JPH0799365A - Semiconductor laser element using - Google Patents

Semiconductor laser element using

Info

Publication number
JPH0799365A
JPH0799365A JP26041493A JP26041493A JPH0799365A JP H0799365 A JPH0799365 A JP H0799365A JP 26041493 A JP26041493 A JP 26041493A JP 26041493 A JP26041493 A JP 26041493A JP H0799365 A JPH0799365 A JP H0799365A
Authority
JP
Japan
Prior art keywords
layer
superlattice
layers
group
quantum well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26041493A
Other languages
Japanese (ja)
Inventor
Masashi Usami
正士 宇佐見
Yuichi Matsushima
裕一 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP26041493A priority Critical patent/JPH0799365A/en
Publication of JPH0799365A publication Critical patent/JPH0799365A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To facilitate the formation of a semiconductor mixed crystal composition by a method wherein the quantum well layers of super-lattice layers, which are close to an active layer, are formed of a III-V mixed crystal semiconductor containing arsenic only as a group V constituent element and the barrier layers of the super-lattice layers are formed of a III-V mixed crystal semiconductor containing phosphorus only as a group V constituent element. CONSTITUTION:Quantum well layers 3a and 7a of n-type and p-type super-lattice layers 4 and 8, which are close to an active layer 6, are formed of a III-V mixed crystal semiconductor containing arsenic only as a group V constituent element. Barrier layers 3b and 7b are formed of a III-V mixed crystal semiconductor containing phosphorus only as a group V constituent element. The layer thicknesses of the layers 3a and 7a in the layers 4 and 8 are continuously changed. Thereby, the control of a semiconductor mixed crystal composition can be realized without difficulty.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体レーザ素子に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device.

【0002】[0002]

【従来の技術】半導体レーザの特性を向上するために
は、キャリア(電子および正孔)の閉じ込め機能と、光
の閉じ込め機能を両立させることが重要である。キャリ
アの閉じ込めに関してはダブルヘテロ構造、さらにはド
・ブロイ波長程度の厚さにキャリアを閉じ込める量子井
戸構造が有効である。一方、光の閉じ込めのためには波
長程度の空間的広がりを持つ閉じ込め構造が必要であ
る。そこで、光を量子井戸構造とは別に閉じ込めるSC
H(separated optical confinement heterostructure
)構造が提案されており、さらに光閉じ込め部分の屈
折率を連続的に変化させたGRIN(graded-refractiv
e-index )−SCHが有効である。
2. Description of the Related Art In order to improve the characteristics of a semiconductor laser, it is important to have both a function of confining carriers (electrons and holes) and a function of confining light. A double hetero structure and a quantum well structure in which carriers are confined to a thickness of about de Broglie wavelength are effective for carrier confinement. On the other hand, in order to confine light, a confinement structure having a spatial spread of about the wavelength is required. Therefore, SC that confine light separately from the quantum well structure
H (separated optical confinement heterostructure
) Structure has been proposed, and GRIN (graded-refractiv
e-index) -SCH is effective.

【0003】しかし、GRIN領域は3元、もしくは4
元の混晶半導体を用いており、その組成(禁制帯幅また
は屈折率)を連続的に変える必要がある。また、通常そ
れと同時に、格子整合もとる必要がある。そのため、半
導体混晶組成の高精度な制御が必要となり、精密な組成
の制御が比較的困難であった。その困難を解決するため
に、連続的な組成の変化を要するGRIN領域を超格子
構造で置き換える、超格子層を用いた変形GRIN−S
CHが提案された。
However, the GRIN area is ternary or quaternary.
The original mixed crystal semiconductor is used, and its composition (forbidden band width or refractive index) must be continuously changed. Also, at the same time, it is usually necessary to perform lattice matching. Therefore, it is necessary to control the composition of the semiconductor mixed crystal with high precision, and precise control of the composition is relatively difficult. In order to solve the difficulty, a modified GRIN-S using a superlattice layer, which replaces a GRIN region requiring a continuous composition change with a superlattice structure.
CH was proposed.

【0004】活性層と、その活性層の両側に超格子層を
配置し、それぞれの超格子層の外側にクラッド層を配置
した構成が提案されている("SUPERLATICE OPTICAL-CAV
ITYMULTIPLE-QUANTUM-WELL(SOC-MQW) LASERS GROWN BY
MOLECULAR-BEAM EPITAXY" ELECTRONICS LETTERS 12th A
pril 1984 Vol.20 No.8 pp.320-321 、"MBE-grown InAs
/GaInAs strained-layer MQW lasers with GaInAs/AlIn
As modified SCH structure" Inst. Phys. Conf.Ser. N
o 106:Chapter 10, Gallium arsenide and related com
pounds 1989)。これらの従来例では、超格子層の量子
井戸層にInAs、障壁層にGaInAsを用いたも
の、および超格子層の量子井戸層にGaAs、障壁層に
AlGaAsを用いたものが開示されている。この結
果、2種類の材料の積層でGRINと同様の屈折率変化
を実現できるようになった。しかしながら、GRIN−
SCH構造は、作製の容易性からInGaAs/InA
lAs等のAs系III−V族混晶半導体に限られてい
る。
A structure has been proposed in which an active layer and superlattice layers are arranged on both sides of the active layer, and a clad layer is arranged outside each superlattice layer ("SUPERLATICE OPTICAL-CAV").
ITYMULTIPLE-QUANTUM-WELL (SOC-MQW) LASERS GROWN BY
MOLECULAR-BEAM EPITAXY "ELECTRONICS LETTERS 12th A
pril 1984 Vol.20 No.8 pp.320-321, "MBE-grown InAs
/ GaInAs strained-layer MQW lasers with GaInAs / AlIn
As modified SCH structure "Inst. Phys. Conf.Ser. N
o 106: Chapter 10, Gallium arsenide and related com
pounds 1989). In these prior art examples, InAs is used for the quantum well layer of the superlattice layer, GaInAs is used for the barrier layer, and GaAs is used for the quantum well layer of the superlattice layer and AlGaAs is used for the barrier layer. As a result, the same refractive index change as GRIN can be realized by stacking two kinds of materials. However, GRIN-
The SCH structure is InGaAs / InA because of its ease of fabrication.
It is limited to As-based III-V group mixed crystal semiconductors such as 1As.

【0005】[0005]

【発明が解決しようとする課題】V族構成元素として砒
素と燐を有するIII−V族混晶半導体系では、V族の
蒸気圧がIII族に比べて高いことから組成の正確な制
御が比較的困難であるため、超格子を用いた変形GRI
N−SCH構造は実現していない。
In the III-V mixed crystal semiconductor system having arsenic and phosphorus as the V group constituent elements, the vapor pressure of the V group is higher than that of the III group, and therefore accurate control of the composition is compared. Deformation GRI using superlattice
The N-SCH structure has not been realized.

【0006】本発明の目的は、発振波長の選択範囲を短
波長側に広げ、かつ作製の容易な、V族構成元素として
砒素と燐を有するIII−V族混晶半導体を有する超格
子を用いた半導体レーザ素子を提供することにある。
An object of the present invention is to use a superlattice having a III-V mixed crystal semiconductor having arsenic and phosphorus as V group constituent elements, which can broaden the selection range of oscillation wavelength to the short wavelength side and is easy to manufacture. The present invention is to provide a semiconductor laser device.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に、本発明による超格子層を用いた半導体レーザ素子
は、活性層に近接した超格子の量子井戸層が砒素のみを
V族構成元素としたIII−V族混晶半導体で形成さ
れ、かつその障壁層が燐のみをV族構成元素としたII
I−V族混晶半導体で形成されることを特徴とする構成
を有している。
To achieve this object, in a semiconductor laser device using a superlattice layer according to the present invention, a quantum well layer of a superlattice adjacent to an active layer contains only arsenic and a group V constituent element. II-group III-V mixed crystal semiconductor, and its barrier layer contains only phosphorus as a group V constituent element II
It has a structure characterized by being formed of a group IV mixed crystal semiconductor.

【0008】[0008]

【実施例1】図1は本発明による第一の実施例の半導体
レーザ素子の構成を示したものである。n型GaAs基
板1上にn型のクラッド層であるn型InGaP層2、
n型GaAs/InGaP超格子層4、InGaAs/
GaAs活性層6、p型GaAs/InGaP超格子層
8、p型クラッド層であるp型InGaP層9、キャッ
プ層であるp型GaAs層10が積層され半導体レーザ
を構成する。電流注入のための電極101,102が上
下面に形成される。横モード制御と電流狭搾のため半絶
縁InGaP層11による埋め込みストライプ構造とな
っている。本レーザの発振波長は0.98μm である。
[Embodiment 1] FIG. 1 shows the structure of a semiconductor laser device according to a first embodiment of the present invention. an n-type InGaP layer 2, which is an n-type cladding layer, on an n-type GaAs substrate 1,
n-type GaAs / InGaP superlattice layer 4, InGaAs /
A GaAs active layer 6, a p-type GaAs / InGaP superlattice layer 8, a p-type InGaP layer 9 which is a p-type cladding layer, and a p-type GaAs layer 10 which is a cap layer are laminated to form a semiconductor laser. Electrodes 101 and 102 for current injection are formed on the upper and lower surfaces. A semi-insulating InGaP layer 11 has a buried stripe structure for lateral mode control and current narrowing. The oscillation wavelength of this laser is 0.98 μm.

【0009】図2は、図1において一点鎖線で囲んで示
した部分20に相当する同素子の活性層付近の構成を示
したものである。超格子層4は、n型GaAs量子井戸
層3aとn型InGaP障壁層3bとの10組の積層か
らなり、超格子層8は、p型GaAs量子井戸層7aと
p型InGaP障壁層7bとの10組の積層からなり、
活性層6は、InGaAs量子井戸層5aとGaAs障
壁層5bで構成される。InGaP障壁層3b,7bの
層厚は20Å一定で、GaAs量子井戸層3a,7aの
層厚はクラッド層から活性層に向かって5Åから50Å
と図2に示す通り徐々に増加している。その結果、超格
子層4,8の等価的屈折率はInGaPクラッド層2,
9の3. 4から、活性層GaAs6の3. 6まで連続的
に変化する。その効果は連続的に組成を変えたGRIN
層のそれと等価であり、効率の良い光閉じ込めが可能と
なるため、しきい値電流密度は、超格子層を挿入しない
素子と比べて顕著に低減し、また超格子層の代わりにG
RIN層を挿入した素子と同レベルとなる。本実施例に
おいては、超格子層4,8におけるGaAs量子井戸層
3a,7aの層厚を連続的に変化させ、GRIN構造と
同等の屈折率分布をもたせているが、量子井戸層3a,
7aの層厚が一定である場合にも、しきい値電流密度の
顕著な低減化が図れる。
FIG. 2 shows the structure in the vicinity of the active layer of the same element corresponding to the portion 20 surrounded by the one-dot chain line in FIG. The superlattice layer 4 is formed by stacking 10 sets of an n-type GaAs quantum well layer 3a and an n-type InGaP barrier layer 3b, and the superlattice layer 8 is a p-type GaAs quantum well layer 7a and a p-type InGaP barrier layer 7b. Consisting of 10 sets of
The active layer 6 is composed of an InGaAs quantum well layer 5a and a GaAs barrier layer 5b. The InGaP barrier layers 3b and 7b have a constant layer thickness of 20Å, and the GaAs quantum well layers 3a and 7a have a layer thickness of 5Å to 50Å from the cladding layer toward the active layer.
And as shown in Figure 2, it is gradually increasing. As a result, the equivalent refractive index of the superlattice layers 4 and 8 is the InGaP cladding layer 2
It changes continuously from 3.4 in 9 to 3.6 in the active layer GaAs6. The effect is GRIN which changed composition continuously
Since it is equivalent to that of a layer and enables efficient optical confinement, the threshold current density is significantly reduced as compared with a device in which the superlattice layer is not inserted, and G is used instead of the superlattice layer.
It is at the same level as the element in which the RIN layer is inserted. In this embodiment, the layer thicknesses of the GaAs quantum well layers 3a and 7a in the superlattice layers 4 and 8 are continuously changed to have the same refractive index distribution as that of the GRIN structure.
Even when the layer thickness of 7a is constant, the threshold current density can be remarkably reduced.

【0010】[0010]

【実施例2】図3は本発明によるの第2の実施例の半導
体レーザ素子の構成を示したA−A’に沿う断面を含む
斜視図である。図4は図3において一点鎖線で囲んで示
した部分30に相当する同素子の活性層付近の構成を示
したものである。実施例1との違いは、p型クラッド層
9とp型超格子層8との間にp型GaAsで形成された
回折格子12が挿入されたことであり、DFB構造を実
現している。本レーザの発振波長は0. 98μm で、単
一波長で発振する。本回折格子は、本発明の効果の一つ
であるGaAsとInGaPが選択的に化学エッチング
が可能であることを利用し、p型超格子層8上のGaA
s層12を、干渉露光法により回折格子状GaAs層を
形成して作製する。その上にp型クラッド層9、キャッ
プ層10を結晶再成長させ、半導体レーザを構成する。
電極101,102、および半絶縁InGaP層11に
よる埋め込みストライプ構造は実施例1と同じである。
DFBレーザの発振特性は、回折格子12の深さや活性
層6からの距離で決定される結合係数に大きく依存す
る。本構造および作製法を用いると、回折格子12の深
さはGaAs層の厚さで、活性層6からの距離はp型超
格子8の層厚で決まるため、結合係数はエッチング条件
の不確定性によって変化する要素は少ない。その結果、
設計どおりの結合係数を持つDFBレーザを容易に作製
することができる。p型およびn型の超格子層8,4は
実施例1と同じ構造で、その効果は実施例1と同様、効
率の良い光閉じ込めが可能となり、しきい値電流密度の
低減化を図ることができる。実施例1,実施例2では、
GaAs基板1を用いた例を説明したが、他の材料の基
板にも本発明は容易に適用できる。
[Embodiment 2] FIG. 3 is a perspective view including a section taken along the line AA 'showing the structure of a semiconductor laser device according to a second embodiment of the present invention. FIG. 4 shows the structure in the vicinity of the active layer of the same element corresponding to the portion 30 surrounded by the one-dot chain line in FIG. The difference from the first embodiment is that the diffraction grating 12 formed of p-type GaAs is inserted between the p-type cladding layer 9 and the p-type superlattice layer 8 to realize the DFB structure. The oscillation wavelength of this laser is 0.98 μm, and it oscillates at a single wavelength. This diffraction grating utilizes the fact that GaAs and InGaP, which are one of the effects of the present invention, can be selectively chemically etched, and the GaA on the p-type superlattice layer 8 is utilized.
The s layer 12 is formed by forming a diffraction grating-like GaAs layer by the interference exposure method. The p-type clad layer 9 and the cap layer 10 are crystal-grown on it to form a semiconductor laser.
The buried stripe structure including the electrodes 101 and 102 and the semi-insulating InGaP layer 11 is the same as that in the first embodiment.
The oscillation characteristics of the DFB laser largely depend on the coupling coefficient determined by the depth of the diffraction grating 12 and the distance from the active layer 6. Using this structure and the fabrication method, the depth of the diffraction grating 12 is determined by the thickness of the GaAs layer, and the distance from the active layer 6 is determined by the layer thickness of the p-type superlattice 8. Therefore, the coupling coefficient is uncertain in the etching conditions. There are few factors that change with gender. as a result,
A DFB laser having a coupling coefficient as designed can be easily manufactured. The p-type and n-type superlattice layers 8 and 4 have the same structure as that of the first embodiment, and the effect thereof is that similar to the first embodiment, efficient light confinement is possible and the threshold current density is reduced. You can In Example 1 and Example 2,
Although the example using the GaAs substrate 1 has been described, the present invention can be easily applied to substrates made of other materials.

【0011】[0011]

【発明の効果】図5は、従来のGRIN−SCH半導体
レーザ素子のバンドダイヤグラムと屈折率分布を模式的
に表したものである。図5の構造において光の閉じ込め
構造はInGaAs/GaAs SCH活性層とInG
aPクラッド層との間に挿入した連続的に屈折率が変化
するInGaAsP GRIN層で有効に行っている。
Inx Ga1-x Asy 1-y GRIN層は連続的に禁制
帯幅、屈折率を変化させると同時に、通常格子整合条件
を満足させる必要がある。従って、半導体混晶組成(x
およびy)の高精度な制御が必要となる。
FIG. 5 is a schematic diagram showing a band diagram and a refractive index distribution of a conventional GRIN-SCH semiconductor laser device. In the structure of FIG. 5, the optical confinement structure is InGaAs / GaAs SCH active layer and InG.
This is effectively done by an InGaAsP GRIN layer which is inserted between the aP cladding layer and the aP cladding layer and whose refractive index changes continuously.
In the In x Ga 1-x As y P 1-y GRIN layer, it is necessary to continuously change the forbidden band width and the refractive index and, at the same time, usually satisfy the lattice matching condition. Therefore, the semiconductor mixed crystal composition (x
And y) requires high precision control.

【0012】図6は、本発明の半導体レーザ素子のバン
ドダイヤグラムと屈折率分布を模式的に表したものであ
る。従来のGRIN層の代わりにGaAs量子井戸層
(As系)とInGaP障壁層(P系)が交互に積層さ
れた超格子を用いたことが本発明の特徴である。
FIG. 6 is a schematic diagram showing a band diagram and a refractive index distribution of the semiconductor laser device of the present invention. It is a feature of the present invention that a superlattice in which GaAs quantum well layers (As series) and InGaP barrier layers (P series) are alternately stacked is used instead of the conventional GRIN layer.

【0013】従来のInx Ga1-x Asy 1-y GRI
N層はV族元素に砒素および燐を有しており、V族の蒸
気圧がIII族に比べて高いことから組成の正確な制御
が比較的困難である。一方、本発明での超格子のような
1種類のV族元素で構成されるIII−V族混晶半導体
の組成制御は容易である。そこで、これらの材料を超格
子を構成する量子井戸層および障壁層に用いることの作
製制御性向上への寄与は非常に大きい。一方、超格子の
等価的な屈折率は量子井戸層および障壁層の層厚により
制御することができる。それぞれの層厚を連続的に変化
させることによって、GRIN領域と同等のものを実現
することができる。近年の結晶成長技術(MBE,MO
VPE等)の進歩により層厚の制御は原子層単位のレベ
ルで可能となっており、従来のGRIN層における半導
体混晶組成の制御と比較してはるかに容易である。
Conventional In x Ga 1-x As y P 1-y GRI
Since the N layer has arsenic and phosphorus as the group V elements, and the vapor pressure of the group V is higher than that of the group III, accurate control of the composition is relatively difficult. On the other hand, it is easy to control the composition of the III-V mixed crystal semiconductor composed of one kind of V group element such as the superlattice in the present invention. Therefore, the use of these materials for the quantum well layer and the barrier layer forming the superlattice greatly contributes to the improvement of the fabrication controllability. On the other hand, the equivalent refractive index of the superlattice can be controlled by the layer thicknesses of the quantum well layer and the barrier layer. By continuously changing the thickness of each layer, it is possible to realize the equivalent of the GRIN region. Recent crystal growth technology (MBE, MO
With the progress of VPE, etc., the control of the layer thickness has become possible at the atomic layer unit level, which is far easier than the control of the semiconductor mixed crystal composition in the conventional GRIN layer.

【0014】さらに、超格子を構成する2種類の材料の
V族構成元素が異なる場合、それらの物理的化学的性質
も異なるため、2種類の材料を選択的にエッチングする
ことが可能である。この性質を利用することにより、超
格子付近で、エッチングを停止させたり、回折格子を形
成するなどの微細加工を行い易い。このように、本発明
を用いるとV族構成元素として砒素と燐を有するIII
−V族混晶半導体を用いたGRIN領域または超格子層
と同等のものを困難な組成制御をすることなく実現する
ことができる。また、選択エッチングを用い微細加工へ
の応用がしやすい。
Furthermore, when the group V constituent elements of the two types of materials that form the superlattice are different, their physical and chemical properties are also different, so that the two types of materials can be selectively etched. By utilizing this property, it is easy to perform fine processing such as stopping etching or forming a diffraction grating near the superlattice. Thus, according to the present invention, III containing arsenic and phosphorus as group V constituent elements
It is possible to realize a GRIN region using a group-V mixed crystal semiconductor or the same as a superlattice layer without difficult composition control. Further, it is easy to apply to fine processing by using selective etching.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の構成を示す斜視図であ
る。
FIG. 1 is a perspective view showing a configuration of a first exemplary embodiment of the present invention.

【図2】図1に示す第1の実施例における活性層付近の
構成の詳細を示す拡大断面図である。
FIG. 2 is an enlarged cross-sectional view showing details of the configuration near the active layer in the first embodiment shown in FIG.

【図3】本発明の第2の実施例の構成を示すA−A’に
沿う断面を含む斜視図である。
FIG. 3 is a perspective view including a cross section taken along the line AA ′ showing the configuration of the second exemplary embodiment of the present invention.

【図4】図3に示す第2の実施例における活性層付近の
構成の詳細を示す拡大断面図である。
FIG. 4 is an enlarged cross-sectional view showing details of the configuration near the active layer in the second embodiment shown in FIG.

【図5】従来の半導体レーザの活性層近傍のバンドダイ
ヤグラム(a)および屈折率変化図(b)である。
FIG. 5 is a band diagram (a) and a refractive index change diagram (b) in the vicinity of an active layer of a conventional semiconductor laser.

【図6】本発明の半導体レーザの活性層近傍のバンドダ
イヤグラム(a)および屈折率変化図(b)である。
FIG. 6 is a band diagram (a) and a refractive index change diagram (b) in the vicinity of the active layer of the semiconductor laser of the present invention.

【符号の説明】 1 n型GaAs基板 2 n型InGaPクラッド層 3a n型GaAs量子井戸層 3b n型InGaP障壁層 4 n型GaAs/InGaP超格子層 5a InGaAs量子井戸活性層 5b GaAs障壁層 6 InGaAs/GaAs活性層 7a p型GaAs量子井戸層 7b p型InGaP障壁層 8 p型GaAs/InGaP超格子層 9 p型InGaPクラッド層 10 p型GaAsキャップ層 11 半絶縁InGaP層 20,30 部分 101,102 電極[Description of Reference Signs] 1 n-type GaAs substrate 2 n-type InGaP cladding layer 3a n-type GaAs quantum well layer 3b n-type InGaP barrier layer 4 n-type GaAs / InGaP superlattice layer 5a InGaAs quantum well active layer 5b GaAs barrier layer 6 InGaAs / GaAs active layer 7a p-type GaAs quantum well layer 7b p-type InGaP barrier layer 8 p-type GaAs / InGaP superlattice layer 9 p-type InGaP clad layer 10 p-type GaAs cap layer 11 semi-insulating InGaP layer 20,30 portion 101,102 electrode

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年11月8日[Submission date] November 8, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 [Figure 4]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光が発光する活性層の積層方向において
少なくとも片側に、量子井戸層と該量子井戸層より大な
る禁制帯幅を有する障壁層とが複数交互に積層された超
格子層が挿入された半導体レーザにおいて、該超格子層
の量子井戸層が砒素のみをV族構成元素としたIII−
V族混晶半導体で形成され、かつ該超格子の障壁層が燐
のみをV族構成元素としたIII−V族混晶半導体で形
成されることを特徴とする超格子層を用いた半導体レー
ザ素子。
1. A superlattice layer in which a plurality of quantum well layers and barrier layers having a forbidden band width larger than the quantum well layers are alternately laminated on at least one side in the laminating direction of the active layer for emitting light. In the semiconductor laser described above, the quantum well layer of the superlattice layer contains only arsenic as a group V constituent element.
A semiconductor laser using a superlattice layer, which is formed of a group V mixed crystal semiconductor and in which the barrier layer of the superlattice is formed of a group III-V mixed crystal semiconductor containing only phosphorus as a group V constituent element. element.
【請求項2】 前記超格子層の量子井戸層がGaAs
で、障壁層がInGaPであることを特徴とする請求項
1記載の超格子層を用いた半導体レーザ素子。
2. The quantum well layer of the superlattice layer is GaAs
2. The semiconductor laser device using a superlattice layer according to claim 1, wherein the barrier layer is InGaP.
【請求項3】 前記超格子層の量子井戸層および障壁層
の少なくとも一方の層厚が徐々に厚くなるまたは薄くな
るように構成されたことを特徴とする請求項1記載の超
格子層を用いた半導体レーザ素子。
3. The superlattice layer according to claim 1, wherein the layer thickness of at least one of the quantum well layer and the barrier layer of the superlattice layer is gradually increased or decreased. Used semiconductor laser device.
JP26041493A 1993-09-27 1993-09-27 Semiconductor laser element using Pending JPH0799365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26041493A JPH0799365A (en) 1993-09-27 1993-09-27 Semiconductor laser element using

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26041493A JPH0799365A (en) 1993-09-27 1993-09-27 Semiconductor laser element using

Publications (1)

Publication Number Publication Date
JPH0799365A true JPH0799365A (en) 1995-04-11

Family

ID=17347605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26041493A Pending JPH0799365A (en) 1993-09-27 1993-09-27 Semiconductor laser element using

Country Status (1)

Country Link
JP (1) JPH0799365A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110808531A (en) * 2019-09-29 2020-02-18 武汉云岭光电有限公司 Epitaxial structure of semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110808531A (en) * 2019-09-29 2020-02-18 武汉云岭光电有限公司 Epitaxial structure of semiconductor laser

Similar Documents

Publication Publication Date Title
US7015498B2 (en) Quantum optical semiconductor device
EP0232431B1 (en) Semiconductor device
US4794611A (en) Semiconductor laser having superlattice structure
US7683392B2 (en) Semiconductor device with anisotropy-relaxed quantum dots
JPH07221392A (en) Quantum thin wire and its manufacture, quantum thin wire laser and its manufacture, manufacture of diffraction grating, and distributed feedback semiconductor laser
JPH08172241A (en) Semiconductor light emitting element with algainas multiple quantum well
EP0975073B1 (en) Semiconductor laser
US4841531A (en) Semiconductor laser device
JPH09106946A (en) Semiconductor device, semiconductor laser and high-electron mobility transistor device
JP2553731B2 (en) Semiconductor optical device
JPH0738194A (en) Semiconductor laser and manufacture thereof
EP0281310B1 (en) Heterostructure semiconductor devices
US5270246A (en) Manufacturing method of semiconductor multi-layer film and semiconductor laser
US20030123511A1 (en) Indium free vertical cavity surface emitting laser
JP4424223B2 (en) Semiconductor optical device
JP2564813B2 (en) A (1) GaInP semiconductor light emitting device
US6639254B2 (en) Epitaxial layer capable of exceeding critical thickness
JPH0799365A (en) Semiconductor laser element using
JP4640646B2 (en) Semiconductor laser and manufacturing method thereof
JPH0529716A (en) Optical semiconductor element
JPH0669589A (en) Semiconductor laser element
JPH1187764A (en) Semiconductor light-emitting device and its manufacture
JPH11307880A (en) Semiconductor light emitting device
JPH09171162A (en) Semiconductor optical modulator
JP3033333B2 (en) Semiconductor laser device