発熱反応であり電流にほぼ比例して熱が
発生する。この他電極特性の低下に伴う電圧降下分も熱
の増加をもたらす。When the fuel cell supplies a current to the load, the internal voltage of the fuel cell, the diffusion resistance of the fuel gas and the oxidant gas to the electrode, and the energy loss due to the electrode reaction increase as the current increases, and the output voltage gradually decreases. The energy loss corresponding to the voltage drop is released as heat. The electrode reaction of the fuel cell is an exothermic reaction, and heat is generated almost in proportion to the electric current. In addition, the voltage drop caused by the deterioration of the electrode characteristics also causes an increase in heat.
一方燃料電池では、高効率運転を行わせるための適正運
転温度があり、例えばりん酸型燃料電池ではその適正運
転温度は190〜195℃である。この適正運転温度を保つに
は燃料電池の運転起動確立後発電に伴う燃料電池の自己
発熱が利用されるが、前述のごとく、電流の増加によっ
て過度な温度上昇を招くことがあるので、これを抑える
ため第3図に示す系統図の如く、燃料電池本体内熱交換
器を通過して外部を循環する熱媒体の冷却系を設けてい
る。On the other hand, the fuel cell has an appropriate operating temperature for high efficiency operation. For example, the phosphoric acid fuel cell has an appropriate operating temperature of 190 to 195 ° C. To maintain this proper operating temperature, the self-heating of the fuel cell that accompanies power generation after the start of operation of the fuel cell is used, but as mentioned above, an increase in current may cause an excessive temperature rise. In order to suppress it, as shown in the system diagram of FIG. 3, a cooling system for the heat medium that passes through the heat exchanger in the fuel cell main body and circulates outside is provided.
以下第3図にしたがって従来の冷却系と昇温系とを説明
すると、燃料電池1には配管で接続されている熱媒体循
環路2が設けられている。この循環路2は循環ポンプ3,
熱交換器9,熱媒体タンク5及び燃料電池内熱交換器17が
配管で接続され、燃料電池1内で発生した熱を熱媒体で
もって、外部に放熱するように構成されている。熱媒体
としては水や冷却油が使用されるが、ここでは冷却油を
使用する場合を対象とする。冷却油としては、耐熱性,
難燃性,人体に無害の観点から、ジベンジン・トルエ
ン,シリコンオイルなどの耐熱・難燃性オイルが使用さ
れる。さらに燃料電池1には温度センサ7を配備してそ
の運転温度を監視し、その温度状況に応じて制御部15よ
りの信号で、強冷却が必要なときにはファン8を回転さ
せて熱媒体を循環させ、また燃料電池の始動時やその温
度が基準値より低いときは昇温バーナ4を作動させて、
ファン8を回転し熱交換器9によって熱媒体を加熱して
燃料電池1に送りこみ、運転温度を適正に保つように制
御されている。The conventional cooling system and temperature raising system will be described below with reference to FIG. 3. The fuel cell 1 is provided with a heat medium circulation path 2 connected by piping. This circulation path 2 has a circulation pump 3,
The heat exchanger 9, the heat medium tank 5, and the heat exchanger in the fuel cell 17 are connected by piping, and the heat generated in the fuel cell 1 is radiated to the outside by the heat medium. Water or cooling oil is used as the heat medium, but here, the case where cooling oil is used is targeted. As a cooling oil, heat resistance,
From the viewpoint of flame retardancy and harmless to the human body, heat resistant and flame retardant oils such as dibenzine / toluene and silicone oil are used. Further, a temperature sensor 7 is provided in the fuel cell 1 to monitor its operating temperature, and a fan 8 is rotated to circulate the heat medium when a strong cooling is required by a signal from the controller 15 according to the temperature condition. When the fuel cell is started or when the temperature is lower than the reference value, the temperature raising burner 4 is operated,
The fan 8 is rotated, and the heat medium is heated by the heat exchanger 9 and sent to the fuel cell 1, and is controlled so that the operating temperature is maintained appropriately.
熱媒体タンク5には、弁13を有する排気口が取り付けら
れており、タンク内部の圧力の上昇時排気できる。An exhaust port having a valve 13 is attached to the heat medium tank 5 so that the heat medium tank 5 can be exhausted when the pressure inside the tank rises.
ところで前述のような冷却系と昇温系とを備えた燃料電
池が、冬期寒冷地では、周囲温度が例えば氷点下からの
始動運転を要求されることがあるが、前記熱媒体循環路
に使用されている耐熱・難燃性オイルからなる熱媒体と
して、例えばジベンジル・トルエンを使用していると、
第4図の粘性と温度との特性図が示すように、熱媒体の
粘性は低温になるに従い急激に増大するので、循環ポン
プ3の駆動動力の増大や、熱媒体循環路2の配管サイズ
の増大や、燃料電池内や熱媒体タンク5及び熱媒体配管
路を予熱するための電気ヒータなどの昇温装置やその電
源などが必要になる。このため燃料電池発電装置が大型
化し、補機損も増加して例えば移動用電源などの用途に
使用される燃料電池では、小型軽量化をはばむ要因とな
っていた。By the way, a fuel cell provided with a cooling system and a temperature raising system as described above is used in the heat medium circulation path in a cold region in winter, when the ambient temperature may require a start operation from below freezing. As a heat medium consisting of heat-resistant and flame-retardant oil, for example, using dibenzyl toluene,
As shown in the characteristic diagram of viscosity and temperature in FIG. 4, the viscosity of the heat medium sharply increases as the temperature decreases, so that the driving power of the circulation pump 3 increases and the pipe size of the heat medium circulation passage 2 increases. In addition, an increase in temperature, a temperature raising device such as an electric heater for preheating the heat medium tank 5, the heat medium tank 5 and the heat medium pipe, and a power source thereof are required. For this reason, the fuel cell power generator becomes large in size, and the loss of auxiliary machinery also increases, which is a factor to prevent the size and weight reduction of a fuel cell used for applications such as a mobile power source.
この発明はこの点に鑑み、周囲温度が極度に低い状態で
始動運転する場合にも、充分な昇温能力を発揮し、また
通常の運転時にも応答性のよい温度調節に支障がない燃
料電池の温度調節装置を提供することを目的とする。In view of this point, the present invention provides a fuel cell that exhibits a sufficient temperature raising capability even when starting operation in an extremely low ambient temperature, and that does not interfere with temperature adjustment with good responsiveness during normal operation. An object of the present invention is to provide a temperature control device.
上記課題を解決するために、この発明によれば、燃料電
池内に設けられた第1の熱交換器と、熱媒体タンクと、
循環ポンプと、バーナおよびファンを具備した第2の熱
交換器とを順次接続し、耐熱・難燃性オイルからなる熱
媒体を循環させる熱媒体循環路を備えた燃料電池の温度
調節装置において、前記第1の熱交換器と熱媒体タンク
との間および前記第2の熱交換器と第1の熱交換器との
間にそれぞれ弁を設け、該二つの弁の第2の熱交換器側
の熱媒体循環路において前記熱媒体タンクと前記第2の
熱交換器出口との間に弁を介して接続された熱媒体バイ
パス路を設けるとともに、前記第1の熱交換器と第2の
熱交換器との間に設けられた弁と該第1の熱交換器との
間の該弁の近傍に弁を介して熱媒体パージ用ガス供給源
を接続するものとする。In order to solve the above problems, according to the present invention, a first heat exchanger provided in a fuel cell, a heat medium tank,
In a temperature control device for a fuel cell, which includes a heat medium circulation path for sequentially connecting a circulation pump and a second heat exchanger including a burner and a fan, and circulating a heat medium composed of heat-resistant and flame-retardant oil, Valves are provided between the first heat exchanger and the heat medium tank and between the second heat exchanger and the first heat exchanger, respectively, and the second heat exchanger side of the two valves is provided. In the heat medium circulation path, a heat medium bypass path connected via a valve is provided between the heat medium tank and the second heat exchanger outlet, and the first heat exchanger and the second heat exchanger are provided. It is assumed that a heat medium purging gas supply source is connected via a valve in the vicinity of the valve provided between the first heat exchanger and the valve provided between the heat exchanger and the first heat exchanger.
この発明の構成によると、冬期寒冷地において、燃料電
池を始動させる際に、従来から備えられた燃料電池の温
度調節をする燃料電池内熱交換器に接続された熱媒体循
環路に熱媒体バイパス路を設けたので、第2の熱交換器
とこれに具備されたバーナ,ファンによって昇温された
熱媒体は弁の操作によって前記熱媒体バイパス路を通っ
て、熱媒体供給源に入り、循環ポンプによって再度第2
の熱交換器に送りこまれる。この循環によって熱媒体は
急速に昇温され、その温度が基準値に達したら、弁の操
作で熱媒体バイパス路を閉じて燃料電池内第1の熱交換
器へ供給され、燃料電池の運転温度までの昇温に寄与す
る。According to the configuration of the present invention, in the winter cold region, when the fuel cell is started, the heat medium bypass is connected to the heat medium circulation passage connected to the heat exchanger in the fuel cell, which adjusts the temperature of the fuel cell conventionally provided. Since the passage is provided, the heat medium heated by the second heat exchanger, the burner and the fan provided therein, passes through the heat medium bypass passage by the operation of the valve, enters the heat medium supply source, and circulates. Second by pump again
Sent to the heat exchanger of. This circulation rapidly raises the temperature of the heat medium, and when the temperature reaches the reference value, the heat medium bypass passage is closed by operating the valve to supply the heat medium to the first heat exchanger in the fuel cell, and the operating temperature of the fuel cell is increased. Contribute to the temperature rise up to.
この燃料電池内熱交換器の配管内に停止中に周囲温度に
よって冷えて高粘性となった熱媒体が残留していては、
前述の充分に昇温した低粘性の熱媒体が始動時に供給さ
れる際、高粘性熱媒体により配管内抵抗の増大がその動
作の障害となるため燃料電池の運転停止時には、次回の
再始動時にそなえて、熱媒体が温度が高く低粘性のうち
に熱媒体パージ用ガスを弁を介して熱媒体循環路に供給
し、そのガスの圧力で熱媒体を熱媒体タンクに戻してお
く。かくしてこの発明によれば熱媒体バイパス路と熱媒
体パージ用ガス供給源とを備えることによって寒冷地に
おいても燃料電池を容易に始動させることが可能とな
る。If the heat medium that had become highly viscous due to cooling due to the ambient temperature during the stoppage remained in the piping of the heat exchanger in the fuel cell,
When the above-mentioned sufficiently viscous low-viscosity heat medium is supplied at the time of start-up, the increase in the resistance in the pipe will be an obstacle to its operation due to the high-viscosity heat medium, so when the fuel cell is stopped, at the time of the next restart. Therefore, while the heat medium has a high temperature and low viscosity, the heat medium purging gas is supplied to the heat medium circulation passage through the valve, and the heat medium is returned to the heat medium tank by the pressure of the gas. Thus, according to the present invention, by providing the heat medium bypass passage and the heat medium purging gas supply source, the fuel cell can be easily started even in a cold region.
以下この発明を実施例に基づいて説明する。第1図はこ
の発明の実施例を示す系統図で、従来例第3図と同じ部
位には同じ符号が付してあり重複の説明は省く。第1図
では熱媒体循環路2に弁31と弁33を設け、弁31と熱交換
器9との間の配管より熱媒体タンク5へむけて、弁32を
介し熱媒体バイパス路12が設けられている。The present invention will be described below based on examples. FIG. 1 is a system diagram showing an embodiment of the present invention. The same parts as those in FIG. In FIG. 1, a valve 31 and a valve 33 are provided in the heat medium circulation passage 2, and a heat medium bypass passage 12 is provided through the valve 32 toward the heat medium tank 5 through the pipe between the valve 31 and the heat exchanger 9. Has been.
寒冷地での低い周囲温度から燃料電池の始動をするに
は、まず弁31,33を閉じ、弁32を開けて循環ポンプ3と
バーナ4を作動させる。かくすることで低温度に放置さ
れ高粘性となっている熱媒体は燃料電池内熱交換器17を
経由せずに、配管長の短いバイパス路12を循環して加熱
することになる。次に熱媒体タンク5に取り付けられた
熱媒体温度センサ6で検出した温度が基準値に達した
ら、制御部16の指令により弁32を閉じて弁31,33を開
き、燃料電池内熱交換器17に熱媒体を供給して燃料電池
が運転温度に達するまで昇温をつづける。In order to start the fuel cell from a low ambient temperature in cold regions, first, the valves 31 and 33 are closed, the valve 32 is opened, and the circulation pump 3 and the burner 4 are operated. By doing so, the heat medium which is left at a low temperature and has a high viscosity is circulated and heated in the bypass passage 12 having a short pipe length without passing through the heat exchanger 17 in the fuel cell. Next, when the temperature detected by the heat medium temperature sensor 6 attached to the heat medium tank 5 reaches the reference value, the valve 32 is closed and the valves 31 and 33 are opened by the command of the control unit 16, and the heat exchanger in the fuel cell is opened. The heat medium is supplied to 17 and the temperature is continuously raised until the fuel cell reaches the operating temperature.
燃料電池が運転を停止する場合には、次の再始動時に支
障なく早く始動できるようにするために、熱媒体の温度
が高い間に弁31,32を閉じ、弁33,34を開けて熱媒体パー
ジ用ガス供給源としてのガスタンクより減圧弁35を介し
て熱媒体循環路2へパージ用ガスを供給し、配管中と燃
料電池内熱交換器17内にある高温の熱媒体をパージ用ガ
スの圧力で熱媒体タンク5に戻しておく。このようにす
ることにより熱媒体が運転停止中に低い周囲温度で低温
となり粘性が高くなって次の再始動時に配管内抵抗の増
加がもたらす障害を取り除くことができる。なお、第1
図において、循環ポンプ3の位置は、前述の実施例に限
定されるものではなく、第2の熱交換器の熱媒体出口側
と熱媒体バイパス路入口との間の熱媒体循環路中に位置
してもよい。When the fuel cell stops operating, the valves 31 and 32 are closed and the valves 33 and 34 are opened while the temperature of the heat medium is high so that the fuel cell can be started quickly without trouble during the next restart. The purging gas is supplied from the gas tank as the medium purging gas supply source to the heat medium circulation passage 2 through the pressure reducing valve 35, and the high temperature heat medium in the pipe and in the heat exchanger 17 in the fuel cell is purged by the gas. It is returned to the heat medium tank 5 under the pressure of. By doing so, the temperature of the heat medium becomes low at a low ambient temperature during operation stop, the viscosity becomes high, and the obstacle caused by the increase in resistance in the pipe at the next restart can be removed. The first
In the figure, the position of the circulation pump 3 is not limited to the above-described embodiment, but is located in the heat medium circulation passage between the heat medium outlet side of the second heat exchanger and the heat medium bypass passage inlet. You may.
第2図はこの発明の異なる実施例を示す系統図で第1図
に示した実施例との違いは、熱媒体パージ用ガスタンク
に代わって熱媒体パージ用コンプレッサーを設けること
により空気をパージ用ガスとして使用するもので、第1
図に示す実施例に比べて装置を小型化することができ
る。FIG. 2 is a system diagram showing a different embodiment of the present invention. The difference from the embodiment shown in FIG. 1 is that a heat medium purging compressor is provided in place of the heat medium purging gas tank so that air can be purged by the gas. Used as the first
The device can be downsized as compared to the embodiment shown in the figure.
この発明は前述のように燃料電池内に設けられた第1の
熱交換器と、熱媒体タンクと、循環ポンプと、バーナお
よびファンを具備した第2の熱交換器とを順次接続し、
耐熱・難燃性オイルからなる熱媒体を循環させる熱媒体
循環路を備えた燃料電池の温度調節装置において、前記
第1の熱交換器と熱媒体タンクとの間および前記第2の
熱交換器と第1の熱交換器との間にそれぞれ弁を設け、
該二つの弁の第2の熱交換器側の熱媒体循環路において
前記熱媒体タンクと前記第2の熱交換器出口との間に弁
を介して接続された熱媒体バイパス路を設けるととも
に、前記第1の熱交換器と第2の熱交換器との間に設け
られた弁と該第1の熱交換器との間の該弁の近傍に弁を
介して熱媒体パージ用ガス供給源を接続するものとした
ので、冬期寒冷地で氷点下の周囲温度より燃料電池を始
動する際に、熱媒体の低温度,高粘性の状態での使用を
さけられるので、燃料電池の昇温性向上がはかられると
ともに、熱媒体循環路の配管サイズを小型化することが
できる。また熱媒体の循環を駆動する循環ポンプの動力
を低くおさえることもできる。さらに従来寒冷地用の機
器の配管には保温とか予熱のために電熱作用を利用して
いたが、この必要もなくなり電熱装置や電源が不要とな
り燃料電池発電装置の小型軽量化が達成出来る。As described above, the present invention sequentially connects the first heat exchanger provided in the fuel cell, the heat medium tank, the circulation pump, the second heat exchanger having the burner and the fan, as described above,
In a temperature control device for a fuel cell, comprising a heat medium circulation path for circulating a heat medium composed of heat resistant / flame retardant oil, between the first heat exchanger and the heat medium tank, and the second heat exchanger. And a valve between the first heat exchanger and
In the heat medium circulation path on the second heat exchanger side of the two valves, a heat medium bypass path connected via a valve is provided between the heat medium tank and the second heat exchanger outlet, Gas supply source for heat medium purging via a valve in the vicinity of the valve between the valve provided between the first heat exchanger and the second heat exchanger and the first heat exchanger Since it is connected to the fuel cell, when the fuel cell is started from the ambient temperature below freezing in cold regions in winter, it is possible to avoid the use of the heat medium at low temperature and high viscosity. As a result, the piping size of the heat medium circulation path can be reduced. Also, the power of the circulation pump that drives the circulation of the heat medium can be kept low. Further, conventionally, the piping of the equipment for cold regions has used the electric heating function for heat retention and preheating, but this is no longer necessary, and the electric heating device and the power source are not required, and the fuel cell power generator can be made compact and lightweight.
第1図はこの発明の実施例を示す系統図、第2図はこの
発明の異なる実施例を示す系統図、第3図は従来例を示
す系統図、第4図は熱媒体の温度と粘性の関係を示すグ
ラフである。 1:燃料電池、2:熱媒体循環路、3:循環ポンプ、4:バー
ナ、5:熱媒体タンク、6:熱媒体温度センサ、7:燃料電池
温度センサ、8:ファン、9:熱交換器、10:熱媒体パージ
用ガスタンク、11:熱媒体パージ用コンプレッサ、12:熱
媒体バイパス路、13,31,32,33,34:弁、15,16:制御部、1
7:燃料電池内熱交換器、35:減圧弁。1 is a system diagram showing an embodiment of the present invention, FIG. 2 is a system diagram showing a different embodiment of the present invention, FIG. 3 is a system diagram showing a conventional example, and FIG. 4 is a temperature and viscosity of a heat medium. It is a graph which shows the relationship of. 1: Fuel cell, 2: Heat medium circulation path, 3: Circulation pump, 4: Burner, 5: Heat medium tank, 6: Heat medium temperature sensor, 7: Fuel cell temperature sensor, 8: Fan, 9: Heat exchanger , 10: Heat medium purging gas tank, 11: Heat medium purging compressor, 12: Heat medium bypass passage, 13, 31, 32, 33, 34: Valve, 15, 16: Control section, 1
7: Fuel cell heat exchanger, 35: Pressure reducing valve.
Claims (1)
と、熱媒体タンクと、循環ポンプと、バーナおよびファ
ンを具備した第2の熱交換器とを順次接続し、耐熱・難
燃性オイルからなる熱媒体を循環させる熱媒体循環路を
備えた燃料電池の温度調節装置において、前記第1の熱
交換器と熱媒体タンクとの間および前記第2の熱交換器
と第1の熱交換器との間にそれぞれ弁を設け、該二つの
弁の第2の熱交換器側の熱媒体循環路において前記熱媒
体タンクと前記第2の熱交換器出口との間に弁を介して
接続された熱媒体バイパス路を設けるとともに、前記第
1の熱交換器と第2の熱交換器との間に設けられた弁と
該第1の熱交換器との間の該弁の近傍に弁を介して熱媒
体パージ用ガス供給源を接続したことを特徴とする燃料
電池の温度調節装置。1. A first heat exchanger provided in a fuel cell, a heat medium tank, a circulation pump, and a second heat exchanger equipped with a burner and a fan are sequentially connected to each other, so that heat resistance and difficulty can be improved. In a temperature control device for a fuel cell, which comprises a heat medium circulation path for circulating a heat medium made of a combustible oil, there is provided between the first heat exchanger and a heat medium tank, and between the second heat exchanger and the first heat exchanger. And a valve between the heat medium tank and the outlet of the second heat exchanger in the heat medium circulation path of the two valves on the second heat exchanger side. A heat medium bypass passage connected through the valve, and a valve provided between the first heat exchanger and the second heat exchanger and the valve between the first heat exchanger. A temperature control device for a fuel cell, characterized in that a heat medium purging gas supply source is connected in the vicinity through a valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63225301A JPH0799698B2 (en) | 1988-09-08 | 1988-09-08 | Fuel cell temperature controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63225301A JPH0799698B2 (en) | 1988-09-08 | 1988-09-08 | Fuel cell temperature controller |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0275165A JPH0275165A (en) | 1990-03-14 |
JPH0799698B2 true JPH0799698B2 (en) | 1995-10-25 |
Family
ID=16827197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63225301A Expired - Lifetime JPH0799698B2 (en) | 1988-09-08 | 1988-09-08 | Fuel cell temperature controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0799698B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19922923C2 (en) * | 1999-05-19 | 2002-02-21 | Siemens Ag | Liquid-cooled fuel cell battery and method for operating a liquid-cooled fuel cell battery |
FR2805666B1 (en) * | 2000-02-29 | 2007-02-09 | Valeo Thermique Moteur Sa | COOLING DEVICE OF AN ELECTRIC VEHICLE POWERED BY A FUEL CELL |
KR100671682B1 (en) * | 2005-09-28 | 2007-01-19 | 삼성에스디아이 주식회사 | Apparatus and method for heat exchange of liquid fuel type fuel cell system |
JP2021017997A (en) * | 2019-07-17 | 2021-02-15 | トヨタ自動車株式会社 | Heat exchanger cooling system |
-
1988
- 1988-09-08 JP JP63225301A patent/JPH0799698B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0275165A (en) | 1990-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7604885B2 (en) | Fuel cell system with partial heating of each individual fuel cell | |
KR101119379B1 (en) | Fuel cell voltage control | |
US6444338B1 (en) | Fuel cell system with improved startability | |
JPH0794202A (en) | Warming-up system of fuel cell | |
US20060147772A1 (en) | Fuel cell system | |
US10135081B2 (en) | Warming feature for aircraft fuel cells | |
US4686157A (en) | Fuel cell power system | |
JP5074669B2 (en) | Fuel cell system | |
KR100699788B1 (en) | Fuel cell system and control method for controlling the fuel cell system | |
JP2006513528A (en) | Start-up operation under freezing of fuel cell-powered electric vehicles or other loads | |
US7179555B2 (en) | Fuel cell system | |
JP2001143736A (en) | Power supply system | |
JP2000195533A (en) | Warming-up system of fuel cell | |
KR102496802B1 (en) | Air cooling system for fuel cell | |
JPH0799698B2 (en) | Fuel cell temperature controller | |
JPS62198058A (en) | Electric heat supply system of liquid cooling type fuel cell | |
JPH01124962A (en) | Alkaline electrolyte fuel cell system | |
EP1501149A2 (en) | Fuel cell system | |
JP4014730B2 (en) | Fuel cell system | |
JP4670316B2 (en) | Fuel cell system | |
JP4534281B2 (en) | Fuel cell system | |
JP2004039524A (en) | Fuel cell generator | |
JPH04209469A (en) | Fuel cell power generation system | |
CN111102056A (en) | Temperature adjusting device, working method and hybrid power system | |
JP2023004931A (en) | Fuel cell temperature control device and fuel cell system using the same |