JPH0796451B2 - Method for producing oxide superconductor composition - Google Patents

Method for producing oxide superconductor composition

Info

Publication number
JPH0796451B2
JPH0796451B2 JP63114347A JP11434788A JPH0796451B2 JP H0796451 B2 JPH0796451 B2 JP H0796451B2 JP 63114347 A JP63114347 A JP 63114347A JP 11434788 A JP11434788 A JP 11434788A JP H0796451 B2 JPH0796451 B2 JP H0796451B2
Authority
JP
Japan
Prior art keywords
oxide superconductor
composition
superconducting
producing oxide
superconductor composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63114347A
Other languages
Japanese (ja)
Other versions
JPH01286915A (en
Inventor
祐一 島川
和明 内海
佳実 久保
幹夫 高野
保雄 武田
利夫 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63114347A priority Critical patent/JPH0796451B2/en
Publication of JPH01286915A publication Critical patent/JPH01286915A/en
Publication of JPH0796451B2 publication Critical patent/JPH0796451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種の超伝導応用装置や超伝導素子に使用さ
れる酸化物超伝導材料に関するものである。
Description: TECHNICAL FIELD The present invention relates to an oxide superconducting material used in various superconducting application devices and superconducting elements.

(従来の技術) 超伝導材料としては、例えば金属元素超伝導材料、化合
物超伝導材料、合金超伝導材料などの各材料が知られて
いる。超伝導材料はジョセフソン素子などのエレクトロ
ニクスデバイスや超伝導磁石用のコイル、各種センサー
などを作るのに用いられる。
(Prior Art) As superconducting materials, various materials such as metal element superconducting materials, compound superconducting materials, and alloy superconducting materials are known. Superconducting materials are used to make electronic devices such as Josephson devices, coils for superconducting magnets, and various sensors.

ところで液体窒素の沸点(77k)以上の超伝導転移温度T
cをもつLnBa2Cu3O7-yはCuを遷移金属Coで置換すること
により、Tcが変化することが知られている。これにより
Coの置換量に応じて任意のTcをもつ化合物を合成するこ
とができ、各種センサーなどへの実用材料としての期待
が大きくなっている。
By the way, the superconducting transition temperature T above the boiling point of liquid nitrogen (77k)
It is known that Tc of LnBa 2 Cu 3 O 7-y having c changes by substituting Cu with a transition metal Co. This
A compound having an arbitrary Tc can be synthesized according to the substitution amount of Co, and expectations for it as a practical material for various sensors are increasing.

(発明が解決しようとする課題) LnBa2(Cu1-xCOx3O7-yはCoの置換量によって任意のTc
をもつようにさせ得る材料であるが、磁場に対する依存
性が大きく臨界電流密度(Jc)も一般に低いという問題
がある。そこで本発明の目的はTcを変化させることがで
き、磁場の依存性が小さくかつJcの高い超伝導組成物と
その製造方法を提供することにある。
(Problems to be Solved by the Invention) LnBa 2 (Cu 1-x CO x ) 3 O 7-y has an arbitrary Tc depending on the substitution amount of Co.
However, there is a problem that the critical current density (Jc) is generally low because of its large dependence on the magnetic field. Therefore, an object of the present invention is to provide a superconducting composition capable of changing Tc, having a small magnetic field dependency and a high Jc, and a method for producing the same.

(課題を解決するための手段) 本発明はLnBa2(Cu1-xCox3O7-y(但しnはY,La,Nd,S
m,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luの一種類以上)と表わし
た酸化物超伝導体組成物において0<x≦0.2であり、
かつ−0.1≦y≦0.1であることを特徴とする酸化物超伝
導体組成物と、上記組成の金属イオンのモル比となるよ
うに原料を調整し、焼成後、高圧酸素処理を行なうこと
を特徴とする酸化物超伝導体の製造方法である。
(Means for Solving the Problems) The present invention is LnBa 2 (Cu 1-x Co x ) 3 O 7-y (where n is Y, La, Nd, S).
m, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), and 0 <x ≦ 0.2 in the oxide superconductor composition.
In addition, the raw materials are adjusted so that the molar ratio of the oxide superconductor composition is −0.1 ≦ y ≦ 0.1 and the metal ion of the above composition, and high-pressure oxygen treatment is performed after firing. It is a method for producing a characteristic oxide superconductor.

(実施例) 出発原料として純度99.9%以上の炭酸バリウム(BaC
O3)、酸化イットリウム(Y2O3)、酸化第二銅(Cu
O)、酸化コバルト(CoO)を使用し、本発明の組成範囲
となるよう各々秤量する。なおYBa(Cu1-xCOx3O7-y
おいて、x>0.2の範囲では単一相の組成物が得られな
い。次に秤量した各材料をボールミル中で湿式混合した
後、800〜850℃で仮焼を行った。この粉末を乳鉢を用い
て粉砕し、有機バインダーを入れ、整粒後プレスし、直
径16mm、厚さ1.5mmの円板を作成した。次に本発明の組
成範囲の試料は酸素中で850〜900℃の温度で4時間焼結
した。これを100〜150気圧の酸素中で300〜400℃の温度
で40〜50時間高圧酸素処理を施した。
(Example) As a starting material, barium carbonate (BaC
O 3 ), yttrium oxide (Y 2 O 3 ), cupric oxide (Cu
O) and cobalt oxide (CoO) are used, and each is weighed so as to be in the composition range of the present invention. In YBa (Cu 1-x CO x ) 3 O 7-y , a single-phase composition cannot be obtained in the range of x> 0.2. Next, each of the weighed materials was wet mixed in a ball mill and then calcined at 800 to 850 ° C. This powder was crushed using a mortar, an organic binder was put therein, and the powder was sized and then pressed to prepare a disk having a diameter of 16 mm and a thickness of 1.5 mm. Next, the samples in the composition range of the present invention were sintered in oxygen at a temperature of 850 to 900 ° C. for 4 hours. This was subjected to high-pressure oxygen treatment in oxygen at 100 to 150 atm at a temperature of 300 to 400 ° C for 40 to 50 hours.

なお、高圧酸素処理を施した焼成体を用い、非分散赤外
分光法によって組成式中のyの値を測定した結果、−0.
1≦y≦0.1の値を示した。
The result of measuring the value of y in the composition formula by non-dispersive infrared spectroscopy using a fired body that had been subjected to high-pressure oxygen treatment was −0.
A value of 1 ≦ y ≦ 0.1 was shown.

抵抗率の測定は直流四端子法によって行った。電極は金
をスパッタリング法にて取り付け、リードとして金線を
用いた。
The resistivity was measured by the DC four-terminal method. Gold was attached to the electrodes by a sputtering method, and gold wires were used as leads.

さらに4.2Kにおける超伝導相の割合は交流帯磁率を測定
して行った。
Furthermore, the ratio of the superconducting phase at 4.2K was measured by measuring the AC susceptibility.

交流帯磁率の測定はコイル中にサンプルを入れL成分の
変化を測定することによって行った。サンプルのL成分
の変化を同体積、同じ形状の鉛の4.2KにおけるΔLを10
0として極正し、超伝導相の割合を算出した。これらの
測定は室温からヘリウム温度(4.2K)まで行った。
The AC susceptibility was measured by putting a sample in a coil and measuring the change in the L component. Change the L component of the sample to the same volume, ΔL at 4.2K of lead of the same shape at 10
It was set to 0, and the ratio of the superconducting phase was calculated. These measurements were performed from room temperature to helium temperature (4.2K).

例えばYBa2(Cu0.95Co0.053O7-yの組成物では第1図
のように磁場0.1,1,10Oeに対して大きな磁場依存性を示
す。しかるにこれをたとえば100気圧の酸素中で高圧処
理を施したものは第2図に示すように磁場の依存性が小
さくなりTcも60Kから80Kへ上昇した。またTcより10K低
い温度でのJcも500A/cm2より900A/cm2まで増加すること
が確認された。
For example, a composition of YB a2 (Cu 0.95 Co 0.05 ) 3 O 7-y shows a large magnetic field dependence on a magnetic field of 0.1, 1, 10 Oe as shown in FIG. However, when this was subjected to high-pressure treatment in oxygen at 100 atm, for example, the magnetic field dependence decreased and Tc rose from 60K to 80K, as shown in FIG. Moreover also Jc of 10K at a lower temperature than the Tc increases from 500A / cm 2 to 900A / cm 2 was confirmed.

またLnがLa,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luの場合
もYと同様の結果が得られた。
Also, when Ln is La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, the same result as Y was obtained.

(発明の効果) 実施例で説明したごとく、本発明の製造方法に従い合成
した組成物は従来材料に比べ磁場に対する依存性が小さ
いため、超伝導材料とその製造方法として非常に実用性
の高いものである。
(Effects of the Invention) As described in the examples, the composition synthesized according to the production method of the present invention has less dependence on the magnetic field than the conventional material, and therefore is very practical as a superconducting material and its production method. Is.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の製造法による焼成体の交流帯磁率の温度
変化を示す図。第2図は本発明による焼成の交流帯磁率
の温度変化を示す図。
FIG. 1 is a diagram showing a temperature change of an AC susceptibility of a fired body produced by a conventional manufacturing method. FIG. 2 is a diagram showing a temperature change of the AC susceptibility during firing according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保 佳実 東京都港区芝5丁目33番1号 日本電気株 式会社内 (72)発明者 高野 幹夫 京都府京都市右京区太秦安井東裏町17 (72)発明者 武田 保雄 三重県津市観音寺町736―5 (72)発明者 高田 利夫 京都府京都市左京区北白川西瀬の内町1 (56)参考文献 特開 昭63−291817(JP,A) Jpn.J.Appl.Phys.,V ol.26,No.12,P.L2087−L2090 (1987) Jpn.J.Appl.Phys.,V ol.26,No.10,P.L1667−L1669 (1987) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yoshimi Kubo, 5-33-1 Shiba, Minato-ku, Tokyo, NEC Corporation (72) Inventor, Mikio Takano 17, Uzumaya, Touramachi, Ukyo-ku, Kyoto (72) Inventor Yasuo Takeda 736-5 Kanonji-cho, Tsu-shi, Mie Prefecture (72) Toshio Takada 1 Nishisenouchi-cho, Kitashirakawa, Sakyo-ku, Kyoto-shi, Kyoto (56) Reference Japanese Patent Laid-Open No. 63-291817 (JP, 63-291817) A) Jpn. J. Appl. Phys. , Vol. 26, No. 12, P.I. L2087-L2090 (1987) Jpn. J. Appl. Phys. , Vol. 26, No. 10, P. L1667-L1669 (1987)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】LnBa2(Cu1-xCox3O7-y(但しnはY、L
a、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの一
種類以上、0<x≦0.2かつ−0.1≦y≦0.1)と表した
組成の金属イオンのモル比となるように原料を調整し、
焼成後、100気圧以上の高圧酸素中で熱処理を行うこと
を特徴とする酸化物超電伝導体の製造方法。
1. LnBa 2 (Cu 1-x Co x ) 3 O 7-y (where n is Y, L
a, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, one or more kinds, moles of metal ions having a composition represented by 0 <x ≦ 0.2 and −0.1 ≦ y ≦ 0.1) Adjust the raw materials so that the ratio becomes
After the firing, a heat treatment is carried out in high-pressure oxygen at 100 atm or higher, which is a method for producing an oxide superconductor.
JP63114347A 1988-05-10 1988-05-10 Method for producing oxide superconductor composition Expired - Fee Related JPH0796451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63114347A JPH0796451B2 (en) 1988-05-10 1988-05-10 Method for producing oxide superconductor composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63114347A JPH0796451B2 (en) 1988-05-10 1988-05-10 Method for producing oxide superconductor composition

Publications (2)

Publication Number Publication Date
JPH01286915A JPH01286915A (en) 1989-11-17
JPH0796451B2 true JPH0796451B2 (en) 1995-10-18

Family

ID=14635484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63114347A Expired - Fee Related JPH0796451B2 (en) 1988-05-10 1988-05-10 Method for producing oxide superconductor composition

Country Status (1)

Country Link
JP (1) JPH0796451B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291817A (en) * 1987-05-25 1988-11-29 Toshiba Corp Oxide superconductor
JPH01119579A (en) * 1987-10-30 1989-05-11 Kobe Steel Ltd Heat treatment of superconducting ceramics of composite oxide system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Jpn.J.Appl.Phys.,Vol.26,No.10,P.L1667−L1669(1987)
Jpn.J.Appl.Phys.,Vol.26,No.12,P.L2087−L2090(1987)

Also Published As

Publication number Publication date
JPH01286915A (en) 1989-11-17

Similar Documents

Publication Publication Date Title
Tomoichi et al. Introduction of pinning centers into Tl‐(1223) phase of Tl–Sr–Ca–Cu–O systems
Engler et al. Superconductivity above liquid nitrogen temperature: Preparation and properties of a family of perovskite-based superconductors
US8688181B1 (en) Superconductive compounds having high transition temperature, and methods for their use and preparation
EP0536730A1 (en) Oxide superconducting material and method for producing the same
US5591698A (en) Low temperature (T lower than 950° C.) preparation of melt texture YBCO superconductors
JPS63222068A (en) Device and system based on novel superconductive material
JPH0796451B2 (en) Method for producing oxide superconductor composition
US8060169B1 (en) Superconductive compounds having high transition temperature, and methods for their use and preparation
JP3217905B2 (en) Metal oxide material and method for producing the same
JPH0764623B2 (en) Method for producing oxide superconductor composition
US5270292A (en) Method for the formation of high temperature semiconductors
JPH0684251B2 (en) Method for producing oxide superconductor composition
JPH0829942B2 (en) Method for producing oxide superconductor composition
JPH0764624B2 (en) Method for producing oxide superconductor composition
Liu et al. Superconductivity above 130 K in Tl1− xHgxBa2Ca2Cu3O8+ δ
JP3219563B2 (en) Metal oxide and method for producing the same
JPH0764622B2 (en) Method for producing oxide superconductor composition
US20030162666A1 (en) Critical doping in high-Tc superconductors for maximal flux pinning and critical currents
JPH10330117A (en) Oxide superconductor, its production and current lead using the same
RU2241675C1 (en) Perovskite-like praseodymium-based ruteno-cuprate as magneto-ordered superconducting material
JP2749194B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
Nedkov et al. Magnetic properties and surface resistance of Rb-doped YBaCuO ceramic
JPH02153822A (en) Oxide superconductor composition
Lee A Study on the Electrical Characteristics of Renewable Electrical Energy Superconducting Precursor using Organic Metal Salts Method for Electrical Power Transmission
JP2709000B2 (en) Superconductor and method of manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees