JPH079702B2 - Magnetic memory manufacturing method - Google Patents

Magnetic memory manufacturing method

Info

Publication number
JPH079702B2
JPH079702B2 JP61002393A JP239386A JPH079702B2 JP H079702 B2 JPH079702 B2 JP H079702B2 JP 61002393 A JP61002393 A JP 61002393A JP 239386 A JP239386 A JP 239386A JP H079702 B2 JPH079702 B2 JP H079702B2
Authority
JP
Japan
Prior art keywords
head
magnetic
magnetic memory
inorganic oxide
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61002393A
Other languages
Japanese (ja)
Other versions
JPS62159332A (en
Inventor
成嘉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61002393A priority Critical patent/JPH079702B2/en
Publication of JPS62159332A publication Critical patent/JPS62159332A/en
Publication of JPH079702B2 publication Critical patent/JPH079702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は磁気的記憶装置(磁気ディスク装置および磁
気ドラム装置等)に用いられる磁気記憶体およびその製
造方法に関するものである。
The present invention relates to a magnetic memory used in a magnetic memory (such as a magnetic disk device and a magnetic drum device) and a method for manufacturing the same.

(従来の技術) 一般に記録再生磁気ヘッド(以下ヘッドと呼ぶ)と磁気
記憶体とを主構成部とする磁気記憶装置の記憶再生方法
には、大別して次のような二種類の方法がある。第一の
方法は、操作開始時にヘッドと磁気記憶体面との間に空
気層分の空間を作り、この状態で記録再生をする方法で
ある。この方法では、操作終了時に磁気記憶体の回転が
止まり、この時ヘッドと磁気記憶体面は操作開始時と同
様に接触摩擦状態にある。第二の方法は磁気記憶体に予
め所要の回転を与えておき、急激にヘッドを磁気記憶体
面上に押しつけることにより前記ヘッドと前記前磁気記
憶体面との間に空気層分の空間を作り、この状態で記憶
再生する方法である。このように第一の方法では操作開
始時および終了時にヘッドと磁気記憶体面は接触摩擦状
態にあり、第二の方法ではヘッドを磁気記憶体面に押し
つける際に接触摩擦状態にある。これらの接触摩擦状態
におけるヘッドと磁気記憶体の間に生じる摩擦力は、ヘ
ッドおよび磁気記憶体を摩耗させついにはヘッドおよび
金属磁性薄膜媒体に傷を作ることがある。
(Prior Art) Generally, there are roughly two types of storage / reproducing methods of a magnetic storage device having a recording / reproducing magnetic head (hereinafter referred to as a head) and a magnetic storage body as main components. The first method is a method of making a space corresponding to an air layer between the head and the surface of the magnetic memory at the start of operation, and recording / reproducing in this state. In this method, the rotation of the magnetic storage body stops at the end of the operation, and at this time, the head and the surface of the magnetic storage body are in the contact friction state as at the start of the operation. In the second method, the magnetic memory is given a predetermined rotation in advance, and the head is suddenly pressed onto the surface of the magnetic memory to form a space corresponding to an air layer between the head and the surface of the previous magnetic memory, This is a method of storing and reproducing in this state. As described above, in the first method, the head and the magnetic memory surface are in a contact friction state at the start and end of the operation, and in the second method, the head is in a contact friction state when the head is pressed against the magnetic memory surface. The frictional force generated between the head and the magnetic storage medium in these contact friction states may wear the head and the magnetic storage medium and eventually cause damage to the head and the metal magnetic thin film medium.

また前記接触摩擦状態においてヘッドのわずかな姿勢の
変化がヘッドにかかる荷重を不均一にさせヘッドおよび
磁気記憶体表面に傷を作ることもある。
Further, in the contact friction state, a slight change in the posture of the head may make the load applied to the head non-uniform, and may scratch the surface of the head and the magnetic memory.

また更に前記接触まさつ状態におけるヘッドと磁気記憶
体間に生じる摩擦力は、特に多くのヘッドを取りつけた
場合に大きなトルクを生じ磁気記憶体を回転させるモー
ターに好ましからぬ負担をかける。
Further, the frictional force generated between the head and the magnetic memory in the contact state causes a large torque particularly when a large number of heads are mounted, and imposes an unfavorable burden on the motor for rotating the magnetic memory.

また記録再生中に突発的にヘッドが磁気記憶体に接触
し、ヘッドと磁気記憶体間に大きな摩擦力が働き、ヘッ
ドおよび磁気記憶体が破壊されることがしばしば起こ
る。
Further, during recording / reproduction, the head suddenly contacts the magnetic storage body, a large frictional force acts between the head and the magnetic storage body, and the head and the magnetic storage body are often destroyed.

この様なヘッドと磁気記憶体との接触摩擦力からヘッド
および磁気記憶体を保護するために磁気記憶体の表面に
保護被膜を被覆することが必要であり、又この保護被覆
は前記ヘッドと磁気記憶体間に生じる接触摩擦力を小さ
く(すなわち摩擦力を小さく)することが要求される。
In order to protect the head and the magnetic storage body from such contact frictional force between the head and the magnetic storage body, it is necessary to coat the surface of the magnetic storage body with a protective coating. It is required to reduce the contact frictional force generated between the memory bodies (that is, reduce the frictional force).

磁気記憶体の表面に潤滑層を設けることは上記接触摩擦
力を小さくするための一つの方法である。上記潤滑層は
その下地体と十分に結合していなければならない。潤滑
層がその下地と十分に結合していないと、ヘッドと磁気
記憶体の接触摩擦により下地体から取り去られるかある
いはヘッドのまわりおよびヘッドと磁気記憶体の間に毛
管現象により多量に集まり、記録再生時のヘッドの浮揚
安定性に悪影響をおよぼす。
Providing a lubricating layer on the surface of the magnetic memory is one method for reducing the contact frictional force. The lubricating layer must be well bonded to its substrate. If the lubricating layer is not sufficiently bonded to the base, it will be removed from the base due to contact friction between the head and the magnetic memory, or a large amount will collect around the head and between the head and the magnetic memory due to capillarity and recording. This adversely affects the floating stability of the head during playback.

上記潤滑層のヘッドとの接触摩擦力を小さくする効果は
ヘッドと磁気記憶体の界面に吸着ないし凝着が起こりに
くい非極性の分子層が介在することによりなされる。す
なわち潤滑層は磁気記憶体と結合する部分と吸着ないし
凝着が起こりにくい非極性の分子層に配向していること
が望ましい。
The effect of reducing the contact frictional force between the lubricating layer and the head is achieved by interposing a non-polar molecular layer, which is unlikely to be adsorbed or adhered, at the interface between the head and the magnetic memory. That is, it is desirable that the lubricating layer is oriented in a non-polar molecular layer that is less likely to be adsorbed or cohesive with the portion that binds to the magnetic memory.

このような潤滑層としてシリコンオイル、ふっ素油、フ
ロロシリコンなどのオイル類やオクタデシルトリクロロ
シラン、ヘキサメチルジシラザンなどのシランまたはシ
ラザン類が提案されている(特公昭55−40932号公
報)。これらの潤滑層は、各々優れた特性を示すもの
の、オイル類においては非晶質無機酸化物と化学結合す
る結合力が十分でなく、シランまたはシラザン類におい
ては非極性の分子層の存在による表面エネルギーの低下
が十分でない。このためオイル類においては長期間の使
用における潤滑剤の損失、シランまたはシラザン類にお
いてはヘッドと磁気記憶体間に生じる接触摩擦力を小さ
くする効果が完全でないという問題があった。
As such a lubricating layer, oils such as silicone oil, fluorine oil and fluorosilicone, silanes such as octadecyltrichlorosilane and hexamethyldisilazane, or silazanes have been proposed (Japanese Patent Publication No. 55-40932). Although these lubricating layers each exhibit excellent characteristics, the bonding force for chemically bonding with the amorphous inorganic oxide is insufficient in oils, and the surface due to the presence of a non-polar molecular layer in silane or silazanes. Not enough energy reduction. Therefore, there is a problem in that the effect of reducing the lubricant loss in the case of long-term use in oils and the effect of reducing the contact frictional force generated between the head and the magnetic memory in silane or silazane are not perfect.

本発明の目的はこの問題点を解決した磁気記憶体および
その製造方法を提供することにある。
An object of the present invention is to provide a magnetic memory body and a method of manufacturing the magnetic memory body that solve this problem.

(問題点を解決するための手段) 本発明は、鏡面研磨された非磁性合金層を被覆した合金
円盤上または鏡面研磨された合金円盤上に金属磁性薄膜
媒体を被覆し、この上に非晶質無機酸化物層を被覆し、
さらに前記非晶質無機酸化物層の上に、一般式 (Rはフルオロアルキル基、X、Y、Zのうち少なくと
も一つはアルコキシ基または塩素、他はアルキル基) で表わされる化合物を気相成長させ、または気相成長
後、焼成して前記非晶質無機酸化物層と前記化合物を結
合させることを特徴とする磁気記憶体の製造方法であ
る。
(Means for Solving the Problems) In the present invention, a metal magnetic thin film medium is coated on an alloy disk coated with a mirror-polished non-magnetic alloy layer or on a mirror-polished alloy disk, and an amorphous film is formed thereon. A high-quality inorganic oxide layer,
Further on the amorphous inorganic oxide layer, the general formula (Wherein R is a fluoroalkyl group, at least one of X, Y and Z is an alkoxy group or chlorine, and the other is an alkyl group) is vapor-phase grown, or after vapor-phase growth, firing is performed to obtain the above-mentioned amorphous compound. Is a method for producing a magnetic memory body, characterized in that a porous inorganic oxide layer is bonded to the compound.

また、鏡面研磨された非磁性合金層を被覆した合金円盤
上または鏡面研磨された合金円盤上に金属磁性薄膜媒体
を被覆し、この上に非晶質無機酸化物層を被覆し、プラ
ズマ中で処理した後、前記非晶質無機酸化物層の上に、
一般式 (Rはフルオロアルキル基、X、Y、Z、のうち少なく
とも一つはアルコキシ基または塩素、他はアルキル基) で表わされる化合物を気相成長させ、または気相成長
後、焼成して前記非晶質無機酸化合物層と前記化合物を
結合させることを特徴とする磁気記憶体の製造方法であ
る。
In addition, a metal magnetic thin film medium is coated on an alloy disc coated with a mirror-polished non-magnetic alloy layer or on a mirror-polished alloy disc, and an amorphous inorganic oxide layer is coated on this medium, in plasma. After the treatment, on the amorphous inorganic oxide layer,
General formula (Wherein R is a fluoroalkyl group, at least one of X, Y, and Z is an alkoxy group or chlorine, and the other is an alkyl group). A method for producing a magnetic memory body, which comprises bonding the crystalline inorganic acid compound layer and the compound.

(作 用) 非晶質無機酸化物はポリ珪酸あるいはSiO2、ガラス、ア
ルミナなどの膜である。アルコキシシリル基 およびクロロシリル基 は反応性に富みこの非晶質無機酸化物の表面に存在する
シラノール基(Si−OH)や水酸基(−OH)と化学結合
し、非晶質無機酸化物と潤滑剤分子を強固に結びつけ
る。一方、表面に配列されたフルオロアルキル基は表面
エネルギーを低下させ優れた潤滑効果を示す。したがっ
て、一般式 (Rはフルオロアルキル基、X、Y、Z、のうち少なく
とも一つはアルコキシ基または塩素、他はアルキル基)
で表わされる化合物を用いれば下地体と強固に結合した
優れた潤滑剤が得られることが期待できる。ここでフル
オロアルキル基とは、アルキル基の水素原子の一部また
は全部がふっ素で置換された官能基のことである。ま
た、このままでも下地体と化合物は強固に結合するが、
非晶質無機酸化物を形成した後、プラズマ中で処理して
から潤滑剤を気相成長させれば、表面のクリーニングが
完全になること、および、イオンの打ち込みによりアル
コキシシリル基およびクロロシリル基と化学結合するラ
ジカルが生成することなどの理由で下地体と潤滑剤の結
合はさらに強固になる。
(Operation) The amorphous inorganic oxide is a film of polysilicic acid or SiO 2 , glass, alumina, etc. Alkoxysilyl group And chlorosilyl group Is highly reactive and chemically bonds with the silanol groups (Si-OH) and hydroxyl groups (-OH) present on the surface of this amorphous inorganic oxide to firmly bond the amorphous inorganic oxide and the lubricant molecule. On the other hand, the fluoroalkyl group arranged on the surface lowers the surface energy and exhibits an excellent lubricating effect. Therefore, the general formula (R is a fluoroalkyl group, at least one of X, Y and Z is an alkoxy group or chlorine, and the other is an alkyl group)
It is expected that an excellent lubricant that is firmly bonded to the base material can be obtained by using the compound represented by. Here, the fluoroalkyl group is a functional group in which some or all of the hydrogen atoms of the alkyl group are substituted with fluorine. In addition, the base material and the compound are firmly bonded to each other as they are,
After forming the amorphous inorganic oxide, it is possible to complete the cleaning of the surface by vapor-depositing the lubricant after treating it in plasma, and the ion-implantation of alkoxysilyl and chlorosilyl groups. The bond between the base body and the lubricant is further strengthened due to the generation of radicals that chemically bond with each other.

更に、記録および再生にとってはスペーシング(記録お
よび再生時におけるヘッドと磁気記憶体の間隔)は小さ
い方が有利である。このため潤滑層の膜厚はできる限り
薄い方が望ましいが、この化合物は非常に薄い潤滑層を
形成することが可能である。すなわち、非晶質無機酸化
物の上に潤滑剤分子を気相成長させることにより、自動
的に単手子層から成る潤滑層が形成される。なお気相成
長させるだけで酸化物と強固に結合するが、気相成長後
焼成すればより短時間ですむ。
Further, for recording and reproduction, it is advantageous that the spacing (the distance between the head and the magnetic memory at the time of recording and reproduction) is small. Therefore, it is desirable that the film thickness of the lubricating layer is as thin as possible, but this compound can form a very thin lubricating layer. That is, by vapor-depositing lubricant molecules on the amorphous inorganic oxide, a lubricating layer composed of a single-hand child layer is automatically formed. It should be noted that although it is strongly bonded to the oxide only by vapor phase growth, it takes a shorter time if firing is performed after vapor phase growth.

(実施例1) 以下、実施例により本発明を詳細に説明する。第1図
は、この発明の磁気記憶体の構成を示す断面図である。
図面において本発明の磁気記憶体は、合金円盤1上に非
磁性合金層2が被覆され、この被膜の研磨面上に金属磁
性薄膜媒体3が被覆されており、さらにこの上に非晶質
無機酸化物4が被覆され、さらにこの上に潤滑剤5が被
覆されている。
(Example 1) Hereinafter, the present invention will be described in detail with reference to Examples. FIG. 1 is a sectional view showing the structure of the magnetic memory body of the present invention.
In the drawing, in the magnetic memory according to the present invention, a non-magnetic alloy layer 2 is coated on an alloy disk 1, and a metal magnetic thin film medium 3 is coated on the polishing surface of this coating. The oxide 4 is coated, and the lubricant 5 is further coated thereon.

合金円盤1として旋盤加工および熱矯正によって十分小
さなうねり(円周方向および半径方向でともに50μm以
下)をもった面に仕上げられたディスク状アルミニウム
合金基盤上に非磁性合金層2としてニッケル−燐(Ni−
P)合金を約50μmの厚さにメッキし、このNi−Pメッ
キ膜を機械的研磨により表面粗さ0.04μm以下、厚さ約
30μmまで鏡面仕上げしたのち、その上に金属磁性薄膜
媒体3としてコバルト−ニッケル−燐(CoNi−P)合金
を約0.05μmの厚さにメッキした。さらにこのCo−Ni−
P合金膜の上に、下に示した組成の溶液を十分に混合
し、ごみまたは析出したSiO2を過膜を通して取り除いた
後、回転塗布法により塗布した。
Nickel-phosphorus as the non-magnetic alloy layer 2 on the disk-shaped aluminum alloy substrate finished on the surface having a sufficiently small waviness (50 μm or less in both the circumferential direction and the radial direction) by lathe processing and heat correction as the alloy disk 1 Ni-
P) alloy is plated to a thickness of about 50 μm, and this Ni-P plated film is mechanically polished to a surface roughness of 0.04 μm or less and a thickness of about
After mirror-finishing to 30 μm, a cobalt-nickel-phosphorus (CoNi-P) alloy as a metal magnetic thin film medium 3 was plated thereon to a thickness of about 0.05 μm. Furthermore, this Co-Ni-
On the P alloy film, a solution having the composition shown below was thoroughly mixed, and dust or precipitated SiO 2 was removed through the permeation film and then applied by spin coating.

テトラヒドロキシシラン11% エチルアルコール溶液:2
0重量% n−ブチルアルコール:80重量% その後このディスク基盤を200℃の温度で3時間焼成しC
o−Ni−P合金膜の上にポリ珪酸の被覆を形成した。
Tetrahydroxysilane 11% ethyl alcohol solution: 2
0% by weight n-butyl alcohol: 80% by weight After that, the disc substrate was baked at a temperature of 200 ° C. for 3 hours, and then C
A polysilicic acid coating was formed on the o-Ni-P alloy film.

この基板を(ヘプタデカフロロ−1,1,2,2−テトラヒド
ロデシル)−1−トリクロロシラン(C8F17CH2CH2SiC
l3)の蒸気中に室温で30分間保持した後100℃の温度で3
0分間焼成し単分子膜から成る潤滑層を形成した。
This substrate is treated with (heptadecafluoro-1,1,2,2-tetrahydrodecyl) -1-trichlorosilane (C 8 F 17 CH 2 CH 2 SiC
l 3 ) in steam for 30 minutes at room temperature and then at 100 ° C for 3
It was baked for 0 minutes to form a lubricating layer composed of a monomolecular film.

潤滑剤を形成する前後の基板表面の表面エネルギーを種
々の表面張力をもつ液滴の接触角を測定し計算すると、
ポリ珪酸被膜上43erg/cm2から潤滑層形成後では11erg/c
m2に低下しヘッドと下地体との接着を防止する効果が大
きいことがわかった。
When the surface energy of the substrate surface before and after forming the lubricant is calculated by measuring the contact angles of droplets having various surface tensions,
43 erg / cm 2 on the polysilicic acid film to 11 erg / c after forming the lubricating layer
It was found that the effect of preventing the adhesion between the head and the base body was large by decreasing to m 2 .

次に、このディスク基板とヘッドとの間に働く動摩擦係
数を測定した。動摩擦係数はヘッドに歪ゲージを連結
し、ディスクを一定速度で回転させたときに生じるヘッ
ドとディスク間の動摩擦力を測定し、これをヘッドに加
えた荷重で割ってもとめた。測定は荷重15g、滑り速度1
00mm/minの条件で行なった。その結果、動摩擦係数の値
として0.221が得られ、重合体しない場合の0.546に比べ
動摩擦係数の値を小さくすることができた。
Next, the dynamic friction coefficient acting between the disk substrate and the head was measured. The dynamic friction coefficient was determined by connecting a strain gauge to the head, measuring the dynamic friction force between the head and the disk generated when the disk was rotated at a constant speed, and dividing this by the load applied to the head. Measurement is load 15g, sliding speed 1
It was performed under the condition of 00 mm / min. As a result, 0.221 was obtained as the value of the dynamic friction coefficient, and the value of the dynamic friction coefficient could be made smaller than 0.546 when the polymer was not used.

また、この重合体を塗布したディスク基板と荷重70gの
モノリシック ヘッドを用いてディスクとヘッドの接触
摩擦試験を30000回繰り返し行なったが、ヘッドクラッ
シュおよびヘッドによる接触摩擦によるディスクの表面
状態の変化は皆無であった。
A contact friction test between the disk and the head was repeated 30000 times using a disk substrate coated with this polymer and a monolithic head with a load of 70 g, but there was no change in the surface condition of the disk due to head crash or contact friction by the head. Met.

(実施例2) 実施例1と同様に作成しポリ珪酸被膜を形成したディス
ク基板を(ヘプタデカフロロ−1,1,2,2−テトラヒドロ
テシル)−1−トリエトキシシラン〔C8F17CH2CH2Si<O
C2H5〕の蒸気中に室温で30分間保持した後100℃の
温度で30分間焼成し単分子膜から成る潤滑層を形成し
た。実施例1と同様の方法で表面エネルギーと動摩擦係
数の値を求めた。その結果、重合体を塗布することによ
り表面エネルギーの値は43erg/cm2から12erg/cm2に低下
し、動摩擦係数の値は0.546から0.245に小さくすること
ができた。
(Example 2) a disc substrate formed similarly created polysilicic acid film as in Example 1 (Heputadekafuroro 1,1,2,2-tetrahydronaphthalene Te Sil) -1-triethoxysilane [C 8 F 17 CH 2 CH 2 Si <O
C 2 H 5 > 3 ] steam was kept at room temperature for 30 minutes and then baked at 100 ° C. for 30 minutes to form a lubricating layer made of a monomolecular film. The values of the surface energy and the dynamic friction coefficient were obtained by the same method as in Example 1. As a result, the value of surface energy by applying a polymer is reduced from 43erg / cm 2 to 12erg / cm 2, the value of the dynamic friction coefficient could be reduced to 0.245 from 0.546.

また実施例1と同様に耐摩耗性を評価したが、30000回
の接触摩擦試験によるディスクの表面状態の変化は皆無
であった。
Further, the abrasion resistance was evaluated in the same manner as in Example 1, but there was no change in the surface condition of the disk due to the contact friction test of 30,000 times.

(実施例3) 実施例1と同様に作成しポリ珪酸被膜を形成したディス
ク基板を(ヘプタデカフロロ−1,1,2,2−テトラヒドロ
デシル)−1−メチルジクロロシラン〔C8F17CH2CH2Si
<CH3>Cl2〕の蒸気中に室温で30分間保持した後100℃
の温度で30分間焼成し単分子膜から成る潤滑層を形成し
た。実施例1と同様の方法で表面エネルギーと動摩擦係
数の値を求めた。その結果、重合体を塗布することによ
り表面エネルギーの値は43erg/cm2から15erg/cm2に低下
し、動摩擦係数の値は0.546から0.253に小さくすること
ができた。
(Example 3) a disc substrate formed similarly created polysilicic acid film as in Example 1 (Heputadekafuroro 1,1,2,2-tetrahydronaphthalen-decyl) -1-methyldichlorosilane [C 8 F 17 CH 2 CH 2 Si
<CH 3 > Cl 2 ], kept at room temperature for 30 minutes, then 100 ℃
A lubricating layer composed of a monomolecular film was formed by baking at the temperature of 30 minutes. The values of the surface energy and the dynamic friction coefficient were obtained by the same method as in Example 1. As a result, it was possible to reduce the surface energy value from 43 erg / cm 2 to 15 erg / cm 2 and the dynamic friction coefficient value from 0.546 to 0.253 by applying the polymer.

また実施例1と同様に耐摩耗性を評価したが、30000回
の接触摩擦試験によるディスクの表面状態の変化は皆無
であった。
Further, the abrasion resistance was evaluated in the same manner as in Example 1, but there was no change in the surface condition of the disk due to the contact friction test of 30,000 times.

(実施例4) 実施例1と同様の方法で作成したディスク基板のCo−Ni
−P合金膜の上にポリ珪酸被膜のかわりにAl2O3(非晶
質アルミナ)をスパッタ法により被覆した。このディス
ク基板を実施例1と同様に(ヘプタデカフロロ−1,1,2,
2−テトラヒドロデシル)−1−トリクロロシラン(C8F
17CH2CH2SiCl3)の蒸気中に室温で30分間保持したのち1
00℃の温度で30分間焼成し単分子膜から成る潤滑層を形
成し、実施例1と同様の方法で表面エネルギー、動摩擦
係数の値を求めた。その結果、重合体を塗布することに
より、表面エネルギーの値は45erg/cm2から10erg/cm2
低下し、動摩擦係数の値は0.270から0.198に小さくする
ことができた。
(Example 4) Co-Ni of a disk substrate prepared by the same method as in Example 1
Instead of the polysilicic acid coating, Al 2 O 3 (amorphous alumina) was coated on the -P alloy film by the sputtering method. This disk substrate was processed in the same manner as in Example 1 (heptadecafluoro-1,1,2,
2-Tetrahydrodecyl) -1-trichlorosilane (C 8 F
17 CH 2 CH 2 SiCl 3 ) steam at room temperature for 30 minutes
A lubricating layer made of a monomolecular film was formed by firing at a temperature of 00 ° C. for 30 minutes, and the surface energy and the coefficient of dynamic friction were determined by the same method as in Example 1. As a result, by applying the polymer, the values of surface energy decreases from 45erg / cm 2 to 10erg / cm 2, the value of the dynamic friction coefficient could be reduced to 0.198 from 0.270.

また、実施例1と同様に30000回の接触摩擦試験による
ディスク表面状態の変化は皆無であった。
Further, as in Example 1, there was no change in the disk surface state due to the contact friction test of 30,000 times.

(実施例5) 実施例1と同様の方法で作成し、ポリ珪酸被膜を形成し
たディスク基板を平行平板型のエッチング装置に入れ、
Arを用いて、流量18sccm、電力密度0.35w/cm2、圧力1.3
Pa.バイアス単位1KVの条件で2分間エッチングを行なっ
た後、(ヘプタデカフロロ−1,1,2,2−テトラヒドロデ
シル)−1−トリクロロシラン(C8F17CH2CH2SiCl3)の
蒸気中に室温で30分間保持したのち100℃の温度で30分
間焼成し単分子膜から成る潤滑層を形成した。実施例1
と同様の方法で表面エネルギーと動摩擦係数の値を測定
した。その結果、表面エネルギーの値はArプラズマで処
理した後のポリ珪酸被膜上の50erg/cm2から重合体塗布
数では9erg/cm2とArプラズマ処理をしない場合よりもさ
らに低下し、動摩擦係数の値もポリ珪酸上の0.614から
重合体塗布後の0.201に小さくすることができた。
(Example 5) A disk substrate prepared in the same manner as in Example 1 and having a polysilicic acid film formed thereon was placed in a parallel plate type etching apparatus,
Flow rate 18sccm, power density 0.35w / cm 2 , pressure 1.3 using Ar
After etching for 2 minutes under the condition of Pa. Bias unit of 1 KV, in a vapor of (heptadecafluoro-1,1,2,2-tetrahydrodecyl) -1-trichlorosilane (C 8 F 17 CH 2 CH 2 SiCl 3 ). It was kept at room temperature for 30 minutes and then baked at 100 ° C. for 30 minutes to form a lubricating layer composed of a monomolecular film. Example 1
The surface energy and the value of the dynamic friction coefficient were measured by the same method. As a result, the value of the surface energy is reduced further than in the absence of 9erg / cm 2 and Ar plasma treatment from 50erg / cm 2 with a polymer coating speed of the polysilicic acid coating after treatment with Ar plasma, the dynamic friction coefficient The value could also be reduced from 0.614 on polysilicic acid to 0.201 after polymer coating.

また、実施例1と同様に30000回の接触摩擦試験による
ディスク表面状態の変化は皆無であった。
Further, as in Example 1, there was no change in the disk surface state due to the contact friction test of 30,000 times.

(発明の効果) このように本発明における磁気記憶体はヘッドと磁気記
憶体間に生じる接触摩擦力を小さくする効果が大きく、
磁気ディスク装置および磁気ドラム装置後にその応用が
期待されるものである。
(Effects of the Invention) As described above, the magnetic memory according to the present invention has a large effect of reducing the contact frictional force generated between the head and the magnetic memory,
The application is expected after the magnetic disk device and the magnetic drum device.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の磁気記憶体の断面を示す図。 図中の番号は以下のものを示す。 1……合金円盤 2……非磁性合金層 3……金属磁性薄膜媒体 4……非晶質無機酸化物 5……潤滑剤 FIG. 1 is a view showing a cross section of a magnetic memory body of the present invention. The numbers in the figure indicate the following. 1 ... Alloy disc 2 ... Non-magnetic alloy layer 3 ... Metal magnetic thin film medium 4 ... Amorphous inorganic oxide 5 ... Lubricant

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】鏡面研磨された非磁性合金層を被覆した合
金円盤上または鏡面研磨された合金円盤上に金属磁性薄
膜媒体を被覆し、この上に非晶質無機酸化物層を被覆
し、さらに前記非晶質無機酸化物層の上に、一般式 (Rはフルオロアルキル基、X、Y、Z、のうち少なく
とも一つはアルコキシ基または塩素、他はアルキル基) で表わされる化合物を気相成長させ、または気相成長
後、焼成して前記非晶質無機酸化物層と前記化合物を結
合させることを特徴とする磁気記憶体の製造方法。
1. A metal magnetic thin film medium is coated on an alloy disc coated with a mirror-polished non-magnetic alloy layer or on a mirror-polished alloy disc, and an amorphous inorganic oxide layer is coated thereon. Further on the amorphous inorganic oxide layer, the general formula (Wherein R is a fluoroalkyl group, at least one of X, Y, and Z is an alkoxy group or chlorine, and the other is an alkyl group). A method of manufacturing a magnetic memory, comprising bonding a crystalline inorganic oxide layer to the compound.
【請求項2】鏡面研磨された非磁性合金層を被覆した合
金円盤上または鏡面研磨された合金円盤上に金属磁性薄
膜媒体を被覆し、この上に非晶質無機酸化物層を被覆
し、プラズマ中で処理した後、前記非晶質無機酸化物層
の上に、一般式 (Rはフルオロアルキル基、X、Y、Z、のうち少なく
とも一つはアルコキシ基または塩素、他はアルキル基) で表わされる化合物を気相成長させ、または気相成長
後、焼成して前記非晶質無機酸化物層と前記化合物を結
合させることを特徴とする磁気記憶体の製造方法。
2. A metal magnetic thin film medium is coated on an alloy disc coated with a mirror-polished non-magnetic alloy layer or on a mirror-polished alloy disc, and an amorphous inorganic oxide layer is coated thereon. After the treatment in plasma, on the amorphous inorganic oxide layer, the general formula (Wherein R is a fluoroalkyl group, at least one of X, Y, and Z is an alkoxy group or chlorine, and the other is an alkyl group). A method of manufacturing a magnetic memory, comprising bonding a crystalline inorganic oxide layer to the compound.
JP61002393A 1986-01-08 1986-01-08 Magnetic memory manufacturing method Expired - Lifetime JPH079702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61002393A JPH079702B2 (en) 1986-01-08 1986-01-08 Magnetic memory manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61002393A JPH079702B2 (en) 1986-01-08 1986-01-08 Magnetic memory manufacturing method

Publications (2)

Publication Number Publication Date
JPS62159332A JPS62159332A (en) 1987-07-15
JPH079702B2 true JPH079702B2 (en) 1995-02-01

Family

ID=11527990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61002393A Expired - Lifetime JPH079702B2 (en) 1986-01-08 1986-01-08 Magnetic memory manufacturing method

Country Status (1)

Country Link
JP (1) JPH079702B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01243228A (en) * 1988-03-23 1989-09-27 Matsushita Electric Ind Co Ltd Magnetic recording medium
US5296263A (en) * 1992-01-07 1994-03-22 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a recording medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440606A (en) * 1977-09-05 1979-03-30 Nec Corp Magnetic memory element
JPS58208936A (en) * 1982-05-28 1983-12-05 Sony Corp Magnetic recording medium

Also Published As

Publication number Publication date
JPS62159332A (en) 1987-07-15

Similar Documents

Publication Publication Date Title
US4069360A (en) Magnetic record member and process for manufacturing the same
US4152487A (en) Magnetic record member
US4307156A (en) Magnetic record member
JPH0118500B2 (en)
JPH0765351A (en) Magnetic storage body and production thereof
JPH08190710A (en) Magnetic head
US4162350A (en) Magnetic record member
US4154875A (en) Process for manufacturing a magnetic record member
JPH079702B2 (en) Magnetic memory manufacturing method
JPH0673177B2 (en) Magnetic storage body and manufacturing method thereof
JP2924052B2 (en) Magnetic storage body and method of manufacturing the same
JPH0465454B2 (en)
JPH0668832B2 (en) Magnetic storage body and manufacturing method thereof
JPS62145533A (en) Magnetic memory medium and its production
JPH07107736B2 (en) Magnetic storage body and manufacturing method thereof
JP2000030245A (en) Magnetic recording medium and magnetic recorder
JPH01240598A (en) Magnetic storage and production thereof
JPS5938649B2 (en) Magnetic memory and its manufacturing method
WO2002095083A1 (en) Composite glassy carbon disk substrate
JPH0668831B2 (en) Magnetic storage body and manufacturing method thereof
JPS5939809B2 (en) magnetic memory
JP2762286B2 (en) Magnetic recording / reproducing method
JP2770806B2 (en) Magnetic recording media
JPS63816A (en) Magnetic memory medium and its production
JPS58194131A (en) Manufacture of magnetic storage body