JPH0799107A - Manufacture of rare earth permanent magnet - Google Patents

Manufacture of rare earth permanent magnet

Info

Publication number
JPH0799107A
JPH0799107A JP5241255A JP24125593A JPH0799107A JP H0799107 A JPH0799107 A JP H0799107A JP 5241255 A JP5241255 A JP 5241255A JP 24125593 A JP24125593 A JP 24125593A JP H0799107 A JPH0799107 A JP H0799107A
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
molded body
earth permanent
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5241255A
Other languages
Japanese (ja)
Inventor
Kimio Uchida
公穂 内田
Masahiro Takahashi
昌弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP5241255A priority Critical patent/JPH0799107A/en
Publication of JPH0799107A publication Critical patent/JPH0799107A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To prevent the progress of oxidation in manufacture process and obtain uniform density in a molded body by mixing a specified powder for a rare earth permanent magnet, mineral oil or synthetic oil, and extrusion- molding this mixture, and applying a magnetic field so as to give anisotropy, and then, sintering it. CONSTITUTION:Powder for an RCo5, R2C)17, or R-Fe-B rare earth magnetic magnet and a certain kind of mineral oil or synthetic oil are mixed, and this mixture is extrusion-molded. The manufacture of a uniform molded body 1 without dispersion in density is possible by extrusion-molding the raw material 6 being mixed equally, with its mixture rate controlled strictly, by means of mold 7 under a specified condition. For this, there is necessity to manage the quantity of powder for a rare earth magnet within the mixture in the range of 50-90%, and also the addition of an organic coupling agent to material mixture is effective to improvement of the strength of the molded body. The amount of addition is 0.1-5wt.% of the powder for a rare earth magnet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、R−Co5系、R2−C
17系、R−Fe−B系(RはYを含む希土類元素の内
の1種または2種以上)希土類焼結磁石の製造方法に関
するものである。
The present invention relates to R-Co 5 system, R 2 -C
The present invention relates to a method for producing a rare earth sintered magnet of O 17 system and R-Fe-B system (R is one or more of rare earth elements including Y).

【0002】[0002]

【従来の技術】希土類焼結磁石は、原料金属を溶解し、
鋳型に注湯して得られたインゴットを粉砕、成形、焼
結、熱処理、加工して製造される。あるいは希土類酸化
物を還元剤で還元するいわゆる還元拡散法によって原料
粉を作製し、これを粉砕し以下上記と同一工程で処理し
て製造される。粉砕は、不活性高圧ガス雰囲気中で粒子
どうしを衝突させ乾粉を得るジェットミル粉砕法、ボ−
ルミル、振動ミル等を用い、有機溶媒中で原料粉を粉砕
しその後有機溶媒を乾燥させて乾粉を得る湿式粉砕法で
行われるのが一般的である。乾粉を成形するにあたって
は、所定量の乾粉を秤量し、これを金型キャビティ内に
投入する、あるいはフィ−ドボックス等を用いて擦り切
り法にて金型キャビティ内に投入する方法が採られ、給
粉後、配向磁界を印加して成形を行う。また、あらかじ
め磁界を印加したキャビティ内に上記方法で乾粉を給粉
し、成形する方法が採られる場合もある。
2. Description of the Related Art Sintered rare earth magnets dissolve raw metal,
It is manufactured by crushing, molding, sintering, heat treating, and processing an ingot obtained by pouring molten metal into a mold. Alternatively, it is produced by producing a raw material powder by a so-called reduction diffusion method in which a rare earth oxide is reduced with a reducing agent, pulverizing the raw material powder, and treating the raw material powder in the same steps as described above. The crushing is performed by a jet mill crushing method in which particles are made to collide with each other in an inert high-pressure gas atmosphere to obtain a dry powder.
It is generally carried out by a wet pulverization method in which a raw material powder is pulverized in an organic solvent and then the organic solvent is dried to obtain a dry powder using a rumill, a vibration mill or the like. In molding the dry powder, a method is used in which a predetermined amount of dry powder is weighed, and this is put into the mold cavity, or is put into the mold cavity by a scraping method using a feed box or the like, After powdering, an orientation magnetic field is applied to perform molding. In some cases, a method may be adopted in which the dry powder is fed into the cavity to which a magnetic field has been applied in advance by the above-mentioned method, and molding is performed.

【0003】近年、モ−タ類の小型化、高性能化の要求
に従い、この分野への希土類焼結磁石の使用が顕著であ
る。希土類焼結磁石使用のメリットは、その高い残留磁
束密度と保磁力による磁石の薄肉化であり、これによっ
てモ−タの小型軽量化が可能となる。このような理由か
ら薄肉リング形状の希土類焼結磁石の需要が高まってお
り、この傾向は今後ますます続くものと考えられる。
In recent years, the use of rare earth sintered magnets has been remarkable in this field in accordance with the demand for miniaturization and high performance of motors. The advantage of using the rare earth sintered magnet is that the magnet has a thin structure due to its high residual magnetic flux density and coercive force, which enables the motor to be made smaller and lighter. For this reason, demand for thin-walled ring-shaped rare earth sintered magnets is increasing, and this trend is expected to continue in the future.

【0004】薄肉リング形状の希土類焼結磁石の製造方
法としては、例えば特開平1−027208、1076
46、117003、特開平2−037703、272
711等に、径方向に異方性を付与する場合の製造方法
が提案されている。これらにおいては、微粉砕された乾
粉を先に述べたような一般的な方法で金型キャビティ内
に給粉し成形する。しかし、このような従来の製造方法
においては、成形体が薄肉であるため金型キャビティの
間隔が狭く、原料乾粉をキャビティの奥深くまで均一に
充填することが困難であり、これに起因する成形体の割
れや密度の不均一が生じるという問題があった。成形体
密度の不均一は焼結段階での割れの発生や素材の変形、
磁気特性のバラツキをもたらす。また、先に例として示
した従来の製造方法においては、化学的に非常に活性で
ある希土類永久磁石用微粉を乾粉状態で給粉、成形する
ため、その過程で酸化が進行し、磁気特性の劣化を招い
てしまうという問題点があった。
As a method for producing a thin ring-shaped rare earth sintered magnet, for example, Japanese Patent Laid-Open Nos. 1-027208 and 1076 are available.
46, 117003, JP-A-2-03703, 272.
711 and the like, a manufacturing method in the case of imparting anisotropy in the radial direction is proposed. In these, finely pulverized dry powder is powdered and molded in the mold cavity by the general method described above. However, in such a conventional manufacturing method, since the molded body is thin, the space between the mold cavities is narrow, and it is difficult to uniformly fill the raw material dry powder deep into the cavity. There was a problem that cracks and uneven density occurred. The non-uniformity of the compact density causes cracking and material deformation at the sintering stage.
It causes variations in magnetic properties. Further, in the conventional manufacturing method shown as an example above, since fine powder for rare earth permanent magnet that is chemically very active is powdered and molded in a dry powder state, oxidation progresses in the process, and magnetic properties There was a problem of causing deterioration.

【0005】[0005]

【発明が解決しようとする課題】本発明者等は、薄肉リ
ング形状の希土類焼結磁石の従来の製造方法の上記問題
点を解決すべく鋭意検討した結果、製造過程での酸化の
進行がほとんど無く、且つ均一な成形体密度を有する成
形体の製造方法を見いだし本発明を完成するに到った。
DISCLOSURE OF THE INVENTION The inventors of the present invention have made diligent studies to solve the above-mentioned problems of the conventional method for producing a thin ring-shaped rare earth sintered magnet, and as a result, the progress of oxidation during the production process was almost eliminated. The present invention has been completed by finding a method for producing a molded product having a uniform and uniform molded product density.

【0006】[0006]

【課題を解決するための手段】均一な密度を有する薄肉
リング形状の成形体を製造するための本発明の第一の要
点は、RCo5系、R2Co17系あるいはR−Fe−B系
希土類永久磁石用の微粉とある種の鉱物油あるいは合成
油を混合し、この混合物を押し出し成形にて成形するこ
とにある。厳密に配合比が管理され均一に混合された原
料混合物を金型より所定条件で押し出すことにより、成
形体密度のバラツキがない均一な成形体の製造が可能で
ある。この目的のためには、混合物に占める希土類磁石
用微粉の量を重量比率で50〜90%の範囲に管理する
必要がある。微粉の量が50%未満の場合には、溶媒で
ある鉱物油あるいは合成油の量が多すぎ、例え初期の混
合の段階で混合物の均一混合が成されたとしても、短時
間で微粉と溶媒との分離が生じて、混合物内の微粉濃度
に不均一が発生し、押し出し成形の過程での成形体密度
のバラツキの原因となる。また微粉の量が90%より多
い場合には、溶媒である鉱物油あるいは合成油が少なす
ぎるため、押し出しがスム−ズに行われず、これが成形
体密度のバラツキの原因となる。希土類磁石用微粉と溶
媒である鉱物油あるいは合成油の混合方法は特に限定さ
れず、所定量の微粉と溶媒を秤量し、これらをV型混合
器、ミキサ−、ニ−ダ−等で混合することができる。あ
るいはジェットミル粉砕機の微粉排出口とこれらの混合
機とを直結し、混合機中の所定量の溶媒に所定量の微粉
を回収し混合することができる。さらには、希土類永久
磁石用粗粉と上記溶媒を所定量秤量し、これらを振動ミ
ル、ボ−ルミル、アトライタ−等で湿式粉砕して混合原
料を作製することもできる。尚、これらの原料混合物の
均一性を保つため、押し出し成形機の原料送入部近傍に
攪拌タンクを設け、原料混合物を均一攪拌しながら押し
出し成形機へ送入する方法を採ることが望ましい。
The first essential point of the present invention for producing a thin-walled ring-shaped molded product having a uniform density is the RCo 5 system, R 2 Co 17 system or R-Fe-B system. The purpose is to mix fine powders for rare earth permanent magnets with a certain kind of mineral oil or synthetic oil, and to extrude this mixture. By extruding a raw material mixture in which the mixing ratio is strictly controlled and uniformly mixed from a mold under a predetermined condition, it is possible to manufacture a uniform molded body without variations in the density of the molded body. For this purpose, it is necessary to control the amount of the fine powder for rare earth magnets in the mixture within the range of 50 to 90% by weight. When the amount of the fine powder is less than 50%, the amount of the mineral oil or the synthetic oil as the solvent is too large, and even if the mixture is homogeneously mixed in the initial mixing stage, the fine powder and the solvent can be mixed in a short time. And the concentration of fine powder in the mixture becomes non-uniform, which causes variation in the density of the molded body in the extrusion molding process. On the other hand, when the amount of the fine powder is more than 90%, the amount of the solvent, that is, the mineral oil or the synthetic oil, is too small, so that the extrusion is not smoothly performed, which causes variations in the density of the molded body. The method for mixing the fine powder for rare earth magnets and the mineral oil or synthetic oil as the solvent is not particularly limited, and a predetermined amount of the fine powder and the solvent are weighed and mixed with a V-type mixer, mixer, kneader, etc. be able to. Alternatively, the fine powder discharge port of the jet mill pulverizer and these mixers may be directly connected to collect and mix a predetermined amount of fine powder with a predetermined amount of solvent in the mixer. Furthermore, it is also possible to prepare a mixed raw material by weighing a predetermined amount of the rare earth permanent magnet coarse powder and the above solvent, and wet pulverizing these with a vibration mill, a ball mill, an attritor, or the like. In order to maintain the uniformity of these raw material mixtures, it is desirable to adopt a method in which a stirring tank is provided near the raw material feeding part of the extrusion molding machine and the raw material mixture is fed into the extrusion molding machine while being uniformly stirred.

【0007】本発明の第二の要点は、原料混合物を構成
する溶媒として鉱物油あるいは合成油を使用する点であ
る。これらは一般有機溶媒に比較して水分、酸素の含有
量が極めて少なく、また希土類永久磁石用微粉の表面を
被覆して大気から遮断する。このため、これらを溶媒と
した原料混合物の酸化の進行は乾粉を大気中で取り扱う
場合に比べて極めて小さいものとなる。更に、溶媒とし
ての鉱物油あるいは合成油の効果はこれにとどまらず、
押し出し成形時の金型と成形体との摩擦力を低減し、ス
ム−ズな成形を助成する。これは成形体密度の均一化に
大きな効果をもたらす。また、成形体内部に残留した鉱
物油あるいは合成油の潤滑効果によって、後述する磁界
印加時の微粉の配向性が助長され高い配向性が得られ
る。ただし溶媒として使用される鉱物油あるいは合成油
は分留点が400℃以上で常温での動粘度が10cst
以下のものに限定される。分留点および動粘度がこれら
の値より大きな場合には、焼結の前段階での脱溶媒処理
が円滑に行われず、焼結体内部の残留C量が多くなって
良好な磁気特性が得られない。
The second essential point of the present invention is that mineral oil or synthetic oil is used as a solvent constituting the raw material mixture. These have extremely low water content and oxygen content as compared with general organic solvents, and coat the surface of the fine powder for rare earth permanent magnets to shield them from the atmosphere. For this reason, the progress of oxidation of the raw material mixture using these as solvents becomes extremely small as compared with the case where dry powder is handled in the atmosphere. Furthermore, the effect of mineral oil or synthetic oil as a solvent is not limited to this,
The frictional force between the mold and the molded body during extrusion molding is reduced, and smooth molding is supported. This has a great effect on making the density of the molded body uniform. In addition, due to the lubricating effect of the mineral oil or the synthetic oil remaining inside the molded body, the orientation of the fine powder when a magnetic field is applied, which will be described later, is promoted and a high orientation is obtained. However, the mineral oil or synthetic oil used as a solvent has a distillation point of 400 ° C or higher and a kinematic viscosity of 10 cst at room temperature.
Limited to: If the fractional point and the kinematic viscosity are larger than these values, the desolvation treatment before the sintering is not performed smoothly, and the amount of residual C in the sintered body increases, resulting in good magnetic properties. I can't.

【0008】上記原料混合物を押し出し成形し、成形体
を作製する成形機は特に限定されるものではなく、押し
出し方式もスクリュウ型、ピストン型など種々のものか
ら選ぶことができる。押し出し速度、圧力も特に限定さ
れるものではない。ただし、希土類永久磁石用として作
製した上記原料混合物を押し出し成形するに際しては、
その成形体密度を2.0〜5.0g/ccとする必要が
あり、成形体密度をこの範囲内とするために押し出し成
形機が有する押し出し速度、圧力等の可変要因の条件を
設定しなければならない。成形体密度が2.0g/cc
より小さい場合には成形体強度の低下を招く。一方、成
形体密度が5.0g/ccよりも大きな場合には磁界印
加時の配向度が上がらず、良好な磁気特性が得られな
い。
The molding machine for extrusion-molding the above raw material mixture to produce a molded body is not particularly limited, and the extrusion system can be selected from various types such as a screw type and a piston type. The extrusion speed and pressure are not particularly limited. However, when extrusion molding the above raw material mixture prepared for a rare earth permanent magnet,
It is necessary to set the density of the molded body to 2.0 to 5.0 g / cc, and in order to keep the density of the molded body within this range, the conditions of variable factors such as the extrusion speed and pressure of the extrusion molding machine must be set. I have to. Molded product density is 2.0g / cc
If it is smaller than the above range, the strength of the molded body is lowered. On the other hand, when the density of the molded body is larger than 5.0 g / cc, the degree of orientation when a magnetic field is applied does not increase and good magnetic properties cannot be obtained.

【0009】尚、成形体密度を上記範囲とした場合、成
形体強度の改善に原料混合物への有機結合剤の添加が有
効である。有機結合剤としてはPVA、ジエチレングリ
コ−ル、メチルセルロ−スなどが代表例として揚げられ
るが、これらに限定されるものではない。その添加量は
重量百分比率で希土類永久磁石用微粉の0.1〜5%と
される。添加量が0.1%未満では結合剤としての効果
が少なく、成形体強度の改善に効果がない。添加量が5
%より多くなると、脱有機結合剤処理においても若干の
残存が生じ、磁気特性の低下をもたらす。
When the compact density is within the above range, the addition of an organic binder to the raw material mixture is effective for improving the compact strength. Typical examples of the organic binder include, but are not limited to, PVA, diethylene glycol, and methyl cellulose. The amount added is 0.1 to 5% by weight of the fine powder for rare earth permanent magnets. If the added amount is less than 0.1%, the effect as a binder is small and the strength of the molded body is not improved. 5 added
When it is more than 0.1%, a small amount is left even in the treatment with the organic binder, resulting in deterioration of magnetic properties.

【0010】押し出し成形にて成形した成形体は、異方
性を付与するために配向磁界が印加される。磁界の印加
方法は静磁場印加、パルス磁界印加あるいは両者の組み
合わせなどを採ることができる。またその印加回数も必
要に応じて一回以上複数回行うことができる。異方性の
付与の方向は、配向ヨ−クの形状とコイルの組み合わせ
によって、種々のものとすることができる。尚、希土類
永久磁石の押し出し成形による成形体密度を先に示した
範囲にした場合、配向磁界の強度は5KOe以上とする
必要がある。配向磁界強度が5KOe未満の場合は充分
な配向度が得られず、残留磁束密度Brの低下を招く。
図1、図2に、本発明の実施例にもとずく配向磁気回路
の代表例を示す。
An orientation magnetic field is applied to the molded product molded by extrusion to impart anisotropy. The magnetic field may be applied by applying a static magnetic field, applying a pulse magnetic field, or a combination of both. Further, the number of times of application can be once or more than once as necessary. The direction of imparting anisotropy can be various depending on the shape of the orientation yoke and the combination of the coils. Incidentally, when the density of the compact formed by extrusion molding of the rare earth permanent magnet is set within the range shown above, the strength of the orientation magnetic field needs to be 5 KOe or more. When the orientation magnetic field strength is less than 5 KOe, a sufficient degree of orientation cannot be obtained, and the residual magnetic flux density Br is lowered.
1 and 2 show a representative example of the oriented magnetic circuit according to the embodiment of the present invention.

【0011】以上の方法で作製した成形体内部には鉱物
油、合成油などの溶媒と有機結合剤が残留している。こ
れらの成形体を常温から焼結温度である1000〜12
00℃までに急激に昇温すると成形体の内部温度が急激
に上昇し、成形体内に残留した溶媒や有機結合剤と成形
体内の希土類元素が反応することによって希土類炭化物
が生成する。このため焼結に十分な量の液相の発生が妨
げられ、十分な密度の焼結体が得られず磁気特性の劣化
を招く恐れがある。これを防止するためには、温度50
〜500℃、圧力10-1torr以下の条件下で30分
以上保持する脱溶媒、脱有機結合剤処理を施すことが望
ましい。この処理により成形体中に残留した溶媒と有機
結合剤を十分に除去することができる。尚、保持は50
〜500℃の温度範囲であれば一点である必要はなく二
点以上であってもよい。また10-1torr以下の圧力
下で室温から500℃までの昇温速度を10℃/min
以下、好ましくは5℃/min以下とする脱溶媒、脱有
機結合剤処理を施すことによっても、温度50〜500
℃、圧力10-1torr以下の条件で30分以上保持す
る処理と同様な効果を得ることができる。
Solvents such as mineral oil and synthetic oil and an organic binder remain inside the molded article produced by the above method. These molded bodies were sintered at room temperature to a sintering temperature of 1000 to 12
When the temperature rises rapidly to 00 ° C., the internal temperature of the molded body rises sharply, and the solvent or organic binder remaining in the molded body reacts with the rare earth element in the molded body to form rare earth carbide. Therefore, generation of a liquid phase in a sufficient amount for sintering is hindered, and a sintered body having a sufficient density cannot be obtained, which may lead to deterioration of magnetic characteristics. To prevent this, a temperature of 50
It is desirable to carry out a desolvation / deorganization binder treatment in which the temperature is kept at -500 ° C and the pressure is 10 -1 torr or less for 30 minutes or more. By this treatment, the solvent and organic binder remaining in the molded body can be sufficiently removed. In addition, holding is 50
It does not have to be one point and may be two or more points as long as it is in the temperature range of up to 500 ° C. Further, at a pressure of 10 -1 torr or less, the temperature rising rate from room temperature to 500 ° C is 10 ° C / min
Hereinafter, the temperature of 50 to 500 can be obtained even by performing desolvent treatment and deorganic binder treatment at preferably 5 ° C./min or less.
It is possible to obtain the same effect as the treatment of holding for 30 minutes or more under the condition of ° C and pressure of 10 -1 torr or less.

【0012】[0012]

【実施例】以下、本発明を実施例をもって具体的に説明
するが、本発明の内容はこれに限定されるものではな
い。 (実施例1)重量百分率でSm36.5%、Co63.
5%の組成を有するSmCo5系希土類原料粗粉をN2
ス雰囲気中でジェットミル粉砕し、平均粒度が5.0μ
mの微粉とした。この微粉8Kgに分留点が200〜3
00℃、常温での動粘度が2.0cstの鉱物油(出光
興産製、商品名MC、OIL、P−02)2Kgを混ぜ
混合物とした。この混合物を図1に示す押出成形機で押
出成形し、切断して成形体とした。成形体の密度は3.
0g/ccであった。この成形体に同じく図1に示す配
向磁気回路にて7KOeの配向パルス磁界を印加して、
径方向への異方性を付与した。次に成形体に5×10-2
torrの圧力下で350℃×1時間の脱鉱物油処理を
施した後、Arガス雰囲気中で1135℃×2時間の条
件で焼結した。焼結体の寸法、形状は良好であった。更
に焼結体にArガス雰囲気中で830℃×1時間の熱処
理を施した。機械加工後、その表面磁束密度を測定した
ところ、表1に示すような良好な値が得られた。
EXAMPLES The present invention will be specifically described below with reference to examples, but the contents of the present invention are not limited thereto. (Example 1) Sm 36.5% in weight percentage, Co63.
The SmCo 5 rare earth raw material coarse powder having a composition of 5% was jet-milled in an N 2 gas atmosphere to have an average particle size of 5.0 μm.
m of fine powder. This fine powder 8 kg has a fractionation point of 200 to 3
2 Kg of mineral oil (manufactured by Idemitsu Kosan, trade name MC, OIL, P-02) having a kinematic viscosity of 2.0 cst at 00 ° C. and room temperature was mixed to prepare a mixture. This mixture was extrusion-molded by the extruder shown in FIG. 1 and cut into a molded body. The density of the molded body is 3.
It was 0 g / cc. Similarly, an orientation pulse magnetic field of 7 KOe was applied to the molded body by the orientation magnetic circuit shown in FIG.
It imparted radial anisotropy. Next, 5 × 10 -2 on the molded body
After demineralizing oil treatment at 350 ° C. for 1 hour under a pressure of torr, sintering was performed at 1135 ° C. for 2 hours in an Ar gas atmosphere. The size and shape of the sintered body were good. Further, the sintered body was heat-treated in an Ar gas atmosphere at 830 ° C. for 1 hour. After machining, the surface magnetic flux density was measured, and good values as shown in Table 1 were obtained.

【0013】(実施例2)重量百分率でSm26.0
%、Fe13.5%、Cu4.8%、Zr2.2%、C
o3.5%の組成を有するSm2Co17系希土類原料粗
粉をトルエン中でボ−ルミル粉砕し、これをArガス雰
囲気中で乾燥して平均粒度が5.2μmの微粉を得た。
この微粉8.2Kgに分留点が200〜400℃、常温
での動粘度が5.0cstの鉱物油(出光興産製、商品
名MC、OIL、P−05)1.8Kgと有機結合剤の
ジエチレングリコ−ル40gを混ぜ混合物とした。この
混合物を図1に示す押出成形機で押出成形し、切断して
成形体とした。成形体の密度は3.3g/ccであっ
た。この成形体に、同じく図1に示す配向磁気回路にて
8KOeの配向静磁界を印加して、径方向への異方性を
付与した。次に成形体に、5×10-2torrの圧力下
で、室温から500℃までの昇温速度が5℃/minの
脱鉱物油、脱有機結合剤処理を施し、その後、同じ圧力
で1200℃までを30℃/minの昇温速度で昇温
し、その温度で3時間保持して焼結した。焼結体の寸
法、形状は良好であった。焼結体はArガス雰囲気中で
1180℃×4時間の溶体化処理と750℃×20時間
の時効処理を施した。機械加工後、その表面磁束密度を
測定したところ、表1に示すような良好な結果が得られ
た。
(Example 2) Sm 26.0 by weight percentage
%, Fe 13.5%, Cu 4.8%, Zr 2.2%, C
Sm 2 Co 17 rare earth raw material coarse powder having a composition of 3.5% was ball-milled in toluene and dried in an Ar gas atmosphere to obtain fine powder having an average particle size of 5.2 μm.
To 8.2 kg of this fine powder, 1.8 kg of a mineral oil having a fractionation point of 200 to 400 ° C. and a kinematic viscosity at room temperature of 5.0 cst (manufactured by Idemitsu Kosan, trade name MC, OIL, P-05) and an organic binder A mixture was prepared by mixing 40 g of diethylene glycol. This mixture was extrusion-molded by the extruder shown in FIG. 1 and cut into a molded body. The density of the molded body was 3.3 g / cc. An oriented static magnetic field of 8 KOe was applied to this molded body in the same manner as in the oriented magnetic circuit shown in FIG. 1 to impart anisotropy in the radial direction. Next, the molded body was subjected to demineralized oil and deorganic binder treatment at a temperature rising rate from room temperature to 500 ° C. of 5 ° C./min under a pressure of 5 × 10 −2 torr, and then 1200 pressure was applied at the same pressure. The temperature was raised to 30 ° C. at a heating rate of 30 ° C./min, and the temperature was maintained for 3 hours for sintering. The size and shape of the sintered body were good. The sintered body was subjected to solution treatment at 1180 ° C. for 4 hours and aging treatment at 750 ° C. for 20 hours in an Ar gas atmosphere. After machining, the surface magnetic flux density was measured, and good results as shown in Table 1 were obtained.

【0014】(実施例3)実施例2で作製した原料混合
物を、図1に示す押出成形機で押出成形し、切断して成
形体とした。この場合の成形体密度は3.5g/ccで
あった。この成形体に、図2に示す配向磁気回路にて1
0KOeの配向パルス磁界を印加して、異方性を付与し
た。成形体には実施例2で行ったのと同一条件の脱鉱物
油、脱有機結合剤処理および焼結、溶体化、時効処理を
施した。焼結体の寸法、形状は良好であった。機械加工
後、その表面磁束密度を測定したところ、そのピ−ク値
として表2に示すような良好な結果が得られた。
(Example 3) The raw material mixture prepared in Example 2 was extrusion-molded by the extruder shown in FIG. 1 and cut into a molded body. The compact density in this case was 3.5 g / cc. This molded body was subjected to 1 by the orientation magnetic circuit shown in FIG.
Anisotropy was imparted by applying an orientation pulse magnetic field of 0KOe. The molded body was subjected to demineralized oil, deorganic binder treatment, sintering, solution treatment and aging treatment under the same conditions as in Example 2. The size and shape of the sintered body were good. When the surface magnetic flux density was measured after machining, good results as shown in Table 2 were obtained as the peak value.

【0015】(比較例1)実施例1で作製した原料混合
物を、図1に示す押出成形機で押出成形し、切断して成
形体とした。この場合、押出成形機の押出圧力と速度を
調整することによって、得られた成形体の密度は1.5
g/ccであった。次にこの成形体に、同じく図1に示
す配向磁気回路にて7KOeの配向パルス磁界を印加し
て異方性を付与したが、この過程で成形体強度が弱いた
め成形体が破損し製品とすることができなかった。 (比較例2)実施例2で作製した原料混合物を、図1に
示す押出成形機で押出成形し、切断して成形体とした。
この場合、押出成形機の条件を調整することによって、
得られた成形体の密度は5.5g/ccであった。この
成形体に、同じく図1に示す配向磁気回路にて8KOe
の配向静磁界を印加して、径方向への異方性を付与し
た。成形体には実施例2で行ったのと同一条件の脱鉱物
油、脱有機結合剤処理および焼結、溶体化、時効処理を
施した。実施例2の場合と同一寸法に機械加工後、その
表面磁束密度を測定したところ、表1に示すように実施
例2での値に比べ大幅に低い値であった。 (比較例3)実施例2で作製した原料混合物を、図1に
示す押出成形機で押出成形し、切断して成形体とした。
成形体の密度は3.3g/ccであった。この成形体
に、同じく図1に示す配向磁気回路にて4KOeの配向
静磁界を印加して、径方向の異方性を付与した。成形体
には実施例2で行ったのと同一条件の脱鉱物油、脱有機
結合剤処理および焼結、溶体化、時効処理を施した。実
施例2の場合と同一寸法に機械加工後、その表面磁束密
度を測定したところ、表1に示すように実施例2での値
に比べ大幅に低い値であった。
(Comparative Example 1) The raw material mixture prepared in Example 1 was extrusion-molded by the extrusion molding machine shown in FIG. 1 and cut into a molded body. In this case, by adjusting the extrusion pressure and speed of the extruder, the density of the obtained molded product is 1.5.
It was g / cc. Then, an anisotropic pulse magnetic field of 7 KOe was applied to this compact by the same orientation magnetic circuit as shown in FIG. 1 to impart anisotropy. In this process, the compact had a weak strength and was damaged. I couldn't. (Comparative Example 2) The raw material mixture produced in Example 2 was extrusion-molded by the extrusion molding machine shown in FIG. 1 and cut into a molded body.
In this case, by adjusting the conditions of the extruder,
The density of the obtained molded body was 5.5 g / cc. 8 KOe was applied to this molded body by the orientation magnetic circuit shown in FIG.
A static magnetic field for orientation was applied to impart anisotropy in the radial direction. The molded body was subjected to demineralized oil, deorganic binder treatment, sintering, solution treatment and aging treatment under the same conditions as in Example 2. After machining to the same dimensions as in Example 2, the surface magnetic flux density was measured, and as shown in Table 1, the value was significantly lower than the value in Example 2. (Comparative Example 3) The raw material mixture produced in Example 2 was extruded by the extrusion molding machine shown in FIG. 1 and cut into a molded body.
The density of the molded body was 3.3 g / cc. An oriented static magnetic field of 4 KOe was applied to the molded body in the same manner as in the oriented magnetic circuit shown in FIG. 1 to impart radial anisotropy. The molded body was subjected to demineralized oil, deorganic binder treatment, sintering, solution treatment and aging treatment under the same conditions as in Example 2. After machining to the same dimensions as in Example 2, the surface magnetic flux density was measured, and as shown in Table 1, the value was significantly lower than the value in Example 2.

【0016】(実施例4)重量百分率でNd30.0
%、Pr1.0%、Dy0.75%、B1.0%、Nb
0.3%、Al0.2%、残部Feの組成を有するNd
−Fe−B系希土類原料粗粉をN2ガス雰囲気中でジェ
ットミル粉砕し、粉砕機の微粉排出口に分留点が200
〜300℃、常温での動粘度が2.0cstの鉱物油
(出光興産製、商品名MC,OIL、P−02)を満た
した容器を設置して、微粉をN2ガス雰囲気中で直接鉱
物油中に回収し混合物とした。この鉱物油と微粉の混合
物中の微粉の重量比率は85%であった。また微粉の平
均粒度は4.0μmであった。この混合物を、図1に示
す押出成形機で押出成形し、切断して成形体とした。成
形体の密度は2.2g/ccであった。この成形体に、
同じく図1に示す配向磁気回路にて6KOeの配向パル
ス磁界を印加して、径方向への異方性を付与した。次に
成形体に3×10-2torrの圧力下で室温から500
℃までの昇温速度が3℃/minの脱鉱物油処理を施
し、その後同じ圧力で1100℃までを20℃/min
の昇温速度で昇温し、その温度で2時間保持して焼結し
た。焼結体の寸法、形状は良好であった。焼結体はAr
ガス雰囲気中で900℃×1時間と580℃×1時間の
熱処理を各一回施した。機械加工後、その表面磁束密度
を測定したところ、表1に示すような良好な値が得られ
た。
(Example 4) Nd 30.0 by weight percentage
%, Pr1.0%, Dy0.75%, B1.0%, Nb
Nd having a composition of 0.3%, Al 0.2% and balance Fe
-Fe-B type rare earth raw material coarse powder is jet mill pulverized in an N 2 gas atmosphere, and a fractionation point of 200 is obtained at the fine powder discharge port of the pulverizer.
Install a container filled with mineral oil (made by Idemitsu Kosan Co., Ltd., trade name MC, OIL, P-02) with a kinematic viscosity of 2.0 cst at room temperature to 300 ° C., and pulverize the fine powder directly in a N 2 gas atmosphere. It was collected in oil to give a mixture. The weight ratio of the fine powder in the mixture of the mineral oil and the fine powder was 85%. The average particle size of the fine powder was 4.0 μm. This mixture was extrusion-molded by the extruder shown in FIG. 1 and cut into a molded body. The density of the molded product was 2.2 g / cc. In this molded body,
Similarly, in the orientation magnetic circuit shown in FIG. 1, an orientation pulse magnetic field of 6 KOe was applied to impart anisotropy in the radial direction. Then, the molded body is heated from room temperature to 500 at a pressure of 3 × 10 -2 torr.
Demineralized oil treatment with a heating rate of 3 ℃ / min up to ℃, and then at the same pressure up to 1100 ℃ at 20 ℃ / min
The temperature was raised at a heating rate of, and the temperature was maintained for 2 hours for sintering. The size and shape of the sintered body were good. Sintered body is Ar
Heat treatments at 900 ° C. × 1 hour and 580 ° C. × 1 hour were performed once in a gas atmosphere. After machining, the surface magnetic flux density was measured, and good values as shown in Table 1 were obtained.

【0017】(実施例5)重量百分比率でNd27.0
%、Pr2.0%、Dy2.5%、B1.0%、Nb
0.5%、Al0.2%、Co2.5%、Ga0.1
%、残部Feの組成を有するNd−Fe−B系希土類原
料粗粉をn−ヘキサン中で振動ミル粉砕し、これをAr
ガス雰囲気中で乾燥して平均粒度が4.3μmの微粉を
得た。この微粉7.0Kgに分留点が200〜300
℃、常温での動粘度が1.0cstの合成油(出光興産
製、商品名DN、ロ−ルオイル、AL−35)3.0K
gと有機結合剤のジエチレングリコ−ル140gを混ぜ
混合物とした。この混合物を、図1に示す押出成形機で
押出成形し、切断して成形体とした。成形体の密度は
4.0g/ccであった。この成形体に、同じく図1に
示す配向磁気回路にて10KOeの配向パルス磁界を印
加して、径方向への異方性を付与した。次に、成形体に
5×10-2torrの圧力下で400℃×2時間の脱合
成油、脱有機結合剤処理を施し、その後同じ圧力で10
80℃までを15℃/minの昇温速度で昇温し、その
温度で4時間保持して焼結した。焼結体の寸法、形状は
良好であった。焼結体はArガス雰囲気中で900℃×
1時間と600℃×1時間の熱処理を各一回施した。機
械加工後、その表面磁束密度を測定したところ、表1に
示すような良好な値が得られた。
(Example 5) Nd 27.0 by weight percentage
%, Pr2.0%, Dy2.5%, B1.0%, Nb
0.5%, Al0.2%, Co2.5%, Ga0.1
%, The rest of the Nd-Fe-B-based rare earth raw material coarse powder having a composition of Fe was oscillated by oscillating milling in n-hexane.
After drying in a gas atmosphere, fine powder having an average particle size of 4.3 μm was obtained. This fine powder 7.0 kg has a distillation point of 200-300.
Synthetic oil with a kinematic viscosity of 1.0 cst at room temperature at room temperature (Idemitsu Kosan, product name DN, roll oil, AL-35) 3.0K
g and 140 g of organic binder diethylene glycol were mixed to form a mixture. This mixture was extrusion-molded by the extruder shown in FIG. 1 and cut into a molded body. The density of the molded body was 4.0 g / cc. An orientation pulse magnetic field of 10 KOe was applied to this molded body in the same manner as in the orientation magnetic circuit shown in FIG. 1 to impart anisotropy in the radial direction. Next, the molded body is subjected to a desynthetic oil / deorganic binder treatment at 400 ° C. for 2 hours under a pressure of 5 × 10 -2 torr, and then at the same pressure for 10 minutes.
The temperature was raised up to 80 ° C. at a heating rate of 15 ° C./min, and the temperature was maintained for 4 hours for sintering. The size and shape of the sintered body were good. Sintered body is 900 ° C in Ar gas atmosphere
Heat treatments of 1 hour and 600 ° C. × 1 hour were performed once. After machining, the surface magnetic flux density was measured, and good values as shown in Table 1 were obtained.

【0018】(実施例6)重量百分率でNd28.0
%、Dy4.0%、B1.0%、Nb0.3%、Al
0.2%、残部Feの組成を有するNd−Fe−B系希
土類原料粗粉をN2ガス雰囲気中でジェットミル粉砕
し、平均粒度が3.8μmの微粉を得た。この微粉8.
5Kgに分留点が200〜300℃、常温での動粘度が
2.0cstの鉱物油(出光興産製、商品名MC、OI
L、P−02)1.5Kgと有機結合剤のメチルセルロ
−ス(信越化学製、商品名メトロ−ズ3000)85g
を混ぜ混合物とした。この混合物を図1に示す押出成形
機で押出成形し、切断して成形体とした。成形体の密度
は3.0g/ccであった。この成形体に、同じく図1
に示す配向磁気回路にて12KOeの配向パルス磁界を
印加して、径方向への異方性を付与した。次に、成形体
に2×10-2torrの圧力下で室温から500℃まで
の昇温速度が2℃/minの脱鉱物油処理、脱有機結合
剤処理を施し、その後同じ圧力で1100℃までを20
℃/minの昇温速度で昇温し、その温度で4時間保持
して焼結した。焼結体の寸法、形状は良好であった。焼
結体はArガス雰囲気中で900℃×1時間と620℃
×1時間の熱処理を各一回施した。機械加工後、その表
面磁束密度を測定したところ、表1に示すように良好な
値が得られた。
Example 6 Nd 28.0 by weight percentage
%, Dy 4.0%, B 1.0%, Nb 0.3%, Al
The Nd-Fe-B rare earth raw material coarse powder having a composition of 0.2% and the balance Fe was ground by a jet mill in an N 2 gas atmosphere to obtain fine powder having an average particle size of 3.8 μm. This fine powder 8.
Mineral oil having a fractional distillation point of 200 to 300 ° C. at 5 kg and a kinematic viscosity of 2.0 cst at room temperature (made by Idemitsu Kosan, trade name MC, OI
L, P-02) 1.5 kg and organic binder methylcellulose (manufactured by Shin-Etsu Chemical Co., Ltd., trade name Metroz 3000) 85 g
Were mixed to form a mixture. This mixture was extrusion-molded by the extruder shown in FIG. 1 and cut into a molded body. The density of the molded body was 3.0 g / cc. This molded body is also shown in Figure 1.
An orientation pulse magnetic field of 12 KOe was applied in the orientation magnetic circuit shown in (1) to impart radial anisotropy. Next, the molded body is subjected to demineralizing oil treatment and deorganic binder treatment at a temperature rising rate of 2 ° C / min from room temperature to 500 ° C under a pressure of 2 × 10 -2 torr, and then at 1100 ° C at the same pressure. Up to 20
The temperature was raised at a temperature rising rate of ° C / min, and the temperature was maintained for 4 hours for sintering. The size and shape of the sintered body were good. Sintered body is 900 ° C x 1 hour and 620 ° C in Ar gas atmosphere
The heat treatment of × 1 hour was performed once each. After machining, the surface magnetic flux density was measured, and good values were obtained as shown in Table 1.

【0019】(実施例7)重量百分率でNd23.0
%、Pr6.5%、Dy2.5%、B1.0%、Nb
0.2%、Al0.3%、Co3.0%、残部Feの組
成を有するNd−Fe−B系希土類原料粗粉をN2ガス
雰囲気中でジェットミル粉砕し、平均粒度が4.1μm
の微粉を得た。この微粉5.8Kgに分留点が200〜
300℃、常温での動粘度が2.5cstの合成油(出
光興産製、商品名DN、クリ−ナH)4.2Kgと有機
結合剤のメチルセルロ−ス(信越化学製、商品名メトロ
−ズ3000)145gを混ぜ混合物とした。この混合
物を図1に示す押出成形機で押出成形し、切断して成形
体とした。成形体の密度は3.5g/ccであった。こ
の成形体に、図2に示す配向磁気回路にて9KOeの配
向静磁界を印加して異方性を付与した。次に、成形体に
5×10-2torrの圧力下で350℃×2時間の脱合
成油、脱有機結合剤処理を施し、その後同じ圧力で11
00℃までを20℃/minの昇温速度で昇温し、その
温度で2時間保持して焼結した。焼結体の寸法、形状は
良好であった。焼結体はArガス雰囲気中で900℃×
2時間と600℃×2時間の熱処理を各一回施した。機
械加工後、その表面磁束密度を測定したところ、表2に
示すような良好なピ−ク値が得られた。
Example 7 Nd 23.0 by weight percentage
%, Pr6.5%, Dy2.5%, B1.0%, Nb
Nd-Fe-B rare earth raw material coarse powder having a composition of 0.2%, Al 0.3%, Co 3.0% and balance Fe was jet milled in an N 2 gas atmosphere to have an average particle size of 4.1 μm.
Got fine powder. This fine powder has a fractionation point of 200 to 5.8 kg.
4.2 kg of synthetic oil (produced by Idemitsu Kosan Co., Ltd., trade name DN, Cleaner H) having a kinematic viscosity of 2.5 cst at 300 ° C. and room temperature, and methylcellulose of organic binder (produced by Shin-Etsu Chemical Co., Ltd., trade name Metro-Z) 3,000 g of 145 g was mixed to obtain a mixture. This mixture was extrusion-molded by the extruder shown in FIG. 1 and cut into a molded body. The density of the molded body was 3.5 g / cc. An anisotropic magnetic field of 9 KOe was applied to the molded body by the magnetic alignment circuit shown in FIG. 2 to impart anisotropy. Next, the molded body is subjected to a desynthetic oil / deorganic binder treatment at 350 ° C. for 2 hours under a pressure of 5 × 10 -2 torr, and then at the same pressure for 11
The temperature was raised up to 00 ° C. at a heating rate of 20 ° C./min, and the temperature was maintained for 2 hours for sintering. The size and shape of the sintered body were good. Sintered body is 900 ° C in Ar gas atmosphere
A heat treatment of 2 hours and 600 ° C. × 2 hours was performed once. After machining, the surface magnetic flux density was measured, and good peak values as shown in Table 2 were obtained.

【0020】(比較例4)実施例4で作製した原料混合
物を、図1に示す押出成形機で押出成形し、切断して成
形体とした。この場合、押出成形機の押出圧力を調整す
ることによって、得られた成形体の密度は1.6g/c
cであった。次に、この成形体に同じく図1に示す配向
磁気回路にて6KOeの配向パルス磁界を印加して異方
性を付与したが、この過程で成形体強度が弱いため成形
体が破損し製品とすることができなかった。 (比較例5)実施例5で作製した原料混合物を、図1に
示す押出成形機で押出成形し、切断して成形体とした。
この場合、押出成形機の押出条件を変化させることによ
って、得られた成形体の密度は5.8g/ccであっ
た。この成形体に、同じく図1に示す配向磁気回路にて
10KOeの配向パルス磁界を印加して、径方向への異
方性を付与した。次に、成形体に実施例5と同一条件の
脱合成油、脱有機結合剤処理および焼結、熱処理を施し
た。実施例5の場合と同一寸法に機械加工後、その表面
磁束密度を測定したところ、表1に示すように実施例5
での値に比べ大幅に低い値であった。
(Comparative Example 4) The raw material mixture produced in Example 4 was extrusion-molded by the extrusion-molding machine shown in FIG. 1 and cut into a molded body. In this case, by adjusting the extrusion pressure of the extruder, the density of the obtained molded product is 1.6 g / c.
It was c. Next, an oriented pulse magnetic field of 6 KOe was applied to this compact by the same orientation magnetic circuit as shown in FIG. 1 to impart anisotropy. In this process, the compact had a weak strength and was damaged. I couldn't. (Comparative Example 5) The raw material mixture produced in Example 5 was extruded by the extrusion molding machine shown in FIG. 1 and cut into a molded body.
In this case, the density of the obtained molded product was 5.8 g / cc by changing the extrusion conditions of the extruder. An orientation pulse magnetic field of 10 KOe was applied to this molded body in the same manner as in the orientation magnetic circuit shown in FIG. 1 to impart anisotropy in the radial direction. Next, the molded body was subjected to desynthetic oil, deorganic binder treatment, sintering, and heat treatment under the same conditions as in Example 5. After machining to the same dimensions as in Example 5, the surface magnetic flux density was measured, and as shown in Table 1, Example 5
It was significantly lower than the value in.

【0021】(比較例6)実施例4で押出成形して作製
した成形体密度が2.2g/ccの成形体に、図1に示
す配向磁気回路にて4KOeの配向パルス磁界を印加し
て、径方向への異方性を付与した。次に、成形体に実施
例4と同一条件の脱鉱物油処理および焼結、熱処理を施
した。実施例4の場合と同一寸法に機械加工後、その表
面磁束密度を測定したところ、表1に示すように実施例
4での値に比べ大幅に低い値であった。(比較例7)実
施例6で作製した平均粒度が3.8μmの微粉9.5K
gに分留点が200〜300℃、常温での動粘度が2.
0cstの鉱物油(出光興産製、商品名MC、OIL、
P−02)0.5Kgと有機結合剤のメチルセルロ−ス
(信越化学製、商品名メトロ−ズ3000)95gを混
ぜ混合物とした。この混合物を図1に示す押出成形機で
押出成形することを試みたが、押出がスム−ズに行か
ず、良好な形状の成形体を得ることができなかった。
(Comparative Example 6) An oriented pulse magnetic field of 4 KOe was applied in the oriented magnetic circuit shown in FIG. 1 to a molded article produced by extrusion molding in Example 4 and having a density of 2.2 g / cc. , And gave anisotropy in the radial direction. Next, the molded body was subjected to demineralization oil treatment, sintering, and heat treatment under the same conditions as in Example 4. After machining to the same dimensions as in Example 4, the surface magnetic flux density was measured, and as shown in Table 1, the value was significantly lower than the value in Example 4. (Comparative Example 7) Fine powder 9.5K having an average particle size of 3.8 μm produced in Example 6
g has a fractionation point of 200 to 300 ° C. and a kinematic viscosity at room temperature of 2.
0 cst mineral oil (made by Idemitsu Kosan, trade name MC, OIL,
P-02) (0.5 Kg) and an organic binder, methyl cellulose (manufactured by Shin-Etsu Chemical Co., Ltd., trade name Metroz 3000) (95 g) were mixed to prepare a mixture. Attempts were made to extrude this mixture with the extruder shown in FIG. 1, but the extrusion did not go smoothly, and it was not possible to obtain a molded article of good shape.

【0022】(比較例8)実施例6で作製した平均粒度
が3.8μmの微粉4.0Kgに分留点が200〜30
0℃、常温での動粘度が2.0cstの鉱物油(出光興
産製、商品名MC、OIL、P−02)6.0Kgと有
機結合剤のメチルセルロ−ス(信越化学製、商品名メト
ロ−ズ3000)40gを混ぜ混合物とした。この混合
物を図1に示す押出成形機で押出成形し、これを切断し
て成形体とした。成形体の平均密度は2.2g/ccで
あった。この成形体に、同じく図1に示す配向磁気回路
にて12KOeの配向パルス磁界を印加して、径方向へ
の異方性を付与した。次に、成形体に実施例6と同一条
件の脱鉱物油、脱有機結合剤処理および焼結を施したと
ころ、焼結体に部分的な変形が発生し、このため製品と
することができなかった。(比較例9)実施例6で作製
した平均粒度が3.8μmの微粉8.5Kgに分留点が
200〜300℃、常温での動粘度が2.0cstの鉱
物油(出光興産製、商品名MC、OIL、P−02)
1.5Kgと有機結合剤のメチルセルロ−ス(信越化学
製、商品名メトロ−ズ3000)510gを混ぜ混合物
とした。この混合物を図1に示す押出成形機で押出成形
し、これを切断して成形体とした。成形体の平均密度は
2.8g/ccであった。この成形体に、同じく図1に
示す配向磁気回路にて12KOeの配向パルス磁界を印
加して、径方向への異方性を付与した。次に、成形体に
実施例6と同一条件の脱鉱物油、脱有機結合剤処理およ
び焼結、熱処理を施した。実施例6の場合と同一寸法に
機械加工後、その表面磁束密度を測定したところ、表1
に示すように実施例6での値に比べ、大幅に低い値であ
った。また実施例6の場合に比べ焼結体の密度が低く、
残存C量は高かった。
(Comparative Example 8) 4.0 kg of fine powder having an average particle size of 3.8 µm prepared in Example 6 has a fractionation point of 200 to 30.
6.0 kg of mineral oil (manufactured by Idemitsu Kosan, trade name MC, OIL, P-02) with a kinematic viscosity of 2.0 cst at 0 ° C. and room temperature, and methylcellulose (trade name Metro-, manufactured by Shin-Etsu Chemical Co., Ltd.) as an organic binder. (3000 g) 40 g was mixed to form a mixture. This mixture was extrusion-molded by the extruder shown in FIG. 1 and cut into a molded body. The average density of the molded body was 2.2 g / cc. An orientation pulse magnetic field of 12 KOe was applied to the formed body in the same manner as in the orientation magnetic circuit shown in FIG. 1 to impart radial anisotropy. Next, when the molded body was subjected to demineralized oil treatment, deorganic binder treatment and sintering under the same conditions as in Example 6, a partial deformation occurred in the sintered body, which made it a product. There wasn't. (Comparative Example 9) Mineral oil having a fractionation point of 200 to 300 ° C. and a kinematic viscosity of 2.0 cst at room temperature (8.5 kg, fine powder having an average particle size of 3.8 μm) manufactured in Example 6 (manufactured by Idemitsu Kosan Co., Ltd. Name MC, OIL, P-02)
A mixture of 1.5 kg and 510 g of an organic binder, methyl cellulose (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: Metroze 3000) was mixed. This mixture was extrusion-molded by the extruder shown in FIG. 1 and cut into a molded body. The average density of the molded body was 2.8 g / cc. An orientation pulse magnetic field of 12 KOe was applied to the formed body in the same manner as in the orientation magnetic circuit shown in FIG. 1 to impart radial anisotropy. Next, the molded body was subjected to demineralized oil, deorganic binder treatment, sintering, and heat treatment under the same conditions as in Example 6. After machining to the same dimensions as in Example 6, the surface magnetic flux density was measured, and Table 1
As shown in, the value was significantly lower than the value in Example 6. In addition, the density of the sintered body is lower than in the case of Example 6,
The residual C amount was high.

【0023】(比較例10)実施例6で作製した平均粒
度が3.8μmの微粉8.5Kgに分留点が300〜5
00℃、常温での動粘度が31.5cstの鉱物油(出
光興産製、商品名MC、OIL、S−32)1.5Kg
と有機結合剤のメチルセルロ−ス(信越化学製、商品名
メトロ−ズ3000)85gを混ぜ混合物とした。この
混合物を図1に示す押出成形機で押出成形し、切断して
成形体とした。成形体の密度は3.2g/ccであっ
た。この成形体に、同じく図1に示す配向磁気回路にて
12KOeの配向パルス磁界を印加して、径方向への異
方性を付与した。次に、成形体に実施例6と同一条件の
脱鉱物油、脱有機結合剤処理および焼結、熱処理を施し
た。実施例6の場合と同一寸法に機械加工後、その表面
磁束密度を測定したところ、表1に示すように実施例6
での値に比べ、大幅に低い値であった。また実施例6の
場合に比べ焼結体の密度が低く、残存C量は高かった。 (比較例11)実施例7で押出成形して作製した成形体
密度が3.5g/ccの成形体に、実施例7と同一条件
で配向磁界を印加して異方性を付与した。この成形体を
5×10-2torrの圧力下で室温から1100℃まで
を20℃/minの昇温速度で昇温し、その温度で2時
間保持して焼結した。この焼結体は、Arガス雰囲気中
で900℃×2時間と600℃×2時間の熱処理を各一
回施した。実施例7の場合と同一寸法に機械加工後、そ
の表面磁束密度を測定したところ、表2に示すようにそ
のピ−ク値は実施例7の場合に比べ大幅に低い値であっ
た。また実施例7での場合に比べ焼結体の密度が低く、
残存C量は高かった。 (比較例12)実施例7で作製した平均粒度が4.1μ
mの微粉5.8Kgに脱酸素処理をした純水4.2Kg
と有機結合剤のメチルセルロ−ス(信越化学製、商品名
メトロ−ズ3000)145gを混ぜ混合物とした。こ
の混合物を図1に示す押出成形機で押出成形し切断して
成形体とした。成形体の密度は3.0g/ccであっ
た。この成形体に実施例7と同一条件で配向磁界を印加
して異方性を付与した。次に、成形体に5×10-2to
rrの圧力下で80℃×1時間の次いで350℃×2時
間の脱純水、脱有機結合剤処理を施し、その後同じ圧力
で1100℃までを20℃/minの昇温速度で昇温
し、その温度で2時間保持して焼結した。焼結体はAr
ガス雰囲気中で900℃×2時間と600℃×2時間の
熱処理を各一回施した。実施例7と同一寸法に機械加工
後、表面磁束密度を測定したところ、表2に示すよう
に、そのピ−ク値は実施例7の場合に比べ大幅に低い値
であった。また実施例7での場合に比べ焼結体の密度が
低く、残存O2量は高かった。
Comparative Example 10 8.5 kg of fine powder having an average particle size of 3.8 μm prepared in Example 6 has a fractionation point of 300 to 5
1.5 kg of mineral oil (made by Idemitsu Kosan, trade name MC, OIL, S-32) having a kinematic viscosity of 31.5 cst at 00 ° C. and room temperature
And 85 g of an organic binder, methyl cellulose (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: Metroze 3000) were mixed to form a mixture. This mixture was extrusion-molded by the extruder shown in FIG. 1 and cut into a molded body. The density of the molded body was 3.2 g / cc. An orientation pulse magnetic field of 12 KOe was applied to the formed body in the same manner as in the orientation magnetic circuit shown in FIG. 1 to impart radial anisotropy. Next, the molded body was subjected to demineralized oil, deorganic binder treatment, sintering, and heat treatment under the same conditions as in Example 6. After machining to the same dimensions as in Example 6, the surface magnetic flux density was measured, and as shown in Table 1, Example 6
It was significantly lower than the value in. In addition, the density of the sintered body was low and the amount of residual C was high as compared with the case of Example 6. (Comparative Example 11) An anisotropy was imparted to a molded product produced by extrusion molding in Example 7 and having a density of 3.5 g / cc by applying an orientation magnetic field under the same conditions as in Example 7. The compact was heated from room temperature to 1100 ° C. at a temperature rising rate of 20 ° C./min under a pressure of 5 × 10 −2 torr, and was held at that temperature for 2 hours for sintering. This sintered body was subjected to heat treatment at 900 ° C. × 2 hours and 600 ° C. × 2 hours once in an Ar gas atmosphere. After machining into the same dimensions as in Example 7, the surface magnetic flux density was measured, and as shown in Table 2, the peak value was significantly lower than that in Example 7. In addition, the density of the sintered body is lower than in the case of Example 7,
The residual C amount was high. (Comparative Example 12) The average particle size produced in Example 7 is 4.1μ.
4.2 kg of deionized pure water of 5.8 kg of fine powder of m
And 145 g of an organic binder, Methyl Cellulose (manufactured by Shin-Etsu Chemical Co., Ltd., trade name Metrose 3000) were mixed to form a mixture. This mixture was extrusion-molded by the extruder shown in FIG. 1 and cut into a molded body. The density of the molded body was 3.0 g / cc. Anisotropy was imparted to this molded body by applying an orientation magnetic field under the same conditions as in Example 7. Next, 5 × 10 -2 to
Under the pressure of rr, 80 ° C. × 1 hour, then 350 ° C. × 2 hours of deionized water and organic binder removal treatment, and then the same pressure up to 1100 ° C. at a heating rate of 20 ° C./min. The temperature was maintained for 2 hours for sintering. Sintered body is Ar
Heat treatments of 900 ° C. × 2 hours and 600 ° C. × 2 hours were performed once in a gas atmosphere. When the surface magnetic flux density was measured after machining to the same dimensions as in Example 7, the peak value was significantly lower than that in Example 7, as shown in Table 2. In addition, the density of the sintered body was low and the amount of residual O 2 was high as compared with the case of Example 7.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】以上詳述したように、本発明の原料作
成、成形方法によると、酸化の進行がほとんどなく且つ
均一な成形密度を有する成形体が得られるため、薄肉リ
ング形状の希土類焼結磁石が歩留りよく製造できる。
尚、本発明の効果は薄肉リング形状の希土類焼結磁石の
製造において特に顕著であるが、角状、丸状、異形状の
希土類焼結磁石の製造にも有効であることは言うまでも
ない。
As described above in detail, according to the raw material preparation and molding method of the present invention, a compact having a uniform compacting density with almost no progress of oxidation can be obtained. Magnets can be manufactured with high yield.
The effect of the present invention is particularly remarkable in the production of a thin ring-shaped rare earth sintered magnet, but it goes without saying that it is also effective in the production of a rectangular, round, or irregular shaped rare earth sintered magnet.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法を実施するに好適な押出成形
機と配向磁気回路その1
FIG. 1 is a diagram showing an extruder and an oriented magnetic circuit suitable for carrying out the manufacturing method of the present invention.

【図2】本発明の製造方法を実施するに好適な配向磁気
回路その2
FIG. 2 is a preferred oriented magnetic circuit for carrying out the manufacturing method according to the present invention.

【符号の説明】[Explanation of symbols]

1 成形体、2 磁性ヨ−ク、3 コイル、4 磁性シ
ャフト、5 非磁性シャフト、6 原料混合物、7 押
出成形機、8 切断装置
1 molded body, 2 magnetic yoke, 3 coil, 4 magnetic shaft, 5 non-magnetic shaft, 6 raw material mixture, 7 extrusion molding machine, 8 cutting device

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 RCo5系、R2Co17系あるいはR−F
e−B系(RはYを含む希土類元素の内の1種類または
2種類以上)希土類永久磁石用の微粉と鉱物油あるいは
合成油を混合し、この混合物を押し出し成形して成形体
とし、この成形体に配向磁界を印加して異方性を付与
し、その後焼結することを特徴とする希土類永久磁石の
製造方法。
1. RCo 5 system, R 2 Co 17 system or R-F
e-B system (R is one or more kinds of rare earth elements including Y) Fine powder for rare earth permanent magnet and mineral oil or synthetic oil are mixed, and this mixture is extruded to obtain a formed body, A method for producing a rare earth permanent magnet, which comprises applying an orienting magnetic field to a compact to impart anisotropy and then sintering.
【請求項2】 請求項1に示す希土類永久磁石の製造方
法において、混合物中の希土類永久磁石用微粉の量が重
量百分比率で50〜90%であることを特徴とする製造
方法。
2. The method for producing a rare earth permanent magnet according to claim 1, wherein the amount of the fine powder for rare earth permanent magnet in the mixture is 50 to 90% by weight.
【請求項3】 請求項1〜請求項2に示す希土類永久磁
石の製造方法において、混合物中に有機結合剤を添加す
ることを特徴とする製造方法。
3. The method for producing a rare earth permanent magnet according to claim 1, wherein an organic binder is added to the mixture.
【請求項4】 請求項3に示す希土類永久磁石の製造方
法において、有機結合剤の添加量が重量百分比率で希土
類永久磁石用微粉の0.1〜5%であることを特徴とす
る製造方法。
4. The method for producing a rare earth permanent magnet according to claim 3, wherein the addition amount of the organic binder is 0.1 to 5% by weight of the fine powder for a rare earth permanent magnet. .
【請求項5】 請求項1〜請求項4に示す希土類永久磁
石の製造方法において、分留点が400℃以下で常温で
の動粘度が10cst以下の鉱物油または合成油を使用
することを特徴とする製造方法。
5. The method for producing a rare earth permanent magnet according to any one of claims 1 to 4, wherein a mineral oil or synthetic oil having a fractional distillation point of 400 ° C. or less and a kinematic viscosity at room temperature of 10 cst or less is used. And manufacturing method.
【請求項6】 請求項1〜請求項5に示す希土類永久磁
石の製造方法において、押し出し成形後の成形体の密度
が2.0〜5.0g/ccであることを特徴とする製造
方法。
6. The method of manufacturing a rare earth permanent magnet according to claim 1, wherein the density of the molded body after extrusion molding is 2.0 to 5.0 g / cc.
【請求項7】 請求項1〜請求項6に示す希土類永久磁
石の製造方法において、成形体に異方性を付与するため
の配向磁界強度が5KOe以上であることを特徴とする
製造方法。
7. The method for producing a rare earth permanent magnet according to claim 1, wherein the orientation magnetic field strength for imparting anisotropy to the compact is 5 KOe or more.
【請求項8】 請求項1〜請求項7に示す希土類永久磁
石の製造方法において、得られた成形体を温度50〜5
00℃、圧力10-1torr以下の条件下で30分以上
保持する脱鉱物油、脱合成油、脱有機結合剤処理を施
し、その後焼結することを特徴とする製造方法。
8. The method for producing a rare earth permanent magnet according to any one of claims 1 to 7, wherein the molded body obtained has a temperature of 50 to 5
A process for producing a demineralized oil, desynthesized oil and deorganic binder, which is held for 30 minutes or longer under conditions of 00 ° C. and a pressure of 10 −1 torr or less, and then sintering.
【請求項9】 請求項1〜請求項7に示す希土類永久磁
石の製造方法において、得られた成形体に10-1tor
r以下の圧力下で常温から500℃までの温度範囲の昇
温速度を10℃/分以下とする脱鉱物油、脱合成油、脱
有機結合剤処理を施し、その後焼結することを特徴とす
る製造方法。
9. The method for producing a rare earth permanent magnet according to any one of claims 1 to 7, wherein the obtained molded body has 10 -1 torr.
Characterized by performing demineralized oil, desynthesized oil, and deorganic binder treatment at a temperature rising rate of 10 ° C./min or less in a temperature range from room temperature to 500 ° C. under a pressure of r or less, and then sintering. Manufacturing method.
JP5241255A 1993-09-28 1993-09-28 Manufacture of rare earth permanent magnet Pending JPH0799107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5241255A JPH0799107A (en) 1993-09-28 1993-09-28 Manufacture of rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5241255A JPH0799107A (en) 1993-09-28 1993-09-28 Manufacture of rare earth permanent magnet

Publications (1)

Publication Number Publication Date
JPH0799107A true JPH0799107A (en) 1995-04-11

Family

ID=17071524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5241255A Pending JPH0799107A (en) 1993-09-28 1993-09-28 Manufacture of rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH0799107A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012056273A (en) * 2010-09-13 2012-03-22 Tdk Corp Magnetic field extrusion molding apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012056273A (en) * 2010-09-13 2012-03-22 Tdk Corp Magnetic field extrusion molding apparatus

Similar Documents

Publication Publication Date Title
EP1970916B1 (en) R-Fe-B POROUS MAGNET AND METHOD FOR PRODUCING THE SAME
DE102016101890A1 (en) R-T-B based sintered magnet
DE102017203073A1 (en) Permanent magnet based on R-T-B
EP1762316B1 (en) Method for producing a rare earth sintered magnet and its raw material and granules
JPH1064746A (en) Method of manufacturing r-fe-b sintered magnet having thin thickness
EP1386681B1 (en) Method for producing granulated powder of r-fe-b type alloy and method for producing r-fe-b type alloy sintered compact
JPH0799107A (en) Manufacture of rare earth permanent magnet
JP2859517B2 (en) Rare earth magnet manufacturing method
JP4449900B2 (en) Method for producing rare earth alloy powder and method for producing rare earth sintered magnet
JP2020031145A (en) RFeB-BASED SINTERED MAGNET AND MANUFACTURING METHOD OF THE SAME
JPH1022155A (en) Manufacture of rare-earth permanent magnet and rare-earth permanent magnet
JPH0913151A (en) Rare earth-iron-nitrogen base magnetic material and its production
JP4666145B2 (en) Rare earth sintered magnet manufacturing method and rare earth sintered magnet
JP4089212B2 (en) Method for producing granulated powder of rare earth alloy and method for producing sintered rare earth alloy
JPH0869908A (en) Manufacture of rare-earth permanent magnet
JPH07176413A (en) Manufacture of rare earth element magnet
JP3556786B2 (en) Method and apparatus for producing anisotropic granulated powder
JP4561432B2 (en) Method for producing RTB-based sintered magnet
JPH07183147A (en) Manufacture of rare-earth permanent magnet
JP3812926B2 (en) Rare earth bonded magnet compound, method for producing the same, and R-T-B bonded magnet
JP4636240B2 (en) Raw powder for manufacturing RTB-based sintered magnets
JP4057563B2 (en) Granule, sintered body
JP4662046B2 (en) Manufacturing method of rare earth sintered magnet
JP4282013B2 (en) Manufacturing method of rare earth sintered magnet
JP4057562B2 (en) Method for producing raw material powder for rare earth sintered magnet and method for producing rare earth sintered magnet