JPH0797137B2 - Secondary radar response signal identification method - Google Patents

Secondary radar response signal identification method

Info

Publication number
JPH0797137B2
JPH0797137B2 JP7519889A JP7519889A JPH0797137B2 JP H0797137 B2 JPH0797137 B2 JP H0797137B2 JP 7519889 A JP7519889 A JP 7519889A JP 7519889 A JP7519889 A JP 7519889A JP H0797137 B2 JPH0797137 B2 JP H0797137B2
Authority
JP
Japan
Prior art keywords
response signal
signal
received
receiving stations
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7519889A
Other languages
Japanese (ja)
Other versions
JPH02254391A (en
Inventor
格一 塩見
寅雄 石橋
Original Assignee
運輸省船舶技術研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 運輸省船舶技術研究所長 filed Critical 運輸省船舶技術研究所長
Priority to JP7519889A priority Critical patent/JPH0797137B2/en
Publication of JPH02254391A publication Critical patent/JPH02254391A/en
Publication of JPH0797137B2 publication Critical patent/JPH0797137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、二次レーダに関する。TECHNICAL FIELD The present invention relates to a secondary radar.

[従来の技術] 現在、航空菅制等に用いられている二次レーダシステム
の地上設備は、送信アンテナと送信機および受信機を内
蔵した質問局とデコーダ等から構成されており、送信ア
ンテナは水平面内で鋭い指向性をINTアンテナと、INTア
ンテナのサイドローブを覆う無指向性に近いパターンを
示すSLSアンテナが用いられている。
[Prior Art] The ground equipment of the secondary radar system currently used for air traffic control, etc. is composed of a transmitting antenna, a transmitter and an interrogator with a built-in receiver, and a decoder. An INT antenna with a sharp directivity in the horizontal plane and an SLS antenna showing a pattern close to omnidirectional covering the side lobes of the INT antenna are used.

INTアンテナからは、周波数1030MHzの質問信号が発射さ
せており、このINTアンテナの主ビーム内に存在する複
数の航空機のトランスポンダは、それぞれ質問信号を受
信解読して、それぞれ対応する応答信号を送信してい
る。
An interrogation signal with a frequency of 1030 MHz is emitted from the INT antenna, and transponders of a plurality of aircraft existing in the main beam of the INT antenna each receive and decode the interrogation signal and transmit a corresponding response signal. ing.

トランスポンダからの応答信号は、通常、送信アンテナ
と同一のアンテナで受信され、解読される。送信アンテ
ナの方向と質問信号の送信時間から応答信号が受信され
るまでの時間から、応答したトランスポンダの方位と距
離とが特定され、且つ、応答信号が解読されて航空機が
識別されている。
The response signal from the transponder is typically received and decoded at the same antenna as the transmitting antenna. The direction and distance of the transponder that responded is specified from the direction of the transmitting antenna and the time from the transmission time of the inquiry signal to the reception of the response signal, and the response signal is decoded to identify the aircraft.

[発明が解決しようとする問題点] このような構成であるから、送信アンテナの主ビーム内
に存在するすべての航空機のトランスポンダから応答信
号が送信される。そのため、空港等のように、トランス
ポンダを搭載している航空機が密集している領域では、
複数のトランスポンダが同時に応答するため、応答信号
が重畳して受信されるので、受信信号が解読出来ない。
[Problems to be Solved by the Invention] With such a configuration, the response signal is transmitted from the transponders of all aircraft existing in the main beam of the transmitting antenna. Therefore, in areas such as airports where aircraft with transponders are densely packed,
Since a plurality of transponders respond at the same time, the response signals are superimposed and received, so that the received signals cannot be decoded.

又、トランスポンダの応答時間に誤差があるため、距離
精度が低下する等の問題がある。
Further, there is a problem in that the accuracy of the distance is reduced due to an error in the response time of the transponder.

[問題点を解決するための手段および作用] 複数の応答機からの応答信号を、組を構成する2個所の
受信局で受信し、この2箇所の受信局の受信信号を相関
処理して、相関の最大値とその最大値を示す時間とを検
出し、いずれか一方の受信信号を、送還の最大値を示す
時間だけ時間シフトするとともに、他方の受信信号との
間でスカラー積を求めることにより、複数の応答信号の
中から受信電界強度の最大値を有する特定の応答信号を
強調し、この強調された特定の応答信号が、二次レーダ
システムで規定されている応答信号としての基本的な性
質を有する基本パルス列に含まれるか否かを検定すると
ともに、含まれる場合には、応答信号を解読して応答機
を識別するようにして、応答信号が重畳して受信された
場合でも、応答信号が最大の電界強度をもつ応答機を識
別出来るようにしている。
[Means and Actions for Solving Problems] Response signals from a plurality of transponders are received by two receiving stations forming a set, and the received signals of the two receiving stations are subjected to correlation processing, Detecting the maximum value of the correlation and the time at which the maximum value is detected, time-shifting one of the received signals by the time at which the maximum value of the rebate is reached, and obtaining the scalar product with the other received signal. The particular response signal having the maximum value of the received electric field strength is emphasized from among the plurality of response signals, and the particular response signal thus emphasized is basically the response signal defined by the secondary radar system. Whether or not it is included in the basic pulse train having the property, if it is included, the response signal is decoded to identify the transponder, and even when the response signal is received in a superimposed manner, Maximum response signal The transponder with electric field strength can be identified.

又、強調された特定の応答信号を、それぞれ2箇所の受
信局の受信信号が消去して、それぞれ新たな受信信号を
作成することにより、受信電界強度の強いほうから順次
応答機を識別するようにしている。
In addition, the emphasized specific response signal is deleted from the reception signals of the two receiving stations, and new reception signals are created, respectively, so that the transponders are sequentially identified from the one having the highest received electric field strength. I have to.

さらに、少なくとも3箇所の受信局を設置するととも
に、複数の応答機からの応答信号を、受信局の任意の2
箇所を一組とする少なくとも二組の受信局で受信し、そ
れぞれ組を構成する任意の2箇所の受信局の受信信号を
相関処理して、応答機から組を構成する2箇所の受信局
までの応答信号の到達時間差に相当する相関の最大値を
示す時間をそれぞれ各組ごとに検定し、これらの到達時
間差の交点から応答機の位置を特定するようにして、ト
ランスポンダの応答遅れに伴なう時間誤差に関係なく高
精度の位置測定が出来るようにするとともに,この応答
機が属する組を構成するいずれか一方の受信信号を,最
大値を示す時間だけ時間シフトするとともに,組を構成
する他方の受信信号との間でスカラー積を求めることに
より,複数の応答信号の中から受信電界強度の最大値を
有する特定の応答信号を強調し,この強調された特定の
応答信号が,二次レーダシステムで規定されている応答
信号としての基本的な性質を有する基本パルス列に含ま
れるか否かを検定した後,強調された特定の応答信号が
基本パルス列に含まれる場合には,この特定の応答信号
が解読して応答機を識別するようにしている。
Furthermore, at least three receiving stations are installed, and response signals from a plurality of transponders are sent to any two receiving stations.
At least two sets of receiving stations that form a set are subjected to correlation processing of received signals from any two receiving stations that form a set, and from the responder to the two receiving stations that form the set. The time that shows the maximum value of the correlation corresponding to the arrival time difference of the response signal of each is tested for each group, and the position of the transponder is specified from the intersection of these arrival time differences. In addition to enabling high-accuracy position measurement regardless of time error, one of the received signals that make up the set to which this transponder belongs is time-shifted by the time that shows the maximum value, and a set is made up. By obtaining a scalar product with the other received signal, a particular response signal having the maximum value of the received electric field strength is emphasized from among the plurality of response signals, and this emphasized particular response signal is If the emphasized specific response signal is included in the basic pulse train after checking whether or not it is included in the basic pulse train having the basic characteristics as the response signal specified by the radar system, this specific response is included. The signal is decoded to identify the transponder.

[実施例] この発明の実施例を、第1図〜第3図に基づいて詳細に
説明する。
[Embodiment] An embodiment of the present invention will be described in detail with reference to Figs.

第1図は、この発明による二次レーダシステムの概略図
を示すもので、A、BはINTアンテナ(図示せず)の主
ビーム内に存在する複数の航空機(以下応答機と記す)
で、それぞれトランスポンダ(図示せず)が搭載されて
いる。
FIG. 1 is a schematic diagram of a secondary radar system according to the present invention, in which A and B are a plurality of aircraft existing in the main beam of an INT antenna (not shown) (hereinafter referred to as transponders).
In this case, transponders (not shown) are mounted respectively.

地上設備としては、互いに離れた地点に3個所の受信局
1、2、3が設置されている。この内、任意の2個所の
受信局(例えば受信局1、2)を一組とする少なくとも
二組の受信局(例えば、受信局1、2と受信局2、3)
が1組となって受信処理される。1a、2a、3aはそれぞれ
受信局1、2、3の受信アンテナである。
As ground equipment, three receiving stations 1, 2, and 3 are installed at mutually distant points. Of these, at least two sets of receiving stations (for example, receiving stations 1 and 2 and receiving stations 2 and 3) having two arbitrary receiving stations (for example, receiving stations 1 and 2) as one set
Are processed as a set. 1a, 2a and 3a are receiving antennas of the receiving stations 1, 2 and 3, respectively.

なお、この実施例では、受信局1、2、3のうち、1局
(受信局2)は共用した形式が採用されているが、新た
に受信局をさらに1個所設けて、それぞれ2局を一組と
する2組の地上設備であっても同様である。
In this embodiment, one of the receiving stations 1, 2 and 3 (reception station 2) is used in common, but one more receiving station is newly provided, and two stations each are provided. The same is true for two sets of ground equipment.

4はメモリーで、各受信局1、2、3で受信された応答
信号が記憶される。
A memory 4 stores the response signals received by the receiving stations 1, 2, and 3.

ここで、受信信号は、1090MHz近辺の搬送波が用いられ
ている。現在の技術では、この受信信号をそのまま記録
するのは不可能であるから、メモリー4に記憶可能な中
間周波数に変換されるのであるが、この際、受信信号の
有する位相情報を保存するために、局部発信器からの発
信波形は、互いに直行した波形、即ち、sin波とcos波と
を用いて、それぞれ中間周波数に変換し、メモリー4に
記憶させている。
Here, the received signal uses a carrier wave in the vicinity of 1090 MHz. With the current technology, it is impossible to record this received signal as it is, so it is converted to an intermediate frequency that can be stored in the memory 4. At this time, in order to save the phase information of the received signal, The waveforms transmitted from the local oscillators are converted into intermediate frequencies by using mutually orthogonal waveforms, that is, a sine wave and a cos wave, and are stored in the memory 4.

5はプロセッサで、各種の信号が処理される。A processor 5 processes various signals.

Sa,Sbはそれぞれ応答機A、Bの応答信号、E1(t)、E
2(t)はそれぞれ受信局1、2で受信された受信信号
である。
S a and S b are response signals of transponders A and B, E 1 (t) and E, respectively.
2 (t) are the received signals received by the receiving stations 1 and 2, respectively.

第2図は、応答機A、Bを識別するためのブロック図を
示すもので、6は任意の2個所の受信局1、2で受信さ
れた受信信号E1(t)、E2(t)を相関処理する相関
器、7は遅延器で、いずれか一方の受信信号を相関器6
で得られた相関の最大値を示す時間だけ時間シフトする
ためのものである。8は乗算器で、位相情報を考慮しな
い絶対値で出力される。9は検定器、10は応答機A、B
・・・を識別する識別器である。
FIG. 2 shows a block diagram for identifying the transponders A and B. Reference numeral 6 denotes received signals E 1 (t) and E 2 (t 2 received by the receiving stations 1 and 2 at arbitrary two places. ) Is a correlator, 7 is a delay device, and one of the received signals is received by the correlator 6
This is for time-shifting by the time that indicates the maximum value of the correlation obtained in. Reference numeral 8 denotes a multiplier, which outputs an absolute value without considering the phase information. 9 is a tester, 10 is a responder A, B
It is a discriminator that identifies ...

11は乗算器で、位相情報と振幅情報とが保存するされて
いる。12は乗算器11からの信号の実数軸と虚数軸とのそ
れぞれ平方根を求める平方根演算器、13は位相特性検出
器、14はパルス発生器、15はプロセッサである。
Reference numeral 11 denotes a multiplier, which stores phase information and amplitude information. Reference numeral 12 is a square root calculator for obtaining square roots of the real number axis and the imaginary number axis of the signal from the multiplier 11, 13 is a phase characteristic detector, 14 is a pulse generator, and 15 is a processor.

次に、動作について説明する。Next, the operation will be described.

まず、重畳して応答している複数の応答機の中で、応答
機Aからの応答信号の受信電界強度が最大である場合、
即ち、第1ピーク値を示している場合について、第1図
〜第3図に基づいて説明する。
First, when the received electric field strength of the response signal from the transponder A is the maximum among the plurality of transponders that respond by superimposing,
That is, the case where the first peak value is shown will be described with reference to FIGS.

第3図(a)、(b)にそれぞれの包絡線波形で示され
ているように、複数の応答機A、Bからの応答信号Sa
Sbは、互いに離れた地点に設置されている任意の2個所
の受信局(例えば受信局1、2)を一組とし、少なくと
も二組を構成する3個所の受信局1、2、3でそれぞれ
受信される。
As shown by the envelope waveforms in FIGS. 3A and 3B, the response signals S a from the plurality of transponders A and B,
S b is a combination of two arbitrary receiving stations (for example, receiving stations 1 and 2) installed at mutually distant points, and at least three receiving stations 1, 2, and 3 that form a set. Each is received.

まず、第3図(c)、(d)にそれぞれ包絡線波形が示
されているように、組を構成する2個所の受信局1、2
でそれぞれ受信された時系列信号である受信信号E
1(t)とE2(t)は、メモリ4に記憶されるのである
が、応答信号Sa、Sbと受信信号E1(t)、E2(t)との
間には、 E1(t)=Aa1Sa(t−ta1) +Ab1Sb(t−tb1) ・・・・(1) E2(t)=Aa2Sa(t−ta2) +Ab2Sb(t−tb2) ・・・・(2) の関係が成立する。
First, as the envelope waveforms are respectively shown in FIGS. 3 (c) and 3 (d), the two receiving stations 1 and 2 forming the set are formed.
Received signal E, which is a time-series signal received at
Although 1 (t) and E 2 (t) are stored in the memory 4, between the response signals S a and S b and the received signals E 1 (t) and E 2 (t), E (t) and E 2 (t) are stored. 1 (t) = A a1 S a (t−t a1 ) + A b1 S b (t−t b1 ) ... (1) E 2 (t) = A a2 S a (t−t a2 ) + A b2 S b (t−t b2 ) ... (2) holds.

ここで、 Aa1、Aa2は、それぞれ受信局1、2における応答信号Sa
の振幅、 Ab1、Ab2は、それぞれ受信局1、2における応答信号Sb
の振幅、 ta1、ta2は、応答信号Saが応答機Aからそれぞれ受信局
1、に到達する時間、 tb1、tb2は、応答信号Sbが応答機Bからそれぞれ受信局
1、に到達する時間である。
Here, A a1 and A a2 are response signals S a at the receiving stations 1 and 2, respectively.
Amplitude, A b1, A b2 is the response signal S b at the receiving station 1, 2, respectively
Amplitude, t a1, t a2, the time response signal S a to reach the respective receiving station 1, the answering machine A, t b1, t b2 is the response signal S b is respectively received from the responder B station 1, Is the time to reach.

次に、受信局1、2の受信信号E1(t)、E2(t)の相
関器6において、相関処理(相互相関をとる)すると
(第3図(e)にその包絡線波形が示されている)、相
関の最大値と相関の最大値を示す時間τが得られる。な
お、この時間τは、応答器A、Bから2個所の受信局
1、2までの応答信号Sa、Sbの到達時間差 (ta1−ta2)あるいは(tb1−tb2)に等しい。
Next, in the correlator 6 for the received signals E 1 (t) and E 2 (t) of the receiving stations 1 and 2, the correlation processing (cross correlation is performed) is performed (the envelope waveform is shown in FIG. 3E). (Shown), the maximum correlation and the time τ at which the maximum correlation is reached are obtained. Note that this time τ is equal to the arrival time difference (t a1 −t a2 ) or (t b1 −t b2 ) between the response signals S a and S b from the transponders A and B to the two receiving stations 1 and 2. .

ここで、応答信号Saについて、上記の時間τをτとす
る。そこで、τ=ta1−ta2だけ一方の受信信号E
1(t)を遅延器7でシフトさせると、式(1)は、 E1(t+τ)=E1(t+ta1−ta2) =Aa1Sa(t−ta2) +Ab1Sb(t−tb2+ta1−ta2) ・・・・(3) となる。
Here, for the response signal S a , the above time τ is τ 1 . Therefore, only one received signal E by τ 1 = t a1 −t a2
When 1 (t) is shifted by the delay device 7, the equation (1) becomes E 1 (t + τ 1 ) = E 1 (t + t a1 −t a2 ) = A a1 S a (t−t a2 ) + A b1 S b (T−t b2 + t a1 −t a2 ) ... (3)

乗算器8で、式(3)で示される時間シフトされた一方
の受信信号E1(t+τ)と式(2)で示される他方の
受信信号E2(t)との間で、ベクトルとみなせる時系列
信号を構成する要素の個々の積を死すスカラー積(以
下,単にスカラー積と記す)をとると、(第4図(f)
に包絡線波形が示されている) E1(t+τ)・E2(t) =E1(t+ta1−ta2)・E2(t) =Aa1Aa2Sa 2(t−ta2) +Aa1Ab2Sa(t−ta2) ×Sb(t−tb2) +Ab1Ab2Sb(t−tb2+ta1−ta2) ×Sa(t−ta2) +Ab1Ab2Sb(t−tb2+ta1−ta2) ×Sb(t−td2) ・・・・(4) となる。
In the multiplier 8, one of the time-shifted received signals E 1 (t + τ 1 ) shown in formula (3) and the other received signal E 2 (t) shown in formula (2) Taking the scalar product (hereinafter simply referred to as the scalar product) that kills the individual products of the constituent elements of the time-series signal that can be considered (Fig. 4 (f)
Envelope waveform is shown in Fig. 2) E 1 (t + τ 1 ) ・ E 2 (t) = E 1 (t + t a1 −t a2 ) ・ E 2 (t) = A a1 A a2 S a 2 (t−t a2 ) + A a1 A b2 S a (t−t a2 ) × S b (t−t b2 ) + A b1 A b2 S b (t−t b2 + t a1 −t a2 ) × S a (t−t a2 ) + A b1 A b2 S b (t−t b2 + t a1 −t a2 ) × S b (t−t d2 ) ... (4)

この式(4)から、第1項のSa信号は2乗されてSa 2
なっているので、この信号のみは強調されるが、第2項
と第3項のSaSbとSbSaとは互いに別個のものであるから
強調されることはなく、又、第4項のSbとSbとは時間の
ずれがあるため、強調されることはない。
From this equation (4), the S a signal of the first term is squared to become S a 2 , so only this signal is emphasized, but S a S b of the second term and the third term Since S b S a is different from each other, it is not emphasized, and since S b and S b in the fourth term have a time lag, they are not emphasized.

このことから、スカラー積の値は、複数の応答器A、B
・・・・からの応答信号Sa、Sb・・・・の中の受信電界
強度が最大のある特定の応答信号を強調している。
From this, the value of the scalar product can be
The particular response signal having the maximum received electric field strength among the response signals S a , S b, ...

この強調された特定の応答信号のパルス列をPaとする。
なお、乗算器8においては、信号Paの位相情報は問題と
していない。
The pulse train of this emphasized specific response signal is defined as P a .
In the multiplier 8, the phase information of the signal P a does not matter.

この強調された特定の応答信号のパルス列Paは検定器9
において、基本パルス列(二次レーダシステムで規定さ
れている基本的な性質を有する全てのパルスを含むパル
ス列)に含まれているか、否かが検定される。
The pulse train P a of this emphasized specific response signal is the calibrator 9
In, it is verified whether or not it is included in the basic pulse train (a pulse train including all the pulses having the basic properties defined by the secondary radar system).

検定された結果、基本パルス列に含まれる場合には、識
別器10において、この応答信号Saが解読され、応答器A
が識別される。
When it is included in the basic pulse train as a result of the test, the discriminator 10 decodes the response signal S a , and the responder A
Are identified.

強調された信号Paが基本パルス列に含まれていない場合
には、後述するように、相関の次の最大値のものに対し
て同様な操作が行なわれ、応答機が識別される。
If the emphasized signal P a is not included in the basic pulse train, a similar operation is performed on the next maximum value of correlation to identify the transponder, as described below.

次に、応答機Aの位置を決定するには、応答機Aから2
個所の受信局1、2までの応答信号Saの到達時間τ
a1−ta2が一体な双曲線が描かれる。
Next, in order to determine the position of the answering machine A, the answering machine A to 2
Arrival time of the response signal S a to the receiving stations 1 and 2 at some point τ 1 =
A hyperbola in which a1 − t a2 is integrated is drawn.

一方、他の組を構成する2個所の受信局3と受信局2あ
るいは受信局1(なお、新たな受信局を設置してもよ
い)で、応答信号Saをそれぞれ受信し、上記と同様な相
関処理をして、相関の最大値を示す時間τを検定す
る。即ち、この時間τは応答機Aから2個所の受信局
3と受信局2あるいは受信局1までの応答信号の到達時
間差に相当するから、同様にして、到達時間差τが一
定な双曲線が描かれる。
On the other hand, the two receiving stations 3 and 2 or the receiving station 1 or the receiving station 1 (which may be provided with a new receiving station) forming the other set respectively receive the response signal S a , and the same as above. The correlation processing is performed to test the time τ 2 at which the maximum value of the correlation is exhibited. That is, this time τ 2 corresponds to the arrival time difference of the response signals from the transponder A to the two receiving stations 3 and the receiving station 2 or the receiving station 1. Therefore, similarly, a hyperbola with a constant arrival time difference τ 2 is obtained. be painted.

これらの二つの到達時間差τ、τを示す二本の双曲
線の交点から応答機Aの位置が特定される。
The position of the transponder A is specified from the intersection of the two hyperbolas indicating these two arrival time differences τ 1 and τ 2 .

次に、応答機Bからの応答信号Sbの受信電界強度が応答
機Aからの応答信号Saの次に強い第2ピーク値を示して
いる場合について、第1図〜第4図に基づいて説明す
る。
Next, in the case where the received electric field strength of the response signal S b from the responder B shows the second strongest second peak value of the response signal S a from the responder A, based on FIGS. 1 to 4. Explain.

受信局1、2で受信された受信信号E1(t)、E2(t)
の中には、上記で求めた強い信号Paの外に、弱い多数の
応答信号が含まれているが、これらの弱い応答信号は強
い信号Paで覆われている。そこで、この最も強い信号Pa
を除去して弱い信号を検出するには、強い信号Paを消去
しなければならない。
Received signals E 1 (t) and E 2 (t) received by the receiving stations 1 and 2
In addition to the strong signal P a obtained above, a large number of weak response signals are included in the inside, but these weak response signals are covered with the strong signal P a . So this strongest signal P a
In order to remove the signal and detect the weak signal, the strong signal P a must be eliminated.

そこで、上記で求めたと同様に、受信局1、2で受信さ
れた受信信号E1(t)、E2(t)を相関器6で相関処理
すると、相関の最大値と相関の最大値を示す時間τ
ta1−ta2が得られる。
Therefore, when the received signals E 1 (t) and E 2 (t) received by the receiving stations 1 and 2 are subjected to correlation processing by the correlator 6, similarly to the above-described calculation, the maximum correlation value and the maximum correlation value are calculated. Shown time τ 1 =
t a1 −t a2 is obtained.

そこで、上記の時間τi=ta1−ta2だけ一方の受信信号
E1(t)を遅延器7で時間シフトさせた後、乗算器11に
おいて式(3)で示される時間シフトされた一方の受信
信号E1(t+τ)と式(2)で示される他方の受信信
号E2(t)との間のスカラー積 E1(t+τ)*E2(t)をとれば、このスカラー積
は、受信局1で受信された特定の応答信号Saが強調され
たPaである。
Therefore, one of the received signals for the above time τi = t a1 −t a2
After E 1 (t) is time-shifted by the delay device 7, one of the time-shifted received signals E 1 (t + τ 1 ) shown by the formula (3) and the other shown by the formula (2) in the multiplier 11 If a scalar product E 1 (t + τ 1 ) * E 2 (t) between the received signal E 2 (t) and the received signal E 2 (t) is taken, this scalar product is emphasized by the specific response signal S a received by the receiving station 1. It is P a .

なお、*は振幅情報と位相情報とを保存した状態で乗算
されることを意味している。
It should be noted that * means that the multiplication is performed while the amplitude information and the phase information are stored.

従って、上記の最初に強調された信号Paのパルス列は、
最大の受信電界強度を有する特定の応答信号(上記の場
合には応答信号Sa)に対応するものであるから、受信局
1、2における受信信号E1(t)およびE2(t)からそ
れぞれ強調された信号Paの各受信点でのPa1(t)およ
びPa2(t)を消去すれば、次に最大値を示す応答信号S
bに対応する信号を見い出すことが出来る。
Therefore, the pulse train of the first emphasized signal P a above is
Since it corresponds to the specific response signal (the response signal S a in the above case) having the maximum received electric field strength, the received signals E 1 (t) and E 2 (t) at the receiving stations 1 and 2 are If P a1 (t) and P a2 (t) at each reception point of the emphasized signal P a are deleted, then the response signal S showing the maximum value is obtained.
You can find the signal corresponding to b .

そこで、受信局1における受信信号E1(t)から信号P
a1(t)を除去する方法について説明する。まず、 Pa1(t) =γ{α(t)+jβ(t)} ・・・・(5) Pa2(t−τ) =τ{α(t−τ) +jβ(t−τ)} ・・・・(6) と仮定すると、式(5)と式(6)とは振幅は異なるが
同一波形である。
Therefore, from the received signal E 1 (t) at the receiving station 1 to the signal P
A method of removing a1 (t) will be described. First, P a1 (t) = γ 11 (t) + jβ 1 (t)} (5) P a2 (t−τ 1 ) = τ 22 (t−τ 1 ) + jβ 2 (t-τ 1 )} (6), the equations (5) and (6) have different amplitudes but the same waveform.

ここで、式(5)に含まれる信号群の中には、信号Pa
ルス列が最も強調されているので、次の仮定を行なう。
Here, since the signal P a pulse train is most emphasized in the signal group included in the equation (5), the following assumption is made.

α(t−τ)=α(t) β(t−τ)=β(t) そこで、乗算器11において、Pa1(t)とPa2(t−
τ)とのスカラー積*をとると、 Pa1(t)*Pa2(t−τ) ≡γγ{Sαα1 2(t) +jSββ1 2(t)} ・・・・(7) となる。
α 2 (t−τ 1 ) = α 1 (t) β 2 (t−τ 1 ) = β 1 (t) Then, in the multiplier 11, P a1 (t) and P a2 (t−)
Taking the scalar product * with τ 1 ), P a1 (t) * P a2 (t−τ 1 ) ≡γ 1 γ 2 {S α α 1 2 (t) + jS β β 1 2 (t)} (7)

ただし、Sα:α(t)の符号 Sβ:β(t)の符号 を示している。However, the code of S α : α 1 (t) and the code of S β : β 1 (t) are shown.

上記式(7)よりも明からであるように、乗算器11にお
いて、位相情報と振幅情報とが保存されている。
As is clear from the above equation (7), the phase information and the amplitude information are stored in the multiplier 11.

そこで、平方根演算器12において、信号Paのベクトルス
カラー積 Pa1(t)*Pa2(t−τ)の実数軸と虚数軸との平方
根の値を求める。第4図(a)に実数軸の平方根を示す
包絡線波形が示されている。なお、虚数軸の平方根を示
す包絡線波形も実数軸のものと同一である。
Therefore, the square root calculator 12 finds the value of the square root of the real and imaginary axes of the vector scalar product P a1 (t) * P a2 (t−τ 1 ) of the signal P a . FIG. 4 (a) shows an envelope waveform showing the square root of the real number axis. The envelope waveform showing the square root of the imaginary axis is also the same as that of the real axis.

この平方根の値から、位相特性検出器13において強調さ
れたパルス列の信号Paの位相特性φ(t)を推定す
る。
From the value of this square root, the phase characteristic φ a (t) of the pulse train signal P a emphasized in the phase characteristic detector 13 is estimated.

ただし、t:パルス列P▲ ▼が存在する時の値を示し
ている。
However, t: shows the value when the pulse train P ▲ 'a ▼ exists.

式(8)はパルス列のPaの位相特性を近似的に表してい
るので、この位相特性を持つ基準パルス列と受信信号E1
(t)との間で相関を取り、相関の最大値から特定の強
調されたPaの振幅Aaを推定する。
Since equation (8) approximately represents the phase characteristic of P a of the pulse train, the reference pulse train having this phase characteristic and the received signal E 1
Correlate with (t) and estimate the amplitude A a of the particular emphasized P a from the maximum value of the correlation.

このようにして、それぞれ推定された振幅Aaと位相特性
φ(t)とを有し、パルス列信号Paと同じ新たなパル
ス列信号P▲ ▼がパルス発生器14で作成される。
In this way, it has an estimated respectively the amplitude A a phase characteristic phi a and (t), the pulse train signal P a same new pulse train signal P ▲ 'a ▼ is created by the pulse generator 14.

プロセッサ15では、受信信号E1(t)からパルス列信号
P▲ を差し引いて、強調されたパルス列信号Paを消
去した新たな受信信号E▲ ▼(t)が作成される。
(第4図(b)に包絡線波形が示されている) 他方の受信局2における受信信号E2(t)についても、
同様にして強調されたパルス列の信号Paを消去して新た
な受信信号E▲ ▼(t)が作成される。
The processor 15 subtracts the pulse train signal P ′ ′ a from the received signal E 1 (t) to create a new received signal E ′ ′ 1 ▼ (t) in which the emphasized pulse train signal P a is erased.
(The envelope waveform is shown in FIG. 4 (b)) The received signal E 2 (t) at the other receiving station 2 is also
Similarly, the emphasized pulse train signal P a is erased to create a new received signal E ▲ ' 2 ▼ (t).

これらの新たな受信信号E▲ ▼(t)とE▲
(t)とは、第4図(c)に包絡線波形が示されている
ように、相関器6で相関処理されて、上記と同様にし
て、相関の最大値と相関の最大値を示す時間τが得ら
れる。
These new received signals E ▲ 1 ▼ (t) and E ▲ 2
As shown in the envelope waveform in FIG. 4C, (t) is subjected to correlation processing by the correlator 6 and indicates the maximum value of the correlation and the maximum value of the correlation in the same manner as above. The time τ 3 is obtained.

この時間τは応答器Bから2箇所の受信局1、2まで
の応答信号Sbの到達時間差(tb1−tb2)に等しい。
This time τ 3 is equal to the arrival time difference (t b1 −t b2 ) of the response signal S b from the responder B to the two receiving stations 1 and 2.

そこで、応答機Aを識別したと同様な手順で、遅延器7
においていずれか一方の新たな受信信号を時間τだけ
時間シフトした後、乗算器8で他の新たな受信信号との
スカラー積をとり、(第4図(d))、検定器9、識別
器10を介して応答機Bが識別される。
Therefore, in the same procedure as when the responder A is identified, the delay device 7
, One of the new received signals is time-shifted by time τ 3 , and then the multiplier 8 calculates the scalar product with the other new received signals (Fig. 4 (d)), the tester 9, and the discrimination. The responder B is identified via the instrument 10.

なお、第4図(e)は受信電界強度の第2のピーク値を
除去した新たな受信信号E′(t)を示している第4図
(f)は第4図(a)の波形から第4図(e)の波形を
差し引いたもので、パルスの形状から判断して、応答機
A、Bからの応答信号ではないことが判明する。
It should be noted that FIG. 4 (e) shows a new received signal E ′ (t) from which the second peak value of the received electric field strength has been removed. FIG. 4 (f) shows the waveform of FIG. 4 (a). It is the one obtained by subtracting the waveform of FIG. 4 (e), and it is determined from the pulse shape that it is not the response signal from the transponders A and B.

次に、応答機Bの位置を決定するには、応答機Aで求め
たと同様に、到達時間差τが等しい双曲線が描かれ
る。
Next, in order to determine the position of the transponder B, a hyperbola having the same arrival time difference τ 3 is drawn as in the case of the transponder A.

次に、他の組を構成する2箇所の受信局3と受信局ある
いは受信局1における受信信号を相関処理して、相関の
最大値を示す時間τを検定し、この時間τが一定な
双曲線を描き、到達時間差τ、τの交点から応答機
Bの位置が決定される。
Next, the received signals at the two receiving stations 3 and the receiving station or the receiving station 1 forming another set are subjected to correlation processing, and the time τ 4 showing the maximum value of the correlation is tested, and this time τ 4 is constant. A simple hyperbola is drawn, and the position of the transponder B is determined from the intersection of the arrival time differences τ 3 and τ 4 .

このようにして、応答信号の受信電界強度の強いほうか
ら順次応答機が識別される。
In this way, the transponders are sequentially identified in descending order of the received electric field strength of the response signal.

[発明の効果] この発明は、複数の応答機からの応答信号を、組を構成
する2箇所の受信局で受信し、この2箇所の受信局の受
信信号を相関処理して、相関の最大値とその最大値を示
す時とを検知し、いずれか一方の受信信号を、相関の最
大値を示す時間だけ時間シフトするとともに、他方の受
信信号との間でベクトル成分のスカラー積を求めること
により、複数の応答信号の中から受信電界強度の最大値
を有する特定の応答信号を強調し、この強調された特定
の応答信号が、二次レーダシステムで規定されている応
答信号としての基本的な性質を有する基本パルス列に含
まれるか否かを検定するとともに、含まれる場合には、
応答信号を解読して応答機を識別しているので、複数の
応答機からの応答信号が重畳して受信された場合でも、
応答信号が最大の受信電界強度をもつ応答機を識別出来
る。
EFFECTS OF THE INVENTION The present invention receives response signals from a plurality of transponders at two receiving stations forming a set, performs correlation processing on the received signals at the two receiving stations, and maximizes the correlation. Value and the time when the maximum value is shown, and either one of the received signals is time-shifted by the time showing the maximum value of the correlation, and the scalar product of the vector component is obtained with the other received signal. The particular response signal having the maximum value of the received electric field strength is emphasized from among the plurality of response signals, and the emphasized particular response signal is a basic response signal defined by the secondary radar system. Whether or not it is included in the basic pulse train having the following properties, and if it is included,
Since the response signal is decoded and the response device is identified, even when response signals from multiple response devices are received in a superimposed manner,
It is possible to identify the transponder whose response signal has the maximum received electric field strength.

さらに、強調された特定の応答信号を、それぞれ2箇所
の受信局の受信信号から消去して、それぞれ新たな受信
信号を作成することにより、応答信号の受信電界強度の
強いほうから順次応答機を識別するから、受信電界強度
が弱い受信信号からも応答機を識別出来る。
Furthermore, the emphasized specific response signals are deleted from the reception signals of the two receiving stations, and new reception signals are created respectively, so that the response devices with higher received electric field strength of the response signals are sequentially arranged. Since the identification is performed, the transponder can be identified even from the received signal whose received electric field strength is weak.

さらに、少なくとも3箇所の受信局を設置するととも
に、複数の応答機からの応答信号を、受信局の任意の2
箇所を一組とする少なくとも二組の受信局で受信し、そ
れぞれ組を構成する任意の2箇所の受信局の受信信号を
相関処理して、応答機から組を構成する2箇所の受信局
までの応答信号の到達時間差に相当する相関の最大値を
示す時間をそれぞれ各組ごとに検定し、これらの到達時
間差の交点から応答機の位置を特定するとともに,この
応答機の属する組を構成するいずれか一方の受信信号
を,最大値を示す時間だけ時間シフトするとともに,組
を構成する他方の受信信号との間でスカラー積を求める
ことにより,複数の応答信号の中から受信電界強度の最
大値を有する特定の応答信号を強調し,この強調された
特定の応答信号が,二次レーダシステムで規定されてい
る応答信号としての基本的な性質を有する基本パルス列
に含まれるか否かを検定した後,強調された特定の応答
信号が基本パルス列に含まれる場合には,この特定の応
答信号を解読して応答機を識別するので、トランスポン
ダの応答遅れに伴なう時間誤差に関係なく高精度の位置
測定が出来る。
Furthermore, at least three receiving stations are installed, and response signals from a plurality of transponders are sent to any two receiving stations.
At least two sets of receiving stations that form a set are subjected to correlation processing of received signals from any two receiving stations that form a set, and from the responder to the two receiving stations that form the set. The time that shows the maximum value of the correlation corresponding to the arrival time difference of the response signal is tested for each set, the position of the responder is specified from the intersection of these arrival time differences, and the set to which this responder belongs is configured. One of the received signals is time-shifted by the time that shows the maximum value, and the scalar product is calculated between the received signal and the other received signal that makes up the set. A specific response signal having a value is emphasized, and whether or not the emphasized specific response signal is included in a basic pulse train having a basic property as a response signal specified by the secondary radar system is determined. After the determination, if the emphasized specific response signal is included in the basic pulse train, the specific response signal is decoded and the transponder is identified. Therefore, regardless of the time error due to the response delay of the transponder, Highly accurate position measurement is possible.

【図面の簡単な説明】[Brief description of drawings]

図面は、この発明の実施例を示すもので、第1図は概略
図、第2図はブロック図、第3図、第4図は包絡線波形
図である。 A、B……応答機 1、2……受信局 5、15……プロセッサ 6……相関器 7……遅延器 8、11……乗算器 9……検定器 10……識別器 12……平方根演算器 13……位相特性検出器 14……パルス発生器
The drawings show an embodiment of the present invention. FIG. 1 is a schematic diagram, FIG. 2 is a block diagram, and FIGS. 3 and 4 are envelope waveform diagrams. A, B ... responder 1, 2 ... receiving station 5, 15 ... processor 6 ... correlator 7 ... delay device 8, 11 ... multiplier 9 ... verifier 10 ... discriminator 12 ... Square root calculator 13 …… Phase characteristic detector 14 …… Pulse generator

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】複数の応答機からの応答信号を,組を構成
する2箇所の受信局で受信し, この2箇所の前記受信局の受信信号を相関処理して,相
関の最大値とその最大値を示す時間とを検出し, いずれか一方の前記受信信号を,前記最大値を示す時間
だけ時間シフトするとともに,他方の前記受信信号との
間でスカラー積を求めることにより,前記複数の応答信
号の中から受信電界強度の最大値を有する特定の応答信
号を強調し, この強調された特定の応答信号が,二次レーダシステム
で規定されている応答信号としての基本的な性質を有す
る基本パルス列に含まれるか否かを検定した後,前記強
調された特定の応答信号が前記基本パルス列に含まれる
場合には,この特定の応答信号を解読して前記応答機を
識別すること を特徴とする二次レーダの応答信号識別方法。
1. A response signal from a plurality of transponders is received by two receiving stations forming a set, and the received signals of the two receiving stations are subjected to a correlation process to obtain a maximum correlation value and its correlation value. And a time indicating a maximum value is detected, and one of the received signals is time-shifted by a time indicating the maximum value, and a scalar product is calculated between the received signal and the other received signal, thereby obtaining a plurality of the plurality of received signals. A specific response signal having the maximum value of the received electric field strength is emphasized from the response signals, and the emphasized specific response signal has a basic property as a response signal specified by the secondary radar system. If the emphasized specific response signal is included in the basic pulse train after testing whether it is included in the basic pulse train, the specific response signal is decoded to identify the transponder. And the secondary How to identify the response signal of the radar.
【請求項2】強調された特定の応答信号を,それぞれ2
箇所の受信局の受信信号から消去して,それぞれ新たな
受信信号を作成することにより,受信電界強度の強いほ
うから順次応答機を識別すること を特徴とする請求項1に記載の二次レーダの応答信号識
別方法。
2. The emphasized specific response signal is divided into two, respectively.
The secondary radar according to claim 1, wherein the transponders are sequentially identified from the one having a higher received electric field strength by deleting the received signals from the receiving stations at the locations and creating new received signals respectively. Response signal identification method.
【請求項3】強調された特定の応答信号の実数軸と虚数
軸とのそれぞれ平方根の値から前記特定の応答信号の位
相特性を推定し, この位相特性を有する基準パルス列と,いづれか一方の
受信局の受信信号とを相関処理して,相関の最大値から
前記強調された特定の応答信号の振幅を推定し, この推定した振幅と前記推定した位相特性とを有する新
たなパルス列信号を作成し, 前記強調された特定の応答信号を前記新たなパルス列信
号を差し引くことにより,前記相関の最大値を有する前
記特定された応答信号が消去された新たな受信信号を,
それぞれ2箇所の受信局の受信信号について作成するこ
と を特徴とする請求項2に記載の二次レーダの応答信号識
別方法。
3. A phase characteristic of the specific response signal is estimated from the respective square root values of the real number axis and the imaginary number axis of the emphasized specific response signal, and a reference pulse train having this phase characteristic and reception of either one of them. The received signal of the station is subjected to correlation processing, the amplitude of the emphasized specific response signal is estimated from the maximum value of the correlation, and a new pulse train signal having the estimated amplitude and the estimated phase characteristic is created. , A new received signal in which the specified response signal having the maximum value of the correlation is deleted by subtracting the new pulse train signal from the emphasized specific response signal,
The method for identifying a response signal of a secondary radar according to claim 2, wherein the reception signals of two receiving stations are created respectively.
【請求項4】少なくとも3箇所に受信局を設置するとと
もに,複数の前記応答機からの応答信号を,前記受信局
の任意の2箇所を一組とする少なくとも二組の前記受信
局で受信し, それぞれ組を構成する任意の2箇所の前記受信局の受信
信号を相関処理して,この相関の最大値と前記応答機か
らの組を構成する2箇所の受信局までの前記応答信号の
到達時間差に相当する相関の最大値を示す時間とをそれ
ぞれ各組毎に検定し, これらの到達時間差の交点から前記応答機の位置を特定
し, この応答機の属する組を構成するいずれか一方の前記受
信信号を,前記最大値を示す時間だけ時間シフトすると
ともに,前記組を構成する他方の前記受信信号との間で
スカラー積を求めることにより,前記複数の応答信号の
中から受信電界強度の最大値を有する特定の応答信号を
強調し, この強調された特定の応答信号が,二次レーダシステム
で規定されている応答信号としての基本的な性質を有す
る基本パルス列に含まれるか否かを検定した後,前記強
調された特定の応答信号が前記基本パルス列に含まれる
場合には,この特定の応答信号を解読して前記応答機を
識別すること を特徴とする二次レーダの応答信号識別方法。
4. Receiving stations are installed at at least three locations, and response signals from a plurality of transponders are received by at least two groups of receiving stations, one of which is any two locations of the receiving stations. , Correlating the received signals of the arbitrary two receiving stations forming each set, and reaching the maximum value of this correlation and the receiving signal from the responder to the two receiving stations forming the set The time showing the maximum value of the correlation corresponding to the time difference is tested for each set, and the position of the responder is specified from the intersection of these arrival time differences, and either one of the groups forming the responder belongs. The received signal is time-shifted by the time indicating the maximum value, and the scalar product is obtained between the received signal and the other received signal forming the set, thereby obtaining the received electric field strength of the plurality of response signals. Maximum value After emphasizing the specific response signal to be tested, and verifying whether this emphasized specific response signal is included in the basic pulse train having the basic properties as the response signal specified by the secondary radar system. A method of identifying a response signal of a secondary radar, wherein when the emphasized specific response signal is included in the basic pulse train, the specific response signal is decoded to identify the transponder.
JP7519889A 1989-03-29 1989-03-29 Secondary radar response signal identification method Expired - Lifetime JPH0797137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7519889A JPH0797137B2 (en) 1989-03-29 1989-03-29 Secondary radar response signal identification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7519889A JPH0797137B2 (en) 1989-03-29 1989-03-29 Secondary radar response signal identification method

Publications (2)

Publication Number Publication Date
JPH02254391A JPH02254391A (en) 1990-10-15
JPH0797137B2 true JPH0797137B2 (en) 1995-10-18

Family

ID=13569260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7519889A Expired - Lifetime JPH0797137B2 (en) 1989-03-29 1989-03-29 Secondary radar response signal identification method

Country Status (1)

Country Link
JP (1) JPH0797137B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602008004075D1 (en) * 2008-01-18 2011-02-03 Mitsubishi Electric Corp Multiple object localization using a network of recipients
JP5630034B2 (en) * 2010-03-04 2014-11-26 富士通株式会社 Radar apparatus and target detection method
JP5712649B2 (en) * 2011-02-07 2015-05-07 富士通株式会社 Radar apparatus and target detection method
JP5737441B2 (en) * 2014-02-17 2015-06-17 富士通株式会社 Radar apparatus and target detection method

Also Published As

Publication number Publication date
JPH02254391A (en) 1990-10-15

Similar Documents

Publication Publication Date Title
AU2002333182B2 (en) Method and system for emitter localisation
US5659520A (en) Super short baseline navigation using phase-delay processing of spread-spectrum-coded reply signals
US8493182B2 (en) Phase ranging RFID location system
US4782450A (en) Method and apparatus for passive airborne collision avoidance and navigation
US20100001895A1 (en) Method and apparatus for determining dme reply efficiency
US8884810B2 (en) Compact beacon radar and full ATC services system
CA1147038A (en) Monitoring system for scanning-beam microwave landing apparatus
DK165026B (en) Method for detection of one or more distant objects
EP2270537A1 (en) Method and apparatus for the passive location of radio signal transmitters
CN104796204B (en) A kind of metal based on wireless network carries detection method
JP5027213B2 (en) Method in electronically assisted measurement system, use and apparatus of the method
Ascher et al. 3D localization of passive UHF RFID transponders using direction of arrival and distance estimation techniques
CN106324563B (en) A kind of multiple spot passive detection all phase signal sorting and reaching time-difference measuring system
Sinitsyn et al. Determination of aircraft current location on the basis of its acoustic noise
CN109490870A (en) It is tested using the single scattering body of phase
CN113391267A (en) Frequency spectrum detection system positioning method based on ATDOA algorithm
CN105960018A (en) Time difference on arrival-based hyperbola location method
US11333750B2 (en) Method and system for tracking non-cooperative objects using secondary surveillance radar
JPH0797137B2 (en) Secondary radar response signal identification method
Dubrovinskaya et al. Anchorless underwater acoustic localization
CN108535690A (en) A kind of signal matching method of multipoint positioning scene monitoring system
US4398198A (en) Pulse-hyperbolic location system using three passive beacon measurements
CN112924928B (en) Indoor Wi-Fi multi-person detection method based on path separation
JP2002365126A (en) System for monitoring noise of aircraft
CN110058223B (en) Single-station passive positioning method based on navigation management response signal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term