JPH0797664A - High corrosion resistant surface modified stainless steel - Google Patents

High corrosion resistant surface modified stainless steel

Info

Publication number
JPH0797664A
JPH0797664A JP24327393A JP24327393A JPH0797664A JP H0797664 A JPH0797664 A JP H0797664A JP 24327393 A JP24327393 A JP 24327393A JP 24327393 A JP24327393 A JP 24327393A JP H0797664 A JPH0797664 A JP H0797664A
Authority
JP
Japan
Prior art keywords
stainless steel
crystal grains
chromium nitride
corrosion resistance
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24327393A
Other languages
Japanese (ja)
Other versions
JP3283655B2 (en
Inventor
Muneyuki Imafuku
宗行 今福
Haruo Shimada
春男 島田
Izumi Muto
泉 武藤
Hiroshi Kihira
寛 紀平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24327393A priority Critical patent/JP3283655B2/en
Publication of JPH0797664A publication Critical patent/JPH0797664A/en
Application granted granted Critical
Publication of JP3283655B2 publication Critical patent/JP3283655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To provide a stainless steel excellent in corrosion resistance by controlling surface conditions, without performing high alloying. CONSTITUTION:This steel is a high corrosion resistant surface modified stainless steel in which crystal grains practically containing chromium nitride and crystal grains free from chromium nitride are finely dispersed in the surface layer part of stainless steel. In this high corrosion resistant surface modified stainless steel, the sum total of the surface areas of the crystal grains containing chromium nitride in the surface is regulated to 25-75% based on the whole surface area of the stainless steel, and further, in the crystal grains containing chromium nitride, the thickness of the existence region of chromium nitride can be regulated so that it is 2-20nm from the surface in a depth direction. By controlling the surface composition distribution of the stainless steel, its corrosion resistance can be remarkably improved and product life can greatly be prolonged, and its use under severer corrosive environments can be enabled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高耐食性表面改質ステ
ンレス鋼に関する。ステンレス鋼は、その耐食性を生か
して、建築物の各種外装材や流し台、風呂桶等の調度
品、あるいはナイフ、フォーク等の家庭用品にと幅広く
用いられている。本発明は、ステンレス鋼が用いられて
いる全分野において利用価値の高いものであるが、特に
その高耐候性が要求される建築建材としての応用分野に
おいて極めて利用価値の高いものである。
FIELD OF THE INVENTION The present invention relates to surface-modified stainless steel with high corrosion resistance. Taking advantage of its corrosion resistance, stainless steel is widely used in various exterior materials for buildings, furniture such as sinks and bath tubs, and household products such as knives and forks. INDUSTRIAL APPLICABILITY The present invention has a high utility value in all fields in which stainless steel is used, but it has a very high utility value particularly in an application field as a building construction material which requires high weather resistance.

【0002】[0002]

【従来の技術】ステンレス鋼の代表的なものとしてはF
e−Cr(主成分Fe−18wt%Cr)を主成分とする
フェライト系のSUS430鋼や、Fe−Cr−Ni
(主成分Fe−18wt%Cr−8wt%Ni)を主成分と
するオーステナイト系のSUS304鋼がある。これら
のステンレス鋼はその表面に酸化クロムを主成分とする
不動態皮膜を形成することにより、通常の鉄鋼材料に比
べて高耐食性を示すことが知られている。従ってステン
レス鋼は、耐食性の要求される、建築物の各種外装材や
流し台、風呂桶等の調度品、あるいはナイフ、フォーク
等の家庭用品にと幅広く用いられている。
2. Description of the Related Art F is a typical example of stainless steel.
Ferrite-based SUS430 steel containing e-Cr (main component Fe-18 wt% Cr) as the main component and Fe-Cr-Ni
There is an austenitic SUS304 steel whose main component is (Fe-18 wt% Cr-8 wt% Ni). It is known that these stainless steels have higher corrosion resistance than ordinary steel materials by forming a passivation film containing chromium oxide as a main component on the surface thereof. Therefore, stainless steel is widely used in various exterior materials for buildings, furniture such as sinks and bath tubs, and household products such as knives and forks, which require corrosion resistance.

【0003】特に最近は建築建材に使用される例が増加
してきている。建築建材は、風雨や温度サイクル等の過
酷な条件下にさらされており、より高い耐食性が要求さ
れる。この用途には光輝焼鈍されたステンレス鋼が広く
用いられている。なぜならば光輝焼鈍されたステンレス
鋼は、酸洗や研磨仕上げ等を施された材料に見られる厚
い酸化スケールの生成が防止されているとともに、より
耐食性に優れた表面不動態皮膜が形成されているからで
ある。しかしながら、用途の拡大に伴い、上記の光輝焼
鈍されたステンレス鋼においても錆の発生が問題となる
過酷な環境での使用例がしばしば見受けられるようにな
ってきた。さらに、ユーザーの耐食性に対する要求は厳
しくなってきており、ステンレス鋼のより一層の高耐食
性化が求められてきている。
Particularly, recently, the number of examples used for building materials has been increasing. Building materials are exposed to severe conditions such as wind and rain and temperature cycles, and higher corrosion resistance is required. Bright annealed stainless steel is widely used for this purpose. This is because bright annealed stainless steel prevents the formation of thick oxide scale, which is found in materials that have been pickled and polished, and forms a surface passivation film with more excellent corrosion resistance. Because. However, with the expansion of applications, examples of use in the harsh environment in which rust is a problem is often found even in the above bright annealed stainless steel. Further, the demands on the corrosion resistance of users are becoming strict, and further higher corrosion resistance of stainless steel is required.

【0004】この問題を解決するために、上記材料より
もCrやNiの含有量や第四元素のMo等の含有量を増
加させ、強固な不動態皮膜を形成する高合金化高級ステ
ンレス鋼、例えば、YUS170(主成分Fe−20wt
%Cr−18wt%Ni)、YUS270(主成分Fe−
25wt%Cr−13wt%Ni−6wt%Mo)が開発され
使用されるようになってきた(YUSは登録商標)。し
かしながら、これら高合金化ステンレス鋼は母合金自体
にCr,Ni,Moといった高価な原材料を多量に使用
するために、原材料コスト高となり、最終製品価格が高
いという問題がある。そこで、高合金化によらないで、
安価なSUS430やSUS304をベースにし、従来
材料よりも耐食性に優れた安価なステンレス鋼開発の要
望が高まってきている。
In order to solve this problem, a high-alloyed high-grade stainless steel which forms a strong passivation film by increasing the contents of Cr and Ni and the contents of quaternary elements such as Mo, compared with the above materials, For example, YUS170 (main component Fe-20 wt
% Cr-18 wt% Ni), YUS270 (main component Fe-
25 wt% Cr-13 wt% Ni-6 wt% Mo) has been developed and used (YUS is a registered trademark). However, since these highly alloyed stainless steels use a large amount of expensive raw materials such as Cr, Ni and Mo for the mother alloy itself, there is a problem that the raw material cost becomes high and the final product price is high. Therefore, instead of using high alloying,
Based on inexpensive SUS430 and SUS304, there is an increasing demand for the development of inexpensive stainless steel that has better corrosion resistance than conventional materials.

【0005】高合金化によらないステンレス鋼の耐食性
向上方法としては、例えば、特開昭54−126624
号公報には、光輝焼鈍雰囲気における水素ガスおよび窒
素ガスの組成および露点を管理することにより、SUS
304鋼の表層数十μm内に窒素を固溶させて耐食性を
向上させる焼鈍方法が開示されている。しかしながらこ
の先行技術においては、焼鈍雰囲気の露点を比較的低く
管理する必要があり、かつ水素と窒素の組成比率を通常
使用されているアンモニア分解ガスの組成から大きく変
化させる必要がある。これは製造コストの大幅な上昇を
招くことになり好ましくない。また、いたずらに鋼中の
固溶窒素量のみを多くしても、ステンレス鋼の耐食性を
抜本的に改善することにはならないので、本質的な改善
にはなっていないのが現状である。
As a method of improving the corrosion resistance of stainless steel which does not depend on high alloying, for example, JP-A-54-126624.
Japanese Patent Laid-Open Publication No. 2003-187242 discloses that by controlling the composition and dew point of hydrogen gas and nitrogen gas in a bright annealing atmosphere,
An annealing method is disclosed in which nitrogen is dissolved in the surface layer of tens of μm of 304 steel to improve the corrosion resistance. However, in this prior art, it is necessary to control the dew point of the annealing atmosphere to be relatively low, and it is necessary to greatly change the composition ratio of hydrogen and nitrogen from the composition of the normally decomposed ammonia decomposition gas. This is not preferable because it causes a large increase in manufacturing cost. Further, even if the amount of solute nitrogen in the steel is unnecessarily increased, the corrosion resistance of the stainless steel cannot be drastically improved, so that it is not an essential improvement at present.

【0006】[0006]

【発明が解決しようとする課題】本発明はかかる現状に
鑑み、高合金化によらないで、耐食性に優れたステンレ
ス鋼を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above situation, it is an object of the present invention to provide a stainless steel having excellent corrosion resistance without resorting to high alloying.

【0007】[0007]

【課題を解決するための手段】従来の高耐食性高級ステ
ンレス鋼は、前述のようにCr,Ni,Moといった合
金成分の含有量を増加させたものである。すなわちこれ
はステンレス鋼のバルク組成そのものを変化させること
により耐食性を向上させたものである。しかしながら腐
食現象は固体と気体あるいは固体と液体との界面で起こ
る界面反応であるので、本来ならばステンレス鋼の表面
状態の制御によって、さらなる高耐食性付与が実現され
るはずである。
The conventional high-corrosion-resistant high-grade stainless steel has an increased content of alloy components such as Cr, Ni, and Mo as described above. That is, this is an improvement in corrosion resistance by changing the bulk composition of stainless steel itself. However, since the corrosion phenomenon is an interfacial reaction that occurs at the interface between a solid and a gas or a solid and a liquid, originally, the control of the surface condition of the stainless steel should realize further high corrosion resistance.

【0008】発明者らは、この観点から、ステンレス鋼
表面に種々の処理を行うことによりその表面結晶状態を
制御して、これと耐食性との関係を詳細に調べてきた。
その結果、ステンレス鋼の表層部に、実質的に窒化クロ
ムの存在する結晶粒と窒化クロムの存在しない結晶粒と
を微細に分散させることが耐食性の向上に有効であるこ
とを発見した。ここでいう‘実質的に’とは、オージェ
光電子分光法およびX線光電子分光法等の測定手段によ
り、前者の結晶粒においては窒化クロムが明瞭に観測さ
れ、後者の結晶粒においては窒化クロムが全く観測され
ないかあるいは観測されても極微量である状態をいう。
現在までのところ本発明による耐食性向上のメカニズム
については明確ではないが、発明者らは、実質的に窒化
クロムの存在する結晶粒と窒化クロムの存在しない結晶
粒との間で局所的な電池作用が生ずることにより耐食性
が向上したものと考えている。
From this point of view, the present inventors have controlled the surface crystal state of the stainless steel surface by various treatments, and have investigated the relationship between it and the corrosion resistance in detail.
As a result, it was discovered that it is effective to improve the corrosion resistance by finely dispersing crystal grains substantially containing chromium nitride and crystal grains not containing chromium nitride in the surface layer of stainless steel. As used herein, "substantially" means that chromium nitride is clearly observed in the crystal grains of the former and chromium nitride is observed in the crystal grains of the latter by measuring means such as Auger photoelectron spectroscopy and X-ray photoelectron spectroscopy. It is a state in which it is not observed at all, or is infinitesimal even if it is observed.
Although the mechanism for improving the corrosion resistance according to the present invention has not been clarified so far, the inventors of the present invention have found that the local cell action is substantially generated between the crystal grains in which chromium nitride exists and the crystal grains in which chromium nitride does not exist. It is considered that the corrosion resistance is improved by the occurrence of.

【0009】ステンレス鋼の表面に実質的に窒化クロム
の存在する結晶粒と窒化クロムの存在していない結晶粒
とを分散形成する方法は特に制限するものではない。例
えば、窒素の存在する雰囲気中での焼鈍による表面窒化
焼鈍や窒素プラズマを用いた表面プラズマ窒化等幾つか
の手法が有効である。
There is no particular limitation on the method for dispersing and forming crystal grains substantially containing chromium nitride and crystal grains not containing chromium nitride on the surface of stainless steel. For example, several methods such as surface nitriding annealing by annealing in an atmosphere containing nitrogen and surface plasma nitriding using nitrogen plasma are effective.

【0010】本発明において対象とされるステンレス鋼
は、その化学成分を特に限定されるものではない。フェ
ライト系ステンレス鋼、オーステナイト系ステンレス
鋼、フェライト・オーステナイト2相ステンレス鋼等あ
らゆる鋼種を対象とすることができる。
The chemical composition of the stainless steel targeted by the present invention is not particularly limited. It is possible to target all types of steel such as ferritic stainless steel, austenitic stainless steel, and ferritic-austenitic duplex stainless steel.

【0011】以下、本発明による高耐食性表面改質ステ
ンレス鋼について、図面を用いて詳細に説明する。ステ
ンレス鋼は多結晶体であり、その表面には多数の結晶粒
が存在する。これらの結晶粒にはFe,Cr,Ni等の
元素が存在する。本発明ではこれらの結晶粒の最表層部
において、Crの実質的に窒化した結晶粒と窒化してい
ない結晶粒とを分散させることにより耐食性を向上させ
たものである。ここでは本発明の詳細を、露点−45℃
に制御した75%水素+25%窒素雰囲気中1200℃
で15秒間表面窒化焼鈍を施したSUS304鋼を例に
説明する。本焼鈍条件は通常の光輝焼鈍と同一雰囲気で
あるが、焼鈍温度が若干高温であることを主な特徴とす
る。表面近傍元素の分布状態はオージェ光電子分光法に
より、結合状態はX線光電子分光法により測定した。各
測定法の深さ方向分布測定はArスパッタリングしなが
ら行った。
The high-corrosion-resistant surface-modified stainless steel according to the present invention will be described in detail below with reference to the drawings. Stainless steel is a polycrystalline body, and many crystal grains are present on its surface. Elements such as Fe, Cr, and Ni are present in these crystal grains. In the present invention, in the outermost layer portion of these crystal grains, the substantially corroded crystal grains of Cr and the non-nitrided crystal grains are dispersed to improve the corrosion resistance. Here, the details of the present invention are described with a dew point of −45 ° C.
In a 75% hydrogen + 25% nitrogen atmosphere controlled at 1200 ° C
An example of SUS304 steel subjected to surface nitriding annealing for 15 seconds will be described. The main annealing condition is the same atmosphere as the normal bright annealing, but the main feature is that the annealing temperature is slightly high. The distribution state of the elements near the surface was measured by Auger photoelectron spectroscopy, and the binding state was measured by X-ray photoelectron spectroscopy. The distribution measurement in the depth direction of each measurement method was performed while Ar sputtering was performed.

【0012】本材料の表面のオージェ光電子分光測定結
果によれば、窒素の存在量の多い結晶粒(以後結晶粒A
と呼ぶ)と、窒素の少ない結晶粒(以後結晶粒Bと呼
ぶ)とが分散して存在することがわかった。また通常の
光輝焼鈍処理(例えば上記と同一雰囲気中で1100℃
20秒間焼鈍)を行ったSUS304鋼(以後比較材と
呼ぶ)では、窒素量の結晶粒による差はなく、表面近傍
にほぼ均一に存在していた。
According to the Auger photoelectron spectroscopy measurement results of the surface of this material, crystal grains having a large amount of nitrogen (hereinafter referred to as crystal grain A
It was found that there are dispersed crystal grains containing less nitrogen (hereinafter referred to as crystal grains B). Ordinary bright annealing treatment (eg 1100 ° C in the same atmosphere as above)
In the SUS304 steel annealed for 20 seconds (hereinafter referred to as the comparative material), there was no difference in the amount of nitrogen due to the crystal grains, and it was present almost uniformly in the vicinity of the surface.

【0013】図1に結晶粒A、結晶粒Bおよび比較材の
窒素1sとクロム2pのX線光電子分光スペクトルを示
す。比較材の場合は前記X線光電子分光スペクトルの結
晶粒による差異は認められないので代表的一例を示して
ある。本図より、まず結晶粒Aと結晶粒Bとでは窒素1
sの強度レベルが前者の方が数倍強いことがわかる。す
なわち、窒素が一部の結晶粒に偏析している。さらに前
者では窒素は化学結合した状態で存在しているものが多
く、後者では主に吸着的状態にあることがわかる。クロ
ム2pスペクトラムと合わせて考えると、結晶粒Aにお
いて選択的に窒化クロムが形成されていることがわか
る。一方比較材では、窒素はほぼ均一に表面近傍に固溶
状態で存在しておりまたクロムは主に酸化物を形成して
いる。従って本発明のような窒化クロムの分散した存在
は認められない。また、深さ方向の窒化クロムの分布の
様子を調べた結果、窒化クロムは結晶粒A中表面より約
10nmの領域に限定されて存在していることがわかっ
た。
FIG. 1 shows X-ray photoelectron spectroscopic spectra of crystal grains A, crystal grains B, and nitrogen 1s and chromium 2p as comparative materials. In the case of the comparative material, since a difference due to crystal grains in the X-ray photoelectron spectroscopy spectrum is not recognized, a typical example is shown. From this figure, first, in crystal grains A and B, nitrogen 1
It can be seen that the intensity level of s is several times stronger than the former. That is, nitrogen is segregated in some crystal grains. Furthermore, in the former, most of the nitrogen is present in the state of being chemically bound, and in the latter, it is found that the nitrogen is mainly in the adsorptive state. Considering together with the chromium 2p spectrum, it can be seen that chromium nitride is selectively formed in the crystal grain A. On the other hand, in the comparative material, nitrogen almost uniformly exists in the vicinity of the surface in a solid solution state, and chromium mainly forms an oxide. Therefore, the dispersed presence of chromium nitride as in the present invention is not recognized. Further, as a result of investigating the distribution of chromium nitride in the depth direction, it was found that chromium nitride exists only in a region of about 10 nm from the surface inside the crystal grain A.

【0014】以上の知見をまとめて、図2に本発明によ
るSUS304ステンレス鋼の表面近傍の窒化クロムの
分布の模式図を示した。図中斜線を施した部分が実質的
に窒化クロムの存在する領域である。窒化クロムの存在
する結晶粒(結晶粒A)と窒化クロムのほとんど存在し
ない結晶粒(結晶粒B)が表面に分散している。また、
深さ方向への窒化クロムの存在領域は表面より約10nm
に限定されている。通常の光輝焼鈍処理(例えば上記と
同一雰囲気中1100℃20秒間焼鈍)を行ったSUS
304鋼では、窒素は表面近傍に固溶状態でほぼ均一に
存在しておりまたクロムは主に酸化物を形成しており、
窒化クロムの分散した存在は認められない。
In summary of the above findings, FIG. 2 shows a schematic diagram of the distribution of chromium nitride near the surface of SUS304 stainless steel according to the present invention. The shaded portion in the figure is the region in which chromium nitride is substantially present. Crystal grains containing chromium nitride (crystal grains A) and crystal grains containing almost no chromium nitride (crystal grains B) are dispersed on the surface. Also,
Chromium nitride existing region in the depth direction is about 10 nm from the surface
Is limited to. SUS that has been subjected to normal bright annealing treatment (for example, 1100 ° C. for 20 seconds in the same atmosphere as above)
In 304 steel, nitrogen exists almost uniformly in the vicinity of the surface in a solid solution state, and chromium mainly forms an oxide,
The presence of dispersed chromium nitride is not recognized.

【0015】次に、前記表面窒化焼鈍したSUS304
鋼と通常の光輝焼鈍SUS304鋼との耐食性について
述べる。耐食性試験は、25℃、3.5%NaCl水溶
液中での孔食発生電位を測定することにより行った。電
圧は20mV/minの速度で上昇させた。図3に本測定の分
極曲線を示す。本図に示すように、通常の光輝焼鈍を施
したSUS304鋼では約0.6Vにおいて電流の急激
な上昇がみられ孔食が発生する。これに対して、本発明
では孔食は発生しない。この場合の1.2V付近よりの
電流密度の増加は、水の電気分解による酸素ガスの発生
によるものである。このように本発明により、ステンレ
ス鋼の耐食性を著しく改善することができた。
Next, the surface nitriding-annealed SUS304 is used.
The corrosion resistance of steel and ordinary bright annealed SUS304 steel will be described. The corrosion resistance test was performed by measuring the pitting corrosion generation potential in a 3.5% NaCl aqueous solution at 25 ° C. The voltage was raised at a rate of 20 mV / min. FIG. 3 shows the polarization curve of this measurement. As shown in this figure, in the conventional bright-annealed SUS304 steel, a sharp increase in current is observed at about 0.6 V, and pitting occurs. In contrast, pitting corrosion does not occur in the present invention. The increase in current density from around 1.2 V in this case is due to generation of oxygen gas by electrolysis of water. As described above, according to the present invention, the corrosion resistance of stainless steel can be remarkably improved.

【0016】次にこれらの結晶粒の表面分布状況の適正
範囲について述べる。ステンレス鋼表面における窒化ク
ロムを有する結晶粒の表面存在量は、ステンレス鋼の全
表面積S0 に対する窒化クロムの存在する結晶粒の表面
積総和Sの比:S/S0 で表わすことができる。本発明
では、S/S0 が0.25以上0.75以下の範囲が望
ましい。0.25以下では窒化された結晶粒の量が少な
く、また0.75以上では逆に窒化されていない結晶粒
の量が少ないために表面改質による耐食性向上の効果が
あまり認められない。また、窒化クロムを有する結晶粒
と窒化クロムをほとんど有さない結晶粒とがなるべく隣
接するように分散している状況が望ましい。
Next, the appropriate range of the surface distribution of these crystal grains will be described. The surface abundance of crystal grains having chromium nitride on the surface of stainless steel can be expressed by the ratio of the total surface area S of crystal grains containing chromium nitride to the total surface area S 0 of stainless steel: S / S 0 . In the present invention, S / S 0 is preferably in the range of 0.25 or more and 0.75 or less. If it is 0.25 or less, the amount of nitrided crystal grains is small, and if it is 0.75 or more, the amount of non-nitrided crystal grains is small. Further, it is desirable that the crystal grains having chromium nitride and the crystal grains having almost no chromium nitride are dispersed so as to be adjacent to each other as much as possible.

【0017】次に、上記の窒化された結晶粒中の窒化ク
ロムの深さ方向分布について述べる。窒化クロムの存在
する領域は最表層部より厚さ2nm以上20nm以下である
ことが望ましい。2nm以下では窒化クロムの存在量が少
なすぎるために耐食性向上にあまり寄与できない。また
20nm以上の窒化層を形成したステンレス鋼では、逆に
粒界腐食の問題が生じ、耐食性がかえって悪くなる場合
がしばしば見受けられるようになる。
Next, the depthwise distribution of chromium nitride in the above-mentioned nitrided crystal grains will be described. It is desirable that the region where chromium nitride exists has a thickness of 2 nm or more and 20 nm or less from the outermost surface layer portion. If the thickness is less than 2 nm, the amount of chromium nitride present is too small to contribute to the improvement of corrosion resistance. On the other hand, in the case of a stainless steel having a nitrided layer of 20 nm or more, the problem of intergranular corrosion occurs, and the corrosion resistance is rather deteriorated.

【0018】以上のように、本発明による高耐食性表面
改質ステンレス鋼は、窒化クロムの優先的に生成した結
晶粒をステンレス鋼の表面に分散していることを特徴と
するので、従来の表面窒化ステンレス鋼とは本質的に異
なるものである。例えば特開平5−125558号公報
には「窒素含有化合物を有する耐銹性に優れたステンレ
ス鋼」の技術が開示されているが、これは表面酸化皮膜
内に窒素含有化合物を単に有することを特徴とするもの
で、本発明のように表面近傍での窒化クロムの分布状態
を制御した技術ではない。
As described above, the high-corrosion-resistant surface-modified stainless steel according to the present invention is characterized in that crystal grains of chromium nitride that are preferentially generated are dispersed on the surface of the stainless steel. It is essentially different from nitrided stainless steel. For example, Japanese Patent Application Laid-Open No. 5-125558 discloses a technique of "stainless steel having a nitrogen-containing compound and excellent in rust resistance", which is characterized by simply having a nitrogen-containing compound in the surface oxide film. However, it is not a technique for controlling the distribution state of chromium nitride near the surface as in the present invention.

【0019】[0019]

【実施例】以下に本発明の実施例を述べる。 〔実施例1〕SUS304ステンレス鋼およびSUS4
30ステンレス鋼を種々の条件で表面窒化焼鈍して、表
面窒化の様子と耐食性との関係を調べた。窒化焼鈍条件
は以下の通りである。 雰囲気 :75%水素−25%窒素(露点−45℃) 温度 :1185℃ 焼鈍時間:10秒から100秒 上記の条件により、還元性雰囲気中でステンレス鋼の表
面が窒化される。窒化の程度はオージェ電子分光分析お
よびX線光電子分光法により測定した。各測定法の深さ
方向分布測定はArスパッタリングしながら行った。
EXAMPLES Examples of the present invention will be described below. [Example 1] SUS304 stainless steel and SUS4
Surface nitriding annealing of 30 stainless steel was performed under various conditions, and the relationship between the state of surface nitriding and corrosion resistance was investigated. The nitriding annealing conditions are as follows. Atmosphere: 75% hydrogen-25% nitrogen (dew point -45 ° C) Temperature: 1185 ° C Annealing time: 10 seconds to 100 seconds Under the above conditions, the surface of stainless steel is nitrided in a reducing atmosphere. The degree of nitriding was measured by Auger electron spectroscopy and X-ray photoelectron spectroscopy. The distribution measurement in the depth direction of each measurement method was performed while Ar sputtering was performed.

【0020】本材料の表面のオージェ光電子分光測定結
果によれば、その表面において窒素の存在量の多い結晶
粒(結晶粒A)と窒素の少ない結晶粒(結晶粒B)とが
分散して存在することがわかった。結晶粒Aのオージェ
ピーク高さは、結晶粒Bのそれに比べて約4倍であっ
た。また、X線光電子分光測定結果によれば、結晶粒A
における396eV近傍の結合的窒素1sの積分強度は結
晶粒Bにおけるそれに比べて12倍以上であった。
According to the result of Auger photoelectron spectroscopy measurement on the surface of the present material, crystal grains having a large amount of nitrogen (crystal grain A) and crystal grains having a small amount of nitrogen (crystal grain B) are dispersed on the surface. I found out that The height of the Auger peak of the crystal grain A was about 4 times that of the crystal grain B. In addition, according to the X-ray photoelectron spectroscopy measurement result, the crystal grain A
The integrated intensity of associative nitrogen 1s in the vicinity of 396 eV was 12 times or more that of the crystal grain B.

【0021】さらに、本焼鈍処理により窒化クロムが形
成される領域は表面から深さ方向に約4nmから6nmまで
と大きくは変わらないことがわかった。一方窒化クロム
を有する結晶粒の存在量(前記S/S0 )は焼鈍時間を
変えることにより広範囲に制御できることがわかった。
耐食性試験は、25℃、3.5%NaCl水溶液中での
孔食発生電位を測定することにより行った。電圧は20
mV/minの速度で上昇させた。
Further, it has been found that the region where chromium nitride is formed by the main annealing treatment does not change significantly from the surface to the depth direction of about 4 nm to 6 nm. On the other hand, it was found that the amount of crystal grains containing chromium nitride (S / S 0 ) can be controlled in a wide range by changing the annealing time.
The corrosion resistance test was performed by measuring the pitting corrosion generation potential in a 3.5% NaCl aqueous solution at 25 ° C. The voltage is 20
It was raised at a rate of mV / min.

【0022】図4に以上の結果をまとめて示す。本図中
右側には比較のために従来のステンレス鋼の孔食発生電
位を示した。本図よりわかるように、SUS304鋼で
はS/S0 が0.25以上0.75以下の領域では孔食
が発生せず、従来の材料では得られない高耐食性が達成
できた。また、SUS430鋼では、0.25以上0.
75以下の領域では、高合金化ステンレス鋼のYUS1
70に匹敵する耐食性が達成できた。
FIG. 4 collectively shows the above results. On the right side of this figure, the pitting corrosion potential of the conventional stainless steel is shown for comparison. As can be seen from this figure, in SUS304 steel, pitting corrosion did not occur in the region where S / S 0 was 0.25 or more and 0.75 or less, and high corrosion resistance that could not be obtained with conventional materials was achieved. Further, in SUS430 steel, 0.25 or more and 0.
In the region of 75 or less, highly alloyed stainless steel YUS1
Corrosion resistance comparable to 70 was achieved.

【0023】〔実施例2〕SUS304鋼を、窒素と水
素の混合ガスプラズマ中で表面プラズマ窒化処理を施
し、表面窒化の様子と耐食性との関係を調べた。本処理
の主な条件は以下の通りである。 プラズマ窒化ガス:窒素40Pa+水素13Pa 窒化温度 :300℃から700℃ 窒化時間 :30分 上記の条件により、還元性プラズマ雰囲気中でステンレ
ス鋼の表面が窒化される。窒化程度はオージェ電子分光
分析およびX線光電子分光により測定した。各測定法の
深さ方向分布測定はArスパッタリングしながら行っ
た。
Example 2 SUS304 steel was subjected to surface plasma nitriding treatment in a mixed gas plasma of nitrogen and hydrogen, and the relationship between the state of surface nitriding and corrosion resistance was investigated. The main conditions of this processing are as follows. Plasma nitriding gas: Nitrogen 40 Pa + hydrogen 13 Pa Nitriding temperature: 300 ° C. to 700 ° C. Nitriding time: 30 minutes Under the above conditions, the surface of stainless steel is nitrided in a reducing plasma atmosphere. The degree of nitriding was measured by Auger electron spectroscopy and X-ray photoelectron spectroscopy. The distribution measurement in the depth direction of each measurement method was performed while Ar sputtering was performed.

【0024】本材料の表面のオージェ光電子分光測定結
果によれば、その表面において窒素の存在量の多い結晶
粒(結晶粒A)と窒素の少ない結晶粒(結晶粒B)とが
分散して存在することがわかった。結晶粒Aのオージェ
ピーク高さは、結晶粒Bのそれに比べて約3倍であっ
た。また、X線光電子分光測定結果によれば、結晶粒A
における396eV近傍の結合的窒素1sの積分強度は結
晶粒Bにおけるそれに比べて10倍以上であった。ま
た、本焼鈍処理により窒化クロムを有する結晶粒の存在
量(前記S/S0 )は約0.4から0.6と大きくは変
わらないことがわかった。一方窒化クロムが形成される
表面から深さ方向への範囲は窒化温度を変えることによ
り広範囲に制御できることがわかった。耐食性試験は、
25℃、3.5%NaCl水溶液中での孔食発生電位を
測定することにより行った。電圧は20mV/minの速度で
上昇させた。図5に以上の結果をまとめて示す。本図中
右側には比較のために従来のステンレス鋼の孔食発生電
位を示した。本図よりわかるように、SUS304鋼で
は窒化クロムの存在する領域が2nmから20nmの範囲で
は孔食が発生せず、従来の材料では得られない高耐食性
が達成できた。
According to the Auger photoelectron spectroscopy measurement results of the surface of this material, crystal grains having a large amount of nitrogen (crystal grains A) and crystal grains having a small amount of nitrogen (crystal grains B) are dispersed on the surface. I found out that The height of the Auger peak of the crystal grain A was about 3 times that of the crystal grain B. In addition, according to the X-ray photoelectron spectroscopy measurement result, the crystal grain A
The integrated intensity of associative nitrogen 1s in the vicinity of 396 eV was 10 times or more that of crystal grain B. Further, it was found that the amount of crystal grains having chromium nitride (the above S / S 0 ) did not significantly change from about 0.4 to 0.6 by the main annealing treatment. On the other hand, it was found that the range from the surface where chromium nitride is formed to the depth direction can be controlled in a wide range by changing the nitriding temperature. The corrosion resistance test is
It was performed by measuring the pitting corrosion potential in a 3.5% NaCl aqueous solution at 25 ° C. The voltage was raised at a rate of 20 mV / min. The above results are shown together in FIG. On the right side of this figure, the pitting corrosion potential of the conventional stainless steel is shown for comparison. As can be seen from the figure, in the SUS304 steel, pitting corrosion did not occur in the region where chromium nitride was present in the range of 2 nm to 20 nm, and high corrosion resistance that could not be obtained with conventional materials was achieved.

【0025】[0025]

【発明の効果】本発明により、高合金化によらないでス
テンレス鋼の耐食性を大幅に向上させることができた。
このことは安価な製造コストでステンレス鋼の製品寿命
を大幅に延ばすことができるのみならず、より過酷な腐
食性環境下での使用が可能となることを意味する。本発
明は、以上のようにステンレス鋼の応用分野全般、特に
建築建材分野への応用に関して大変有益な技術を提供す
るものであり、これらの分野の発展に大きく寄与するも
のである。
According to the present invention, the corrosion resistance of stainless steel can be greatly improved without resorting to high alloying.
This means that not only the product life of stainless steel can be significantly extended at a low manufacturing cost, but also it can be used in a more severe corrosive environment. INDUSTRIAL APPLICABILITY As described above, the present invention provides a very useful technique for application fields of stainless steel in general, and particularly in the field of building materials, and greatly contributes to the development of these fields.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による結晶粒A、結晶粒B、および比較
材の窒素1s、クロム2pのX線光電子分光スペクト
ル。
FIG. 1 is an X-ray photoelectron spectroscopy spectrum of a crystal grain A, a crystal grain B according to the present invention, and nitrogen 1s and chromium 2p as comparative materials.

【図2】本発明によるステンレス鋼の表面および表面近
傍の断面における窒化クロム分布の模式図。
FIG. 2 is a schematic view of chromium nitride distribution on a surface and a cross section near the surface of stainless steel according to the present invention.

【図3】本発明および比較材の孔食電位測定分極曲線。FIG. 3 shows pitting potential measurement polarization curves of the present invention and a comparative material.

【図4】窒化クロムの存在する結晶粒の表面積比率(S
/S0 )と孔食電位との関係を示すグラフ。
FIG. 4 is a surface area ratio of crystal grains in which chromium nitride exists (S
/ S 0 ) and the pitting potential.

【図5】窒化クロムの存在する領域の表面深さと孔食電
位との関係を示すグラフ。
FIG. 5 is a graph showing the relationship between the surface depth of a region in which chromium nitride is present and the pitting potential.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 紀平 寛 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Kihira 20-1 Shintomi, Futtsu City, Chiba Shin Nippon Steel Co., Ltd. Technology Development Division

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ステンレス鋼においてその表層部に、実
質的に窒化クロムの存在する結晶粒と窒化クロムの存在
しない結晶粒とが微細に分散していることを特徴とす
る、高耐食性表面改質ステンレス鋼。
1. A high corrosion resistant surface modification characterized in that, in a surface layer portion of stainless steel, crystal grains substantially containing chromium nitride and crystal grains not containing chromium nitride are finely dispersed. Stainless steel.
【請求項2】 表面における窒化クロムの存在する結晶
粒の表面積総和がステンレス鋼の全表面積に対して25
%以上75%以下あり、かつ窒化クロムの存在する結晶
粒において、窒化クロムの存在領域の厚さがその表面よ
り深さ方向2nm以上20nm以下であることを特徴とす
る、請求項1記載の高耐食性表面改質ステンレス鋼。
2. The total surface area of crystal grains containing chromium nitride on the surface is 25 with respect to the total surface area of stainless steel.
% Or more and 75% or less, and in the crystal grains in which chromium nitride is present, the thickness of the region in which chromium nitride is present is 2 nm or more and 20 nm or less in the depth direction from the surface thereof. Corrosion resistant surface modified stainless steel.
JP24327393A 1993-09-29 1993-09-29 High corrosion resistant surface modified stainless steel Expired - Fee Related JP3283655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24327393A JP3283655B2 (en) 1993-09-29 1993-09-29 High corrosion resistant surface modified stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24327393A JP3283655B2 (en) 1993-09-29 1993-09-29 High corrosion resistant surface modified stainless steel

Publications (2)

Publication Number Publication Date
JPH0797664A true JPH0797664A (en) 1995-04-11
JP3283655B2 JP3283655B2 (en) 2002-05-20

Family

ID=17101419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24327393A Expired - Fee Related JP3283655B2 (en) 1993-09-29 1993-09-29 High corrosion resistant surface modified stainless steel

Country Status (1)

Country Link
JP (1) JP3283655B2 (en)

Also Published As

Publication number Publication date
JP3283655B2 (en) 2002-05-20

Similar Documents

Publication Publication Date Title
Olefjord et al. The influence of nitrogen on the passivation of stainless steels
Olsson et al. Passive films on stainless steels—chemistry, structure and growth
JP5831670B1 (en) Titanium material or titanium alloy material having surface conductivity, manufacturing method thereof, and fuel cell separator and fuel cell using the same
Della Rovere et al. Influence of alloying elements on the corrosion properties of shape memory stainless steels
Hashimoto 2002 WR Whitney Award Lecture: In pursuit of new corrosion-resistant alloys
JP2006299299A (en) Clear-lacquer-coated stainless steel sheet superior in designability, and manufacturing method therefor
US5944917A (en) Stainless steel for ozone added water and manufacturing method thereof
Maistro et al. Low-temperature carburized high-alloyed austenitic stainless steels in PEMFC cathodic environment
Hultquist et al. Highly protective films on stainless steels
May et al. Aspects of the anodic behaviour of duplex stainless steels aged for long periods at low temperatures
JP5625288B2 (en) Corrosion-resistant wear-resistant member and manufacturing method thereof
JP6605066B2 (en) Fe-Cr alloy and method for producing the same
JPH0797664A (en) High corrosion resistant surface modified stainless steel
Li et al. The corrosion behavior of sputter-deposited amorphous Fe–Cr–Ni–Ta alloys in 12 M HCl
US20230043454A1 (en) Stainless steel having excellent surface electrical conductivity for fuel cell separator and manufacturing method therefor
JPH0453943B2 (en)
JP3401350B2 (en) Ferritic stainless steel sheet excellent in color tone stability, anti-glare property and corrosion resistance and method for producing the same
Nishimura et al. Highly corrosion resistant stainless steel with Si implanted/deposited phase
EP1437423B1 (en) Method for producing nitriding steel
US20230420697A1 (en) Stainless steel for fuel cell separator with excellent surface hydrophilicity and electrical conductivity, and manufacturing method thereof
JPH09143614A (en) Ferritic stainless steel excellent in corrosion resistance
JP2002275585A (en) Maraging steel strip and production method therefor
JP3897855B2 (en) Glossy stainless steel sheet for building materials which prevents hydrogen embrittlement and method for producing the same
JP7421649B2 (en) Stainless steel for fuel cell separator plate with excellent surface electrical conductivity and method for manufacturing the same
Kim Effects of Si and Sn Contents and Heat-Treatment Temperature on the Corrosion Behavior of AISI 439 Ferrite Stainless Steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020122

LAPS Cancellation because of no payment of annual fees