JPH0797027B2 - Method for eliminating setting error in shape measurement - Google Patents

Method for eliminating setting error in shape measurement

Info

Publication number
JPH0797027B2
JPH0797027B2 JP22144285A JP22144285A JPH0797027B2 JP H0797027 B2 JPH0797027 B2 JP H0797027B2 JP 22144285 A JP22144285 A JP 22144285A JP 22144285 A JP22144285 A JP 22144285A JP H0797027 B2 JPH0797027 B2 JP H0797027B2
Authority
JP
Japan
Prior art keywords
measurement
inspected
work
error
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22144285A
Other languages
Japanese (ja)
Other versions
JPS6281518A (en
Inventor
正彦 加藤
修利 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP22144285A priority Critical patent/JPH0797027B2/en
Publication of JPS6281518A publication Critical patent/JPS6281518A/en
Publication of JPH0797027B2 publication Critical patent/JPH0797027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は形状測定における設定誤差を除去する方法に関
するものである。
TECHNICAL FIELD The present invention relates to a method for eliminating a setting error in shape measurement.

〔従来の技術〕[Conventional technology]

形状測定ではワークの取付誤差や測定系の軸合せの不良
が測定値の系統的誤差の要因となり、形状について誤っ
た情報を与えるが、特に非球面レンズや金型などの表面
形状の測定では高精度の測定が要求されるため重要な課
題となる。
In shape measurement, work mounting errors and measurement system axis misalignment cause systematic errors in measured values, giving false information about the shape, but especially when measuring surface shapes such as aspherical lenses and molds. This is an important issue because accuracy measurement is required.

これらのうち簡単なもの、たとえばワークを固定して三
次元測定器で形状を計る場合とか、ワークの断面のみを
測定する場合などにみられる例では、例えば第7図の1
で示す測定値が得られる。第7図においてX,Y軸は測定
系の座標軸で、測定結果はワークが傾いて取付けられて
いることを示し、簡単な演算により新らしい座標系
X′,Y′を定めることができる。あるいは真円度測定器
などにみられる例では測定値にフーリエ分析を施して偏
心量を求め測定値から偏心の影響を除去することができ
る。このように簡単な例ではワークの取付誤差の除去方
法は公知であるが、被検面全面を走査する一般の場合に
ついては従来明らかにされていない。
Of these, the simple ones, such as the case where the work is fixed and the shape is measured by a three-dimensional measuring instrument, or the case where only the cross section of the work is measured, are shown in FIG.
The measured value shown by is obtained. In FIG. 7, the X and Y axes are the coordinate axes of the measuring system, and the measurement result shows that the workpiece is mounted at an inclination, and new coordinate systems X'and Y'can be determined by simple calculation. Alternatively, in an example found in a roundness measuring instrument or the like, it is possible to perform Fourier analysis on the measured value to obtain the amount of eccentricity and remove the influence of eccentricity from the measured value. In such a simple example, a method for removing a work mounting error is known, but a general case of scanning the entire surface to be inspected has not been clarified.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

被検面全体を走査して、全面の情報を得る測定に於て、
たとえば2種類の回転を組合わせて走査する方式を採用
した場合、測定時に不可避的に生ずる2種の回転軸間の
軸ずれやワークの取付誤差を測定値から自動的に検出
し、該取付誤差による影響を補正する手段については従
来知られていない。このためワーク取付作業や機械の調
整に多大な労力を要した。
In the measurement to obtain information on the entire surface by scanning the entire surface to be inspected,
For example, when a method of scanning by combining two types of rotations is adopted, the axial deviation between the two types of rotating shafts and the work mounting error that inevitably occur during measurement are automatically detected from the measured values, and the mounting error is detected. Conventionally, a means for correcting the influence of is not known. For this reason, a great deal of labor was required for work mounting work and machine adjustment.

そこで本発明は上記手段を得ることにより、ワーク取付
けの作業を容易化でき、作業者の負担を軽減し得ると共
に、高精度な形状測定を可能にすることを目的とする。
Therefore, an object of the present invention is to make it possible to facilitate the work of attaching a work, reduce the burden on the operator, and enable highly accurate shape measurement by obtaining the above means.

〔問題点を解決するための手段および作用〕[Means and Actions for Solving Problems]

被検面全面を走査する方法としては直交する2方向での
直線走査の組合せによる場合と2種類の回転を組合せる
場合とに大きく分けられるが、本発明は後者の場合に摘
要される。本発明の方式を説明するための概念図を第1
図(a)(b)に示す。同図(a)に示す平凸状のワー
ク2の凸面の形状、いいかえると被検面3を測定する場
合を考える。同図(b)は同図(a)を矢印の方向から
見た場合の測定点の輪帯状軌跡4示す。これらの軌跡の
最外側のものはワーク外形5の近傍に達しており、ワー
ク有効径までの測定を可能としていることを示す。これ
らの測定点から任意の直交する4方位上の測定点、いい
かえると第1図(b)の直線と曲線との交点の黒丸の点
列を選び出し、これらの各輪帯上の4方位の測定値の相
加平均を求める。これらの平均値から最小自乗法により
測定系の回転軸間のずれ、およびワークの取付誤差の
内、方位によらない回転対称な成分を求めて測定値の補
正を行い、次に補正された測定値を用いてワーク取付誤
差の内、方位に関係する回転非対称な成分を求め、測定
値の補正を行なう。このように、測定系の軸間のずれと
ワークの取付誤差の方位によらない回転対称な成分とを
組合わせることは最小自乗法を適用する際に未知数が互
いに直交する関係にあることが解が収束するために必要
であるためである 本発明は、上述のように、被検面3上の測定点列から任
意の直交する4方位上の測定点を選び、これらの各輪帯
状の4方位の測定値の相加平均を求め、該平均値から測
定系の回転軸間の軸ずれおよびワークの取付誤差の内、
方位によらない回転対称な成分とを求めて測定値の第1
次補正を行ない、次に補正された測定値を求めてワーク
取付誤差の内、方位に関係する回転非対称な成分を求め
第2次の測定値の補正を行なうことを特徴とする。
The method of scanning the entire surface to be inspected is roughly classified into a combination of linear scanning in two directions orthogonal to each other and a combination of two types of rotation, but the present invention is summarized in the latter case. First, a conceptual diagram for explaining the method of the present invention.
It shows in figure (a) (b). Consider a case where the shape of the convex surface of the plano-convex work 2 shown in FIG. The figure (b) shows the annular locus 4 of the measurement point when the figure (a) is seen from the direction of the arrow. The outermost ones of these loci reach the vicinity of the workpiece outer shape 5, indicating that measurement up to the workpiece effective diameter is possible. From these measurement points, the measurement points in any four orthogonal directions, in other words, the series of black circles at the intersections of the straight line and the curved line in FIG. 1 (b), are selected, and the measurement in the four directions on each of these zones is performed. Calculate the arithmetic mean of the values. From these average values, the least squares method is used to correct the measured values by finding the rotationally symmetric component that does not depend on the bearing among the deviations between the rotational axes of the measuring system and the work mounting error, and then correct the measured values. Using the value, the rotationally asymmetric component related to the bearing is calculated from the work mounting error, and the measured value is corrected. In this way, combining the misalignment between the axes of the measurement system and the rotationally symmetric component that does not depend on the orientation of the mounting error of the workpiece is that the unknowns are in a relationship of being orthogonal to each other when applying the method of least squares. The present invention, as described above, selects measurement points on arbitrary four orthogonal directions from the measurement point sequence on the surface to be inspected 3 as described above. Obtaining the arithmetic mean of the measurement values of the azimuth, from the average value of the axis deviation between the rotation axes of the measurement system and the work mounting error,
The first of the measured values is obtained by obtaining the rotationally symmetric component that does not depend on the azimuth.
The second correction is performed, and then the corrected measured value is obtained to obtain the rotationally asymmetric component related to the azimuth in the work mounting error and the second measured value is corrected.

〔実施例〕〔Example〕

第2図は本発明の一実施例の測定系を示す図である。回
転を組合せて被検面3を走査するとき、干渉計を固定し
て被検面をその対称軸を回転軸として回転させ乍ら、さ
らにその近似曲率中心を軸として回転する場合と、回転
する被検面に対して干渉計を該近似曲率中心を中心とし
て回転させる場合とがある。第2図は後者の例を示す。
ワーク2は回転軸受8に取付けられワーク回転軸9のま
わりに回転できるようになっている。干渉計6はたとえ
ば非接触の光プローブ7を有し、一軸スライドテーブル
10を介してロータリテーブル11に保持されている。該ロ
ータリテーブル11はNCテーブル13に固定されている。ロ
ータリーテーブル回転軸12は被検面3の近似曲率中心の
極く近傍を通るように予備設定される。一軸スライドテ
ーブル10は被検面3と光プローブ7との位置関係を調整
する役割をなす。回転軸受8は図示されていない測定機
の主柱に固定されている。
FIG. 2 is a diagram showing a measuring system according to an embodiment of the present invention. When scanning the surface to be inspected 3 in combination with rotation, the interferometer is fixed and the surface to be inspected is rotated about its axis of symmetry as a rotation axis, and further rotated about its approximate curvature center. The interferometer may be rotated around the approximate curvature center with respect to the surface to be inspected. FIG. 2 shows the latter example.
The work 2 is attached to a rotary bearing 8 so that it can rotate around a work rotation shaft 9. The interferometer 6 has, for example, a non-contact optical probe 7, and has a uniaxial slide table.
It is held on the rotary table 11 via 10. The rotary table 11 is fixed to the NC table 13. The rotary table rotation shaft 12 is preset so as to pass in the vicinity of the approximate curvature center of the surface 3 to be inspected. The uniaxial slide table 10 serves to adjust the positional relationship between the surface 3 to be inspected and the optical probe 7. The rotary bearing 8 is fixed to a main pillar of a measuring machine (not shown).

第3図は上記第2図の測定系による測定の概念を示す図
である。第3図は第2図を上からみた場合に相当する図
である。被検面3はワーク回転軸9のまわりに回転可能
となっている。ロータリテーブルの回転軸12は図のO′
点を通り紙面に垂直になっている。点Oは被検面3の近
似曲率中心でワークの取付誤差のため一般にワーク回転
軸9上にはない。またO′も軸ずれのためワーク回転軸
9上にはない。図示されていない干渉計は光プローブ7
を有し、ロータリテーブル回転軸12のまわりに回転でき
るようになっている。たとえば光プローブ7は図の実線
の位置から点線の位置までθだけ矢印で示されたように
回転する。この位置でロータリテーブルを停止して被検
面3を回転させると第1図(b)に示した測定点の輪帯
状軌跡4がえられる。この操作を有効径いっぱいまで繰
り返して一般に測定は完了する。図は説明の便宜状誇張
されて描かれているが、実際は点O,O′はロータリテー
ブル回転軸12の極く近傍にあり、通常数ミクロン以内に
収められている。
FIG. 3 is a diagram showing the concept of measurement by the measurement system of FIG. FIG. 3 is a view corresponding to FIG. 2 seen from above. The surface 3 to be inspected is rotatable about a workpiece rotation shaft 9. The rotary shaft 12 of the rotary table is O'in the figure.
It passes through the dots and is perpendicular to the paper surface. The point O is the approximate center of curvature of the surface 3 to be inspected, and is generally not on the work rotation axis 9 because of a work mounting error. Also, O'is not on the work rotating shaft 9 because of the axis deviation. The interferometer (not shown) is an optical probe 7.
And is configured to be rotatable about the rotary table rotation shaft 12. For example, the optical probe 7 rotates from the position indicated by the solid line to the position indicated by the dotted line by θ as shown by the arrow. When the rotary table is stopped at this position and the surface 3 to be inspected is rotated, the orbital locus 4 of the measuring point shown in FIG. 1B is obtained. This operation is repeated until the full effective diameter is reached, and the measurement is generally completed. Although the drawing is exaggerated for convenience of explanation, the points O and O'are actually located very close to the rotary table rotation shaft 12 and are usually within several microns.

軸ずれが存在する時に生ずる測定誤差のようすを第4図
に示す。説明の便宜上、被検面3の近似曲率中心Oはワ
ーク回転軸上にあるものとする。言い換えると、ワーク
の回転に対して不変な、回転対称なセッティング誤差が
ある場合を考える。ロータリテーブル回転軸12はO′を
通り、紙面に垂直になっているが、一般にワーク回転軸
9上にはない。OとO′のずれ量を直交する2方向に向
け、図のようにEP,δとする。被検面3上の一点をPと
するとEP,δのため▲′▼は▲▼と等しくな
い。このため測定値に系統的誤差を生じ、形状の認識に
誤った情報を与える。ワーク回転軸9と被検面3との交
点をQとする。ロータリテーブル回転軸12が紙面を切る
点O′からワーク回転軸9に垂線を下ろし、その足をC
とする。Cを通ってO′Pに平行線を引き、被検面3と
の交点をAとする。またOを通ってO′Pに平行線を引
き、被検面3との交点をEとする。OEはセッテイング誤
差δおよびEPが0のときに測定される真の形状に対応す
る。CからO′Pに下ろした垂線の足をB、Oから線分
CAに下ろした足をDとすれば、CAはEP=0の時に測定さ
れる量である。EPの2次の微小量を無視すれば、CA=BP
であり、実際に測定にかかる量O′Pと比較すると、B
O′の相違が生ずる。これはEPsinθと書ける。またOEは
δ=0の時に観測される量で、CAとの差はδの2次の微
小量を無視すればCDとなり、δcosθで表される。
FIG. 4 shows the state of measurement error that occurs when there is an axis deviation. For convenience of explanation, the approximate center of curvature O of the surface 3 to be inspected is on the workpiece rotation axis. In other words, consider the case where there is a rotationally symmetric setting error that is invariant to the rotation of the work. The rotary table rotary shaft 12 passes through O ′ and is perpendicular to the paper surface, but generally not on the work rotary shaft 9. The amounts of deviation between O and O'are directed in two orthogonal directions, and EP and δ are set as shown in the figure. If one point on the surface 3 to be inspected is P, then ′ ′ is not equal to ▲ ▼ because of EP and δ. As a result, systematic errors occur in the measured values, giving incorrect information for shape recognition. Let Q be the intersection of the workpiece rotation axis 9 and the surface 3 to be inspected. A perpendicular line is drawn from the point O ′ at which the rotary table rotary shaft 12 cuts the plane of the paper to the work rotary shaft 9, and its foot is C
And A parallel line is drawn through O through C, and the intersection with the surface 3 to be inspected is A. A parallel line is drawn through O through O'P, and the intersection with the surface 3 to be inspected is E. OE corresponds to the true shape measured when setting error δ and EP is zero. The foot of the perpendicular drawn from C to O'P is a line segment from B and O.
CA is the amount measured when EP = 0, where D is the foot lowered to CA. CA = BP, ignoring the second minute amount of EP
And when compared with the amount O′P actually measured, B
O'difference occurs. This can be written as EPsinθ. OE is the amount observed when δ = 0, and the difference from CA is CD, ignoring the second-order small amount of δ, and is represented by δcosθ.

第5図に、ワークの回転に対して回転非対称な取付誤差
がある場合の測定誤差のようすを示す。簡単のために
O′はワーク回転軸9上にある場合、いいかえるとEP=
Oの場合を示す。被検面3の近似曲率中心Oがワーク回
転軸9から一定量 だけ横ずれしている場合を考える。被検面3を半回転さ
せると、OはO″に移動し、被検面3は実線の位置から
点線の位置に移動する。被検面上の一点をPとすると半
回転後はPはP′に移動する。このため測定値は被検面
3の回転と共に最大▲′▼だけ変化し、測定値に系
統的誤差を生ずる。
FIG. 5 shows the measurement error when there is a rotationally asymmetric mounting error with respect to the rotation of the work. For the sake of simplicity, if O'is on the workpiece rotation axis 9, in other words EP =
The case of O is shown. The approximate center of curvature O of the surface 3 to be inspected is a fixed amount from the work rotation axis 9. Consider only the case of lateral displacement. When the surface 3 to be inspected is rotated a half turn, O moves to O ″, and the surface 3 to be inspected moves from the position indicated by the solid line to the position indicated by the dotted line. As a result, the measured value changes by a maximum of {circle around (1)} with the rotation of the surface 3 to be measured, which causes a systematic error in the measured value.

次に本発明の設定誤差除去方法の具体的手段を示す。測
定値を A(J,I),J:方位,I:輪帯番号(θの関数)とする。な
お方位Jはワークの回転角φに対応し、輪帯番号Iはロ
ータリテーブルの回転角θに対応する。軸ずれEP,δが
小さい時は近似的に(1)式が成立する。
Next, specific means of the setting error removing method of the present invention will be described. Let the measured values be A (J, I), J: azimuth, I: ring zone number (function of θ). The azimuth J corresponds to the rotation angle φ of the work, and the ring zone number I corresponds to the rotation angle θ of the rotary table. When the axis deviation EP, δ is small, the equation (1) approximately holds.

詳述すれば、EP=0の時、いいかえるとロータリテーブ
ル回転軸12が点Cを通る場合、θ=0の時の測定値はCQ
となるが、被検面3の頂点Qにおける近似球面の半径を
R0とすれば、R0=OQで、CQ=R0+δとなる。干渉測定で
は通常θ=0の時の測定値を0にリセットする。この条
件の下では、CA(ここではCArと書く。添字rはリセッ
ト時を表す)は、 CAr=R0+δcosθ−AS(I)−(R0+δ) =δ(cosθ−1)−AS(I) ここに−AS(I)は、ロータリテーブルを回転して1番
目の輪帯(例えばθ=θ)に来たときに測定される、
セッティング誤差がない場合の非球面量(球面からのず
れ量)を表す。符号(−)は、上記近似球面の例えば外
側に被検面3が来た場合に、その球面からのずれ量を
(+)にとるか(−)にとるかで異なり、任意性があ
る。ここでは−AS(I)とする。同様にBPが0でない場
合の測定では、 O′Pr=(BP−EPsinθ) =(CA−EPsinθ) =δ(cosθ−1)−AS(I)−EPsinθ =−ASm(I) ここに−ASm(I)は、第4図に示されたワークの回転
軸上に被検面3の近似曲率中心が正しくセットされ、
δ,EPのセッティング誤差がある場合に測定される非球
面量を表す。書き換えると、 δ(1−cosθ)+EPsinθ=ASm(I)−AS(I) さらに第5図に示されたワークの回転軸上に被検面3の
近似曲率中心が正しくセットされず、偏心してセットさ
れた場合には、ワークの回転(回転角をφとする)と共
に、第5図のPP′をPV値(Peak to Value)として正弦
波的に変化(具体的にはPP′/2sinφ)する測定値が得
られる。その平均値がASm(I)となる。具体的にはASm
(I)の代わりに A(J,I)=ASm(I)+(PP′/2)sinφ が測定される。ここにJは方位(ワークの回転角φ=φ
)を、Iは輪帯(ロータリテーブルの回転角θ=
θ)を表し、A(J,I)は方位φj,輪帯θでの測定
値を示す。第1図(b)に表された同じ1番目の輪帯上
の直交する2方向の4点の測定値{φ,φ+(π/2),
φ+π,φ+(3π/2)}の相加平均をとると、 sinφ+sin{φ+(π/2)}+sin(φ+π) +sin{φ+(3π/2)}=0 から平均値はASm(I)に一致する。式で書けば、 ASm(I)=ΣA(J,I)/4 以上から、(1)式が成立する。
More specifically, when EP = 0, in other words, when the rotary table rotary shaft 12 passes through the point C, the measured value when θ = 0 is CQ.
However, the radius of the approximate spherical surface at the vertex Q of the surface 3 to be inspected is
If R 0 , then R 0 = OQ and CQ = R 0 + δ. In the interferometric measurement, the measured value when θ = 0 is normally reset to 0. Under this condition, CA (written as CA r here, the subscript r represents the time of reset) is CA r = R 0 + δcos θ-AS (I)-(R 0 + δ) = δ (cos θ-1)- AS (I) Here, −AS (I) is measured when the rotary table is rotated to reach the first ring zone (for example, θ = θ i ),
It represents the amount of aspherical surface (the amount of deviation from the spherical surface) when there is no setting error. The sign (-) differs depending on whether the amount of deviation from the spherical surface is (+) or (-) when the surface 3 to be inspected comes outside the approximate spherical surface, and is arbitrary. Here, it is set to -AS (I). In the measurement of the case likewise BP is not 0, O'P r = (BP- EPsinθ) r = (CA-EPsinθ) r = δ (cosθ-1) -AS (I) -EPsinθ = -AS m (I) Here, −AS m (I) is such that the approximate center of curvature of the surface to be inspected 3 is correctly set on the rotation axis of the work shown in FIG.
It represents the amount of aspheric surface measured when there is a setting error of δ and EP. Rewriting the, δ (1-cosθ) + EPsinθ = AS m (I) -AS (I) further approximation center of curvature of the object surface 3 on the rotation axis of the workpiece shown in Figure 5 is not set correctly, polarized When set with care, the workpiece rotates (the rotation angle is φ) and the PP 'in Fig. 5 changes sinusoidally as the PV value (Peak to Value) (specifically PP' / 2sinφ ) Is obtained. The average value is AS m (I). Specifically AS m
Instead of (I), A (J, I) = AS m (I) + (PP '/ 2) sinφ is measured. Where J is the azimuth (workpiece rotation angle φ = φ
j ), I is an annular zone (rotational angle θ of the rotary table =
θ i ), and A (J, I) represents the measured value at the azimuth φ j and the annular zone θ i . Measured values at four points in two orthogonal directions on the same first annular zone shown in FIG. 1 (b) {φ, φ + (π / 2),
If the arithmetic mean of φ + π, φ + (3π / 2)} is calculated, sin φ + sin {φ + (π / 2)} + sin (φ + π) + sin {φ + (3π / 2)} = 0 and the average value is AS m (I) Matches If written in a formula, AS m (I) = ΣA (J, I) / 4 From the above, the formula (1) is established.

ただし右辺第1項は4方位の相加平均をとることを表わ
し、AS(I)はO′とOが一致した際の被検面3の設計
値から定まる▲▼の非球面量に相当する。左辺は測
定開始時(θ=0)でカウンタ値を0にリセットする場
合を示す。輪帯番号Iはθの関数であるから(1)式は
種々のθについて等式が成立し未知数はEPとδの二つで
あれから最小自乗法によりこれらを求めることができ
る。この時、EPとδとは軸ずれの直交する2成分である
ため、解の収束性はよい。(1)式の根拠は各輪帯につ
き4方位の平均をとるとワークの取付誤差の方位に関係
した場合がほぼキャンセルされることによる。
However, the first term on the right side represents taking the arithmetic mean of four directions, and AS (I) corresponds to the aspheric amount of ▲ ▼ determined from the design value of the surface 3 to be inspected when O ′ and O match. . The left side shows the case where the counter value is reset to 0 at the start of measurement (θ = 0). Since the ring zone number I is a function of θ, the equation (1) holds for various θ, and the unknowns can be obtained by the least square method from EP and δ. At this time, since EP and δ are two orthogonal components of axis deviation, the convergence of the solution is good. The basis of the equation (1) is that when the average of the four bearings for each ring zone is taken, the case relating to the mounting error of the work is almost canceled.

軸ずれEP,δが求められると(1)式を利用して全測定
値の補正をすることができる(一次の補正)。補正され
た測定値をA′(J,I)とすると、 A′(J,I)=A(J,I)−{δ(1−cosθ) +EPsinθ} が得られる。これらを用いて、次に方位に関係した取付
誤差を求めることができる。以下の手法は誤差論に於て
測定される量が未知量の線型関数でない一般の場合の最
小自乗法として公知の手法である。方位に関係した取付
誤差は非球面レンズのように頂点が明確に定義されるも
のでは、頂点に位置ずれを定める三つの座標と、被検面
の対称軸の方向を定める三つの角度があれば全て定めら
れる。前者のひとつはδと概念が重複するため省略で
き、後者の一つは被検面3をワーク回転軸のまわりに回
転して測定するために省略することができる。このため
前者についてはEX,EY、後者についてはα,γのそれぞ
れ二つずつあればよいことがわかる。ここにEX,EYはワ
ークの回転対称軸をZ軸とした時、これに垂直なXY面内
でのワーク頂点の横ずれ量X,Y成分、α,γは、被検面
3の回転対称軸の傾きを表わすもので、αはX軸のまわ
りの回転、γはY軸のまわりの回転に対応する。
When the axis deviation EP, δ is obtained, all measured values can be corrected using the equation (1) (first-order correction). Assuming that the corrected measured value is A '(J, I), A' (J, I) = A (J, I)-{[delta] (1-cos [ theta ] i ) + EPsin [theta] i } is obtained. These can then be used to determine the orientation-related mounting error. The following method is a known method as a least square method in the general case where the quantity measured in error theory is not a linear function of unknown quantity. The mounting error related to the azimuth is such that the vertex is clearly defined like an aspherical lens, and if there are three coordinates that determine the positional deviation at the vertex and three angles that determine the direction of the axis of symmetry of the surface to be tested. All determined. One of the former can be omitted because the concept overlaps with δ, and one of the latter can be omitted because the surface to be inspected 3 is rotated around the workpiece rotation axis for measurement. Therefore, it can be seen that EX and EY are required for the former and α and γ are required for the latter. Where EX and EY are the rotational symmetry axes of the workpiece, the X and Y components of the lateral displacement of the workpiece apex in the XY plane perpendicular to the Z axis, and α and γ are the rotational symmetry axes of the test surface 3. Represents the inclination of, and α corresponds to the rotation around the X axis and γ corresponds to the rotation around the Y axis.

Lを被検面3の設定値とワークの取付誤差が知られてい
る時、計算により求められる測定値の期待値とすれば、 (2)L(J,I,δ′,EX,EY,α,γ)=A′(J,I),
δ′:δの残渣ここでLの具体的形について詳述する。
第8図に示す如く座標を定める。ロータリテーブルの回
転中心はC(0,0,R)とする。ロータリテーブルを
θ、ワークをφだけ回転させたとき、動径CPijと球
面との長さの差が、測定値L(J,I)となる。
If L is the expected value of the measured value obtained by calculation when the set value of the surface 3 to be inspected and the work mounting error are known, (2) L (J, I, δ ′, EX, EY, α, γ) = A '(J, I),
δ ′: Residue of δ Here, the specific form of L will be described in detail.
The coordinates are determined as shown in FIG. The center of rotation of the rotary table is C (0,0, R). When the rotary table is rotated by θ i and the workpiece is rotated by φ j , the difference in length between the moving radius CP ij and the spherical surface becomes the measured value L (J, I).

L(J,I)=Lij=−(R−Zij)(1+sin2θisec2φ)1/2 +(R−Z0) ここでR=R0+δ(δ<<R0)とすると L(J,I)=−R0+δ−Zij)(1+sin2θisec2φ)1/2 +(R0+δ−Z0) Zijの基本形は非球面方程式 Z=cS2/[1+{1−(k+1)c2S21/2] +A1S2+A2S4+A3S6+A4S8+A5S10+… ここに c−1/R0,S2=x2+y2,k,A1,A2,A3,A4,A5,…は定数でこ
れが、セッティング誤差で微小量だけ変化する。
L (J, I) = L ij = − (R−Z ij ) (1 + sin 2 θ i sec 2 φ j ) 1/2 + (R−Z 0 ) where R = R 0 + δ (δ << R 0 ) L (J, I) = − R 0 + δ−Z ij ) (1 + sin 2 θ i sec 2 φ j ) 1/2 + (R 0 + δ−Z 0 ) Z ij is the aspherical equation Z = cS 2 / [1+ {1- ( k + 1) c 2 S 2} 1/2] + a 1 S 2 + a 2 S 4 + a 3 S 6 + a 4 S 8 + a 5 S 10 + ... c-1 / R 0 here , S 2 = x 2 + y 2, k, A 1, A 2, A 3, A 4, A 5, ... has now constant, varying by a small amount setting error.

Lは一般には取付誤差の複雑な関数であるが取付誤差の
近似値がわかっている場合はそのまわりでテーラー展開
でき ただし、Eiは各取付誤差を略記したもので Ei0はそれぞれの近似値を表わし、 ΔEiは近似値からのずれ量、 はLの各取付誤差により偏微係数の近似値における値を
示す。
L is generally a complicated function of the mounting error, but if the approximate value of the mounting error is known, Taylor's expansion can be performed around it. However, E i is an abbreviation for each mounting error, E i0 represents each approximate value, ΔE i is the deviation from the approximate value, Indicates a value at an approximate value of the partial differential coefficient due to each mounting error of L.

(2),(3)式から簡単な変形で ただし a(J,I)=A′(J,I)−L0(J,I) L0(J,I):(3)式右辺第1項 (4)式に於てΔEi以外の他の量は被検面の設計値が知
られている場合には計算により求めることができるので
各J,Iに於ける測定値を用いて最小自乗法的に求めるこ
とができる。輪帯数Iとしては未知の取付誤差以上の個
数があればよいが通常10個位が選ばれる。また実際には
δ′,EX,γの組とδ′,EY,αの組とに分けて最上自乗法
を摘要する。この理由は第6図に示されるように測定系
の座標軸をX,Y,Zとした時、γはZ軸のまわりの回転で
あるから便宜上図のようにγのベクトルを定義するなら
ばδ′,EX,γは互いに直交する関係にあり、最小自乗法
を摘要する時収束性がよい。δ′,EY,αについても同様
である。さらに取付誤差の近似値は知られていないのが
一般であるから、各近似値の初期値として0が選ばれ、
逐次近似的に求めていく。
With simple modifications from equations (2) and (3) However, a (J, I) = A ′ (J, I) −L 0 (J, I) L 0 (J, I): The first term on the right-hand side of equation (3) other than ΔE i in equation (4) Other quantities can be obtained by calculation when the design value of the surface to be inspected is known, and thus can be obtained by the method of least squares using the measured values at J and I. As the number I of ring zones, it is sufficient that the number is equal to or greater than the unknown mounting error, but usually about 10 is selected. In practice, the least squares method is required separately for the set of δ ', EX, γ and the set of δ', EY, α. The reason for this is that when the coordinate axes of the measurement system are X, Y, and Z as shown in FIG. 6, γ is rotation around the Z axis, so if the vector of γ is defined as shown in the figure for convenience, then δ ′, EX and γ are orthogonal to each other and have good convergence when the least squares method is required. The same applies to δ ′, EY and α. Further, since the approximate value of the mounting error is generally unknown, 0 is selected as the initial value of each approximate value,
Sequentially approximate.

本発明は上述のように被検面上の測定点列から、任意の
直交する4方位上の測定点を選び、これらの各輪帯上の
4方位の測定値の相加平均値を求め、これらから測定系
の軸ずれEPおよびワークの取付誤差の内の方位によらな
い回転対称な成分δを最初に求めて測定値の第1次補正
を行ない、この補正された測定値を用いて、ワーク取付
誤差の内、方位による回転非対称成分を求め、測定値の
第2次補正を行なうことを特徴とする。この方式の特徴
は最小自乗法を摘要する際に、各々未知のパラメータが
直交する成分に分けられているため、収束が速く精度の
高い解がえられることにある。
The present invention, as described above, selects the measurement points on any four orthogonal directions from the measurement point sequence on the surface to be inspected, and obtains the arithmetic mean value of the measurement values in the four directions on each of these zones. From these, the rotational deviation EP of the measurement system and the rotationally symmetric component δ of the mounting error of the work that does not depend on the direction are first obtained, and the first-order correction of the measured values is performed. Using the corrected measured values, Among the work attachment errors, the rotationally asymmetric component depending on the direction is obtained, and the measurement value is secondarily corrected. The feature of this method is that when the least squares method is required, unknown parameters are divided into orthogonal components, so that the solution can be converged quickly and highly accurate.

軸ずれ成分EPが生ずる原因は測定系の初期設定の不良以
外に温度変動などによる機械的変形や種々の曲率半径の
ワークを測定する際にNCテーブルによりロータリテーブ
ルの回転軸の移動を行なうが、この際のEPの変動などが
ある。このため測定値から軸ずれ成分やワークの取付誤
差を算出し補正する手法は、形状測定に不可欠の手段と
なっている。
The cause of the axis deviation component EP is not only the poor initial setting of the measurement system, but also the mechanical deformation due to temperature fluctuations and the movement of the rotary shaft of the rotary table by the NC table when measuring workpieces with various radii of curvature. At this time, there are variations in EP. Therefore, the method of calculating and correcting the axis deviation component and the work mounting error from the measured values is an indispensable means for shape measurement.

説明の便宜上2種類の回転を組合わせて被検面を走査す
る方式について例示したが、たとえば一方の回転を2次
元的直線運動の組合せで近似したりする種々の変形が考
えられるが、これらについても本発明が適用されること
はいうまでもない。
For convenience of explanation, the method of scanning the surface to be inspected by combining two types of rotation has been illustrated, but various modifications are conceivable, for example, one rotation is approximated by a combination of two-dimensional linear motions. Needless to say, the present invention is also applied.

〔発明の効果〕〔The invention's effect〕

本発明を摘要することにより、非球面や金型の測定など
の高精度な形状測定を行う時、ワークの取付作業を著る
しく容易にし、測定系の調整を容易にし、測定系の仕様
を緩和し、測定機の環境条件を緩和する効果をもち高精
度の測定が可能となる。
By applying the present invention, when performing highly accurate shape measurement such as measurement of an aspherical surface or a mold, the work of attaching the work is markedly facilitated, the measurement system is easily adjusted, and the specifications of the measurement system are set. It has the effect of alleviating and mitigating the environmental conditions of the measuring instrument, which enables highly accurate measurement.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)(b)は本発明方法の概念図、第2図は本
発明の一実施例の測定系の構成を示す正面図、第3図は
上記測定系による測定の概念を示す図、第4図および第
5図は同実施例における作用を説明するための図で測定
誤差のようすを示す図、第6図は同じく作用を説明する
ための図である。第7図は従来技術の説明図である。第
8図は本発明の実施例に係る作用説明のための座標を示
す図である。 2……ワーク、3……被検面、4……輪帯状軌跡、5…
…ワーク外形、6……干渉計、7……光プローブ、8…
…回転軸受、9……ワーク回転軸、10……軸スライドテ
ーブル、11……ロータリテーブル、12……ロータリテー
ブルの回転軸、13……NCテーブル。
1 (a) and 1 (b) are conceptual views of the method of the present invention, FIG. 2 is a front view showing the configuration of a measurement system according to an embodiment of the present invention, and FIG. 3 is a concept of measurement by the above measurement system. FIG. 4, FIG. 5 and FIG. 5 are views for explaining the operation in the same embodiment, showing the state of the measurement error, and FIG. 6 is a view for explaining the same operation. FIG. 7 is an explanatory diagram of a conventional technique. FIG. 8 is a diagram showing coordinates for explaining the operation according to the embodiment of the present invention. 2 ... Work, 3 ... Surface to be inspected, 4 ... Ring-shaped locus, 5 ...
… Work outline, 6 …… Interferometer, 7 …… Optical probe, 8 ・ ・ ・
… Rotary bearings, 9 …… Workpiece rotation axis, 10 …… Axis slide table, 11 …… Rotary table, 12 …… Rotary table rotation axis, 13 …… NC table.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ほぼ回転対称な被検面の形状測定に於て被
検面上の測定点列から任意の直交する4方位上の測定点
を選び、これらの各輪帯上の4方位の測定値から測定系
の軸ずれEPおよびワークの取付誤差の内、回転対称の成
分δを求めて測定値の第1次補正を行ない、この補正さ
れた測定値からワーク取付誤差の内、回転非対称な成分
を求めて測定値の第2次補正を行なうことを特徴とする
形状測定における設定誤差除去方法。
1. In measuring the shape of a substantially rotationally symmetrical surface to be inspected, a measurement point on the surface to be inspected is selected from arbitrary measurement points in four orthogonal directions, and four measurement points in each of these ring zones are selected. Of the axial deviation EP of the measuring system and the work mounting error from the measured values, the rotational symmetry component δ is found and the first-order correction of the measured value is performed. From this corrected measured value, the work mounting error is rotationally asymmetric. A method for eliminating a setting error in shape measurement, which comprises performing a second-order correction of a measured value by obtaining a different component.
JP22144285A 1985-10-04 1985-10-04 Method for eliminating setting error in shape measurement Expired - Fee Related JPH0797027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22144285A JPH0797027B2 (en) 1985-10-04 1985-10-04 Method for eliminating setting error in shape measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22144285A JPH0797027B2 (en) 1985-10-04 1985-10-04 Method for eliminating setting error in shape measurement

Publications (2)

Publication Number Publication Date
JPS6281518A JPS6281518A (en) 1987-04-15
JPH0797027B2 true JPH0797027B2 (en) 1995-10-18

Family

ID=16766799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22144285A Expired - Fee Related JPH0797027B2 (en) 1985-10-04 1985-10-04 Method for eliminating setting error in shape measurement

Country Status (1)

Country Link
JP (1) JPH0797027B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0507630A3 (en) * 1991-04-05 1992-12-23 Peter R. Berwick Apparatus and method for measuring surfaces and lenses
JP4884799B2 (en) * 2006-02-28 2012-02-29 三菱重工業株式会社 Spline brooch

Also Published As

Publication number Publication date
JPS6281518A (en) 1987-04-15

Similar Documents

Publication Publication Date Title
US7140119B2 (en) Measurement of form of spherical and near-spherical optical surfaces
CN108253906B (en) A kind of axle housing circularity cylindricity detection device axis of workpiece location error compensation method
JP4163545B2 (en) Reference jig for roundness measuring machine
JP3309743B2 (en) Shape measuring method and device
JP4480769B2 (en) Shape measurement method
US20150052767A1 (en) Method and device for reducing errors in a turning device during the determination of coordinates of a workpiece or during the machining of a workpiece
JP2010237189A (en) Three-dimensional shape measuring method and device
JP2001066132A (en) Circularity measuring device, cylinder shaft positioning device, and cylinder grinding machiine
US20040025357A1 (en) Device and method for detecting the rotational movement of an element rotatably mounted about an axis
Xi et al. Calibration of beam vector deviation for four-axis precision on-machine measurement using chromatic confocal probe
RU186481U9 (en) INTERFEROMETRIC DEVICE FOR CENTERING OPTICAL ELEMENTS WITH ASPHERIC SURFACES IN FRAMES
Guo et al. Continuous measurements with single setup for position-dependent geometric errors of rotary axes on five-axis machine tools by a laser displacement sensor
JP3880030B2 (en) V-groove shape measuring method and apparatus
JPH0797027B2 (en) Method for eliminating setting error in shape measurement
US11725923B2 (en) Method for positioning a body having an angle scale
Buhmann et al. New positioning procedure for optical probes integrated on ultra-precision diamond turning machines
JPH0810134B2 (en) Rotation center position automatic detection method and detection device with flat substrate and 3 sensors
JPS6073413A (en) Measuring method of roundness
JP4309727B2 (en) Measuring jig and three-dimensional shape measuring method using the same
JPH08233506A (en) Method and apparatus for measuring aspherical shape and method for evaluating aspherical surface
JPS6130681B2 (en)
JP2005172810A (en) Three-dimensional shape measuring method and three-dimensional shape measuring device
JPH0265150A (en) Automatic alignment method for probe card
JP2001133239A (en) Method and apparatus for measurement of inclination and decentering of lens mold
JPH1137732A (en) Method and apparatus for measuring shape

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees