JPH0795204B2 - Discharge device - Google Patents
Discharge deviceInfo
- Publication number
- JPH0795204B2 JPH0795204B2 JP17086587A JP17086587A JPH0795204B2 JP H0795204 B2 JPH0795204 B2 JP H0795204B2 JP 17086587 A JP17086587 A JP 17086587A JP 17086587 A JP17086587 A JP 17086587A JP H0795204 B2 JPH0795204 B2 JP H0795204B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- dielectric
- discharge
- layer
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子写真、静電記録等において、除・帯電等
に用いられる放電装置に関するものである。Description: TECHNICAL FIELD The present invention relates to a discharge device used for removing and charging in electrophotography, electrostatic recording and the like.
(従来の技術及び問題点) 従来、この種の装置としては、誘電体を挟む電極間に交
流電圧を印加して一方の電極の近傍に放電を発生させて
正・負イオンを生成し、このイオンのうち所定極性のイ
オンを、該一方の電極と被帯電部材との間に印加したバ
イアス電圧によって形成される電界によって被帯電部材
に向けて抽出し、該部材に付着させる帯電装置が、例え
ば米国特許第4,155,093号明細書に示されるように公知
である。(Prior Art and Problems) Conventionally, as a device of this type, an AC voltage is applied between electrodes sandwiching a dielectric to generate a discharge in the vicinity of one electrode to generate positive and negative ions. Among the ions, a charging device that extracts ions of a predetermined polarity toward the member to be charged by an electric field formed by a bias voltage applied between the one electrode and the member to be charged and attaches to the member is, for example, It is known as shown in U.S. Pat. No. 4,155,093.
この方法では、放電を発生する電極は露出しており、こ
の露出した電極の近傍に強い放電が発生するため、該電
極が放電に起因するプラズマエッチング作用、酸化作用
などによって容易に腐食し、このような腐食が発生する
と放電、従って除・帯電作用が不均一となるので、実用
上耐久性に問題があった。In this method, the electrode generating the discharge is exposed, and a strong discharge is generated in the vicinity of the exposed electrode, so that the electrode is easily corroded by the plasma etching action, the oxidation action, etc. due to the discharge. When such corrosion occurs, the discharge, and thus the removing / charging action becomes non-uniform, which is a problem in practical use.
一方、誘電体と、該誘電体に埋設された少なくとも二つ
の埋設電極と、裸出した裸出電極とを有し、上記埋設電
極間に交流電圧を、そして上記裸出電極と被除・帯電部
材間にバイアス電圧を印加して、上記誘電体の表面の一
部及び該裸出電極表面近傍に放電を生じさせイオンを発
生させるとともに、上記バイアス電圧によって発生イオ
ンを上記被除・帯電部材に付与する放電方法(特願昭61
-18954号)が、本件出願人によってすでに提案されてい
る。On the other hand, it has a dielectric, at least two buried electrodes buried in the dielectric, and a bare bare electrode, and an AC voltage is applied between the buried electrodes, and the bare bare electrode is removed and charged. A bias voltage is applied between the members to generate an electric discharge in a part of the surface of the dielectric and in the vicinity of the surface of the bare electrode, and the generated ions are applied to the member to be removed / charged by the bias voltage. Discharge method to be applied (Japanese Patent Application Sho 61
No. -18954) has already been proposed by the applicant.
この方法によれば、活発な沿面放電は誘電体表面上で発
生するので、除・帯電に必要とされる裸出した露出電極
自体は強い放電による劣化を受けにくく、そのため耐久
性が著しく向上する結果となった。すなわち、放電電極
と誘電体間で強い放電を発生させていた従来の放電装置
では、電極が15〜30時間程で使用に耐え難い程まで劣化
してしまうのに対し、この方法では、誘電体として耐放
電性の高い無機材料を用いることで、例えば150〜200時
間程度の間、誘電体が除々にエッチングされ最終的に絶
縁破壊するまでの間長時間安定した除・帯電を行なうこ
とが可能となる。According to this method, an active creeping discharge is generated on the surface of the dielectric, so that the bare exposed electrode itself required for decharging / charging is not easily deteriorated by a strong discharge, and therefore durability is significantly improved. It became a result. That is, in the conventional discharge device that generated a strong discharge between the discharge electrode and the dielectric, the electrode deteriorates to the extent that it cannot withstand use in about 15 to 30 hours, but in this method, By using an inorganic material with high discharge resistance, it is possible to perform stable decharging / charging for a long period of time, for example, for about 150 to 200 hours until the dielectric is gradually etched and finally dielectric breakdown occurs. Become.
ところが、この放電装置の耐久寿命をさらに長くしよう
とするためには、この誘電体膜をさらに耐放電性の高
い、すなわち、放電プラズマにエッチングされにくい膜
を使用すればよいわけであるが、耐放電性の高い材料
は、蒸着あるいはスパッタ装置等により、成膜しにくい
性質を有しており、これを実行しようとしても、成膜速
度がきわめて遅く製造の困難なものとなっていた。However, in order to further extend the durable life of this discharge device, it is sufficient to use a film having higher discharge resistance, that is, a film that is not easily etched by discharge plasma. A material having a high discharge property has a property that it is difficult to form a film by a vapor deposition or sputtering device, and even if it is attempted to perform this, the film formation speed is extremely slow and it is difficult to manufacture.
(問題点を解決するための手段) 本発明は、上述の従来装置の問題点を解決し、放電装置
の耐久性を飛躍的に向上させることを目的とするもの
で、この目的のために、 第一の誘電体と、該第一の誘電体上に設けられた少くと
も二つの第一及び第二電極と、該第一及び第二電極を覆
う第二の誘電体と、該第二の誘電体表面に設けられた第
三電極とを備える放電装置において、 上記第二の誘電体は、内層、中間層そして外層の三層の
無機誘電体膜より構成され、 成膜時に膜質を同一材料で段階的あるいは連続的に変化
させ、内層は密着性の高い膜質、中間層は成膜容易な膜
質、そして外層は耐放電性の高い緻密な膜質で形成さら
れている、 ことにより構成される。(Means for Solving Problems) The present invention aims to solve the problems of the above-mentioned conventional device and to dramatically improve the durability of the discharge device. For this purpose, A first dielectric, at least two first and second electrodes provided on the first dielectric, a second dielectric covering the first and second electrodes, and a second dielectric In a discharge device including a third electrode provided on the surface of a dielectric, the second dielectric is composed of three layers of an inorganic dielectric film including an inner layer, an intermediate layer and an outer layer, and the film quality is the same when forming the film. The inner layer is formed of a film with high adhesion, the intermediate layer is formed with easy film formation, and the outer layer is formed of a dense film with high discharge resistance. .
(実施例) 以下、添付図面にもとづいて本発明の実施例を説明す
る。Embodiment An embodiment of the present invention will be described below with reference to the accompanying drawings.
第1図は一実施例としての放電装置の断面図である。FIG. 1 is a sectional view of a discharge device as one embodiment.
放電装置1は、第一の誘電体2の表面には交流電源11に
接続された少なくとも二つの第一及び第二電極4,5が設
けられ、該電極4,5は第二の誘電体3にて覆われ、誘電
体に埋設された状態になっている。該第二の誘電体3の
表面には直流バイアス電源12に接続された第三電極とし
ての裸出電極6が設けられた構成となっている。The discharge device 1 is provided with at least two first and second electrodes 4 and 5 connected to an AC power source 11 on the surface of the first dielectric 2 and the electrodes 4 and 5 are the second dielectric 3 And is buried in the dielectric. A bare electrode 6 as a third electrode connected to a DC bias power source 12 is provided on the surface of the second dielectric 3.
上記放電装置1の裸出電極6側近傍には、バイアス電圧
が印加されている導電性基板9をもつ被帯電部材7が配
置されている。8は導電性基板9上に設けられた感光体
層或は誘電体層である。A charged member 7 having a conductive substrate 9 to which a bias voltage is applied is arranged near the bare electrode 6 side of the discharge device 1. Reference numeral 8 denotes a photosensitive layer or a dielectric layer provided on the conductive substrate 9.
以上のごとくの放電装置において、本発明は上記第二の
誘電体3を、内層31、中間層32そして外層33の三層の無
機誘電体層で形成し、成膜時に膜質を段階的あるいは連
続的に変化させ、内層31を密着性の高い膜質、中間層32
は成膜容易な膜質、そして外層33は耐放電性の高い緻密
な膜質で形成せられている。In the discharge device as described above, according to the present invention, the second dielectric 3 is formed by the three inorganic dielectric layers of the inner layer 31, the intermediate layer 32 and the outer layer 33, and the film quality is gradually or continuously formed during film formation. The inner layer 31 with a high adhesiveness, the intermediate layer 32
Is a film quality that facilitates film formation, and the outer layer 33 is formed with a dense film quality with high discharge resistance.
無機誘電体3は、たとえ同一材料であっても、成膜方
法、あるいは成膜時の成膜速度等成膜条件を変化させる
ことなどで膜の特性を多様に変化させることが可能であ
る。一般に成膜速度を変化させた場合、例えば、成膜速
度を下げゆっくりと緻密な膜を形成させる程、基板との
密着性に優れ、かつ耐放電性が高く、逆に成膜速度を上
げ成膜を容易にしたもの程、密着性、耐放電性等の特性
は低下する傾向にある。(このような膜の緻密さの差
は、例えばフッ酸によるウエットエッチング、あるいは
アルコンガスによるドライエッチング等によるエッチン
グ速度の差によって判定することができ、一般に緻密な
膜ほどエッチング速度は遅くなる。) そこで、無機誘電体膜3を形成する場合に、内層31とし
て基板4との密着性に優れた緻密な膜を密着性を十分に
確保できる程度の比較的薄い膜とし、中間層32を例えば
成膜速度を上げて成膜し放電耐圧に十分なだけ厚い膜と
し、外層33を耐放電性が高く緻密な膜を耐放電性を確保
できる程度の比較的薄い膜とすることができる。Even if the inorganic dielectric material 3 is made of the same material, the characteristics of the film can be variously changed by changing the film forming method or the film forming conditions such as the film forming speed during film forming. In general, when the film formation speed is changed, for example, the lower the film formation speed and the slower and denser the film is, the better the adhesion to the substrate and the higher the discharge resistance are. The easier the film is, the lower the properties such as adhesion and discharge resistance tend to be. (The difference in the denseness of such a film can be determined by the difference in the etching rate due to, for example, wet etching with hydrofluoric acid or dry etching with an alcon gas. Generally, the denser the film, the slower the etching rate.) Therefore, when the inorganic dielectric film 3 is formed, a dense film having excellent adhesiveness to the substrate 4 is used as the inner layer 31 to be a relatively thin film so that the adhesiveness can be sufficiently secured, and the intermediate layer 32 is formed, for example. The film can be formed by increasing the film speed to be a film thick enough to withstand the discharge voltage, and the outer layer 33 can be a dense film having a high discharge resistance and a relatively thin film that can secure the discharge resistance.
次に、上記のごとくの本実施例装置を構成する各部につ
いてその材質等を含め具体的に説明する。Next, each part of the apparatus of this embodiment as described above will be specifically described including its material and the like.
先ず、第1図において、支持体たる第一の誘電体2は、
ガラス基板、セラミック基板、あるいは樹脂基板等、固
定誘電体であればよく特に制限はない。第一及び第二電
極4,5は、導電体であればよく、例えばAl,Cr,Au,Cu,Ni
等の金属を用いることができる。第三電極6としては、
耐蝕性・耐酸化の強い金属、例えばTi,W,Cr,Ta,Mo,Fe,C
u,Co,Ni,Au,Pt等あるいはこれら金属を含む合金もしく
は酸化物等を用いることができる。First, in FIG. 1, the first dielectric 2 as a support is
There is no particular limitation as long as it is a fixed dielectric such as a glass substrate, a ceramic substrate, or a resin substrate. The first and second electrodes 4,5 need only be conductors, for example Al, Cr, Au, Cu, Ni.
Metals such as can be used. As the third electrode 6,
Metals with strong corrosion resistance and oxidation resistance, such as Ti, W, Cr, Ta, Mo, Fe, C
It is possible to use u, Co, Ni, Au, Pt, etc., or an alloy or oxide containing these metals.
次に、第一及び第二電極4,5を被覆する誘電体膜3とし
ては、厚さ1μm以上500μm以下、好ましくは3μm
以上200μm以下の耐放電性の高い無機誘電体が用いら
れ、例えばガラス、セラミック、あるいはSiO2,MgO,Al2
O3,Ta2O5等の酸化物または、窒化シリコン、窒化アル
ミ、さらにアルモファス、シリコン等が、蒸着法、イオ
ンプレーティング法、スパッタ成膜法、CVD法等により
形成される。Next, as the dielectric film 3 covering the first and second electrodes 4 and 5, the thickness is 1 μm or more and 500 μm or less, preferably 3 μm.
An inorganic dielectric material having a high discharge resistance of not less than 200 μm and not more than 200 μm is used. For example, glass, ceramic, SiO 2 , MgO, Al 2
Oxides such as O 3 and Ta 2 O 5 , or silicon nitride, aluminum nitride, as well as aluminum and silicon are formed by a vapor deposition method, an ion plating method, a sputter film forming method, a CVD method, or the like.
その際本発明では、誘電体膜3を三層に分け、成膜速度
等の成膜条件を変化させることにより、支持基板2との
密着性に優れたものを最小限の膜厚だけ内層31とし、成
膜が比較的容易な条件のものを放電耐圧に十分なる膜厚
で中間層32として、耐放電性の優れた緻密でかつ表面抵
抗の高いのものも、放電に耐る最小限の膜厚だけ外層33
として選定する。At this time, in the present invention, the dielectric film 3 is divided into three layers, and the film formation conditions such as the film formation rate are changed so that the inner layer 31 having excellent adhesion to the support substrate 2 can be formed with a minimum film thickness. The intermediate layer 32 having a film thickness sufficient for the discharge withstand voltage is formed on the condition that the film is relatively easy to be formed. Only the thickness of the outer layer 33
To be selected as.
以上のような本実施例装置において、交流電源11によっ
て第一及び第二電極4,5間に交流電圧が印加されると、
誘電体3の表面に交流放電領域10が形成される。この放
電領域10の電界強度は中心部程強く、外部に向って除々
に弱くなっている。その際、内層31によって膜の密着強
度が保たれ、中間層32によって放電耐圧が十分に確保さ
れ、外層33にて耐放電性が保証されるために耐久性が著
しく向上する。In the device of the present embodiment as described above, when an AC voltage is applied between the first and second electrodes 4 and 5 by the AC power supply 11,
An AC discharge region 10 is formed on the surface of the dielectric 3. The electric field strength of the discharge region 10 is stronger toward the center and gradually weakens toward the outside. At that time, the inner layer 31 maintains the adhesion strength of the film, the intermediate layer 32 sufficiently secures the discharge withstand voltage, and the outer layer 33 guarantees the discharge resistance, so that the durability is remarkably improved.
この誘電耐膜3を本発明によらず単層膜で形成しようと
すると、次の様な問題点が生じる。例えば膜の緻密性、
放電耐久性を重視した膜を作成しようとすると、一般に
は成膜時間が著しく長くかかり、不可能ではないがコス
トが非常に高いものとなってしまう。そこで仮りに比較
的成膜の容易な条件で膜を形成したとすると、基板との
接合面では膜が剥がれ易く、また表面部においては耐放
電性に劣り、放電による膜のエッチングや劣化が進行し
てしまう等の問題が生じ、なかなか実用に耐えうるもの
は得られない。If the dielectric withstanding film 3 is formed as a single layer film without using the present invention, the following problems occur. For example, the compactness of the film,
If a film that emphasizes discharge durability is attempted to be formed, it generally takes a significantly long time to form the film, which is very costly if not impossible. Therefore, if a film is formed under conditions that make it relatively easy to form, the film is likely to peel off at the bonding surface with the substrate, and the discharge resistance at the surface is poor, and etching or deterioration of the film due to discharge progresses. However, there is a problem such as that, and it is difficult to obtain a practical product.
そこで本発明がかかる問題をいかに解決したか実施結果
を以下に示すことにする。Therefore, the results of the implementation of the present invention will be shown below.
支持体たる第一の誘電体2としてアルミナセラミック基
板を用い、第一、第二電極4,5としてCr電極、第三電極
としてTi電極を用いた。そして第二の誘電体として、比
較的成膜が困難ではあるが耐放電性に優れるAl2O3膜を
イオンプレーティング法により10μmの厚さで成膜し
た。そのとき、内層として先ず成膜速度約50Å/minで0.
3μm厚に成膜し、次に中間層として約750Å/minで9μ
m厚に成膜し、外層として約50Å/minで0.7μm厚に成
膜形成した。An alumina ceramic substrate was used as the first dielectric 2 serving as a support, Cr electrodes were used as the first and second electrodes 4 and 5, and a Ti electrode was used as the third electrode. Then, as the second dielectric, an Al 2 O 3 film, which is relatively difficult to form but has excellent discharge resistance, was formed to a thickness of 10 μm by an ion plating method. At that time, as the inner layer, first, the film formation rate was about 50 Å / min.
3μm thick film, then 9μ at about 750Å / min as an intermediate layer
The film was formed to a thickness of m and an outer layer was formed to a thickness of 0.7 μm at about 50Å / min.
そして交流電圧として1.7KVp-p,35KHZの正弦波を印加し
て、連続放電耐久試験を行なったところ、約1000時間以
上も安定した放電が持続した。Then, a continuous discharge endurance test was conducted by applying a sine wave of 1.7 KVp - p, 35 KHZ as an AC voltage, and stable discharge continued for about 1000 hours or longer.
これに対し、本発明によらず単層の放電装置の場合に
は、例えば第二誘電体として比較的成膜しやすいSiO2を
800Å/minで10μm厚スパッタ成膜し、同様の条件で放
電試験を行なったところ、約150〜200時間で誘電体膜が
放電プラズマにりエッチングされ、最終的に絶縁破壊し
てしまった。On the other hand, in the case of a single-layer discharge device not according to the present invention, for example, SiO 2 which is relatively easy to form a film as the second dielectric is used.
When a 10 μm-thick sputter film was formed at 800 Å / min and a discharge test was conducted under the same conditions, the dielectric film was etched by discharge plasma in about 150 to 200 hours, and eventually dielectric breakdown occurred.
また、耐放電性に優れるAl2O3膜を単層で形成しようと
すると前述したようにイオンプレーティング法により緻
密な膜を約50Å/minの速度で成膜すると30〜40時間程度
必要で当然放電耐久性は1000時間以上確保されるが、成
膜時間がかかりすぎ実用的ではない。そこで、単層膜で
750Å/minで高速成膜すると、そのままでは膜の緻密性
が十分に確保できず湿度による影響を受け膜の表面抵抗
が低下し易く、安定した放電が行なえなかったり、ある
いは膜の耐久性が悪く短時間で絶縁破壊したり、膜剥が
れが生じたりする問題があった。Also, if an Al 2 O 3 film with excellent discharge resistance is to be formed as a single layer, it takes about 30 to 40 hours if a dense film is formed by the ion plating method at a rate of about 50 Å / min as described above. Of course, discharge durability is secured for 1000 hours or more, but it takes a long time for film formation and is not practical. So with a single layer film
If the film is formed at a high speed of 750 Å / min, the denseness of the film cannot be secured as it is, and the surface resistance of the film tends to decrease due to the influence of humidity, and stable discharge cannot be performed, or the film durability is poor There are problems that dielectric breakdown occurs and film peeling occurs in a short time.
このように本発明によれば、無機誘電体膜による第二誘
電体を上述の三層に形成したことにより、短時間で容易
に成膜できるだけでなく、耐久性が著しく向上し、かつ
均一・安定な放電を長期維持できることとなった。Thus, according to the present invention, by forming the second dielectric by the inorganic dielectric film in the above-mentioned three layers, not only the film can be easily formed in a short time, the durability is significantly improved, and uniform It became possible to maintain a stable discharge for a long period of time.
また、第1図に示す実施例では、誘電体膜3の膜質を三
層にわけて構成したが、これは厳密に三層に膜質がわか
れている必要があるわけではなく、内層31と中間層32、
あるいは中間層32と外層33の間の膜質を徐々に変化させ
て構成することも可能である。Further, in the embodiment shown in FIG. 1, the film quality of the dielectric film 3 is divided into three layers, but this does not necessarily mean that the film quality is strictly divided into three layers, and the inner layer 31 and the intermediate layer 31 are not separated. Layer 32,
Alternatively, it is also possible to gradually change the film quality between the intermediate layer 32 and the outer layer 33.
第2図に上述した本発明の他の実施例を示す。同図にお
いて誘電体3の膜質は厳密に三層にわかれているわけで
はなく、膜質は内層−中間層−外層と徐々に変化してい
るものである。このときの実施結果を前述したAl2O3膜
を用いた場合を例として説明する。同様にして、耐放電
性に優れるAl2O3膜をイオンプレーティング法により全
体で10μm厚に成膜した。その時、内層として成膜速度
約50Å/minで成膜し、次に成膜速度を徐々に変化させて
中間層として約750Å/minで成膜し、最後に成膜速度を
徐々に変化させて外層として50Å/minで成膜し、内層−
中間層−外層の膜厚の割合をおおよそ0.3μm−9μm
−0.7μmとして形成した。そして、同様の条件で連続
放電耐久試験を行なったところ、約1000時間以上の安定
した放電が持続した。FIG. 2 shows another embodiment of the present invention described above. In the figure, the film quality of the dielectric 3 is not strictly divided into three layers, and the film quality gradually changes from the inner layer to the intermediate layer to the outer layer. The results of the implementation at this time will be described by taking the case of using the Al 2 O 3 film described above as an example. Similarly, an Al 2 O 3 film having excellent discharge resistance was formed to a total thickness of 10 μm by the ion plating method. At that time, the inner layer was formed at a film forming rate of about 50 Å / min, then the film forming rate was gradually changed to an intermediate layer at about 750 Å / min, and finally the film forming rate was gradually changed. The outer layer is formed at 50 Å / min, and the inner layer −
The ratio of the thickness of the middle layer to the outer layer is approximately 0.3 μm-9 μm.
It was formed as -0.7 μm. Then, when a continuous discharge durability test was performed under the same conditions, a stable discharge continued for about 1000 hours or longer.
この構成によれば、誘電体3の各層間における膜質の差
による応力の発生(例えば熱膨張率の差等による応力
等)を膜質を徐々に変化させることにより分散させるこ
とが可能となり、より安定した誘電体膜3を形成するこ
とができる。According to this configuration, it is possible to disperse the generation of stress due to the difference in the film quality between the layers of the dielectric 3 (for example, the stress due to the difference in the coefficient of thermal expansion, etc.) by gradually changing the film quality, and thus more stable. The dielectric film 3 can be formed.
本発明装置を複写機あるいはレーザービームプリンタ等
に応用すれば、従来のコロナ帯電器等では不可能だった
長時間均一かつ安定して帯電を行なうことが可能とな
る。When the device of the present invention is applied to a copying machine, a laser beam printer, or the like, it becomes possible to perform uniform and stable charging for a long time, which is impossible with a conventional corona charger or the like.
なお、本発明は既述の実施例に限定されず、第3図〜第
6図の他の実施例に示されるように、埋設電極を三以上
(第3図〜第6図参照)、そして裸出電極を二以上(第
4,6図参照)設けた場合にも実施可能であることは勿論
である。It should be noted that the present invention is not limited to the above-described embodiment, and as shown in other embodiments of FIGS. 3 to 6, there are three or more embedded electrodes (see FIGS. 3 to 6), and Two or more bare electrodes (first
Of course, it can be implemented even when provided.
(発明の効果) 本発明は以上のごとく、第二の誘電体を三層からなる無
機誘電体層とし、内層を密着性の高い膜質、中間層を成
膜容易な膜質、そして外層を耐放電性の高い膜質とする
ことにより、エッチング等の腐食防止機能が向上し、長
期間にわたって均一かつ安定した除・帯電が可能とな
り、その結果、本発明装置を使用する装置の性能の向上
をもたらす。しかも、上記の比較的厚い中間層は成膜し
易く、また内層・外層はごく薄く成膜すれば十分である
ので、製作も容易である。(Effects of the Invention) As described above, the present invention uses an inorganic dielectric layer composed of three layers as the second dielectric, an inner layer having high adhesion, a middle layer having easy film formation, and an outer layer having discharge resistance. By using a film having a high property, the function of preventing corrosion such as etching is improved, and uniform and stable decharging / charging can be performed for a long period of time. As a result, the performance of the device using the device of the present invention is improved. Moreover, the above-mentioned relatively thick intermediate layer can be easily formed, and the inner layer and the outer layer can be formed very thinly, so that the production is easy.
第1図は本発明の一実施例装置の断面図、第2図〜第6
図はそれぞれ本発明の他の実施例装置を示す断面図であ
る。 1……放電装置 2……第一の誘電体 3……第二の誘電体 31……内層 32……中間層 33……外層 4,5……第一及び第二電極 6……第三電極FIG. 1 is a sectional view of an apparatus according to an embodiment of the present invention, and FIGS.
Each of the drawings is a cross-sectional view showing an apparatus according to another embodiment of the present invention. 1 ... Discharge device 2 ... First dielectric 3 ... Second dielectric 31 ... Inner layer 32 ... Intermediate layer 33 ... Outer layer 4,5 ... First and second electrodes 6 ... Third electrode
Claims (1)
られた少くとも二つの第一及び第二電極と、該第一及び
第二電極を覆う第二の誘電体と、該第二の誘電体表面に
設けられた第三電極とを備える放電装置において、 上記第二の誘電体は、内層、中間層そして外層の三層の
無機誘電体膜より構成され、 成膜時に膜質を同一材料で段階的あるいは連続的に変化
させ、内層は密着性の高い膜質、中間層は成膜容易な膜
質、そして外層は耐放電性の高い緻密な膜質で形成せら
れている、 ことを特徴とする放電装置。1. A first dielectric, at least two first and second electrodes provided on the first dielectric, and a second dielectric covering the first and second electrodes. And a third electrode provided on the surface of the second dielectric, wherein the second dielectric is composed of three layers of an inorganic dielectric film including an inner layer, an intermediate layer and an outer layer. Sometimes the film quality is changed stepwise or continuously with the same material, the inner layer is a film with high adhesion, the intermediate layer is a film that can be easily formed, and the outer layer is formed with a dense film with high discharge resistance. A discharge device characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17086587A JPH0795204B2 (en) | 1987-07-10 | 1987-07-10 | Discharge device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17086587A JPH0795204B2 (en) | 1987-07-10 | 1987-07-10 | Discharge device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6415767A JPS6415767A (en) | 1989-01-19 |
JPH0795204B2 true JPH0795204B2 (en) | 1995-10-11 |
Family
ID=15912746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17086587A Expired - Fee Related JPH0795204B2 (en) | 1987-07-10 | 1987-07-10 | Discharge device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0795204B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11307386A (en) * | 1998-04-21 | 1999-11-05 | Matsushita Electric Ind Co Ltd | Capacitor and its manufacture |
-
1987
- 1987-07-10 JP JP17086587A patent/JPH0795204B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS6415767A (en) | 1989-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4626876A (en) | Solid state corona discharger | |
US4700261A (en) | Method and apparatus for electrically charging or discharging | |
JPH0795204B2 (en) | Discharge device | |
JP2822062B2 (en) | Discharger for ozone generation | |
JP3860348B2 (en) | Thermal print head and manufacturing method thereof | |
US5087856A (en) | Discharge electrode having a thin wire core and surface coating of amorphous alloy for a discharger | |
JPS63159878A (en) | Electrostatic discharging device | |
JPS63159880A (en) | Electrostatic discharging device | |
JPS5866319A (en) | Metallized condenser with two-layer electrode | |
JPH0721669B2 (en) | Removal / charging method | |
JPH0882980A (en) | Ion generator | |
JP3093320B2 (en) | Ion generator | |
JPS60193281A (en) | Solid state discharger | |
EP0232136B1 (en) | Charging or discharging device | |
JPS63136061A (en) | Electrifying device | |
JPH0764523B2 (en) | Ozone generator | |
JP3328856B2 (en) | Discharger and recording head using the same | |
JPH05205913A (en) | Manufacture of metal film fixed resistor | |
JPS63141078A (en) | Electrostatic charging device | |
JPS6240812A (en) | Surface acoustic wave device | |
JPH02291574A (en) | Fine wire for discharge electrode | |
JP2004172348A (en) | Forming method of thin film capacitor | |
JPH01204763A (en) | Thermal head | |
JPS63131157A (en) | Electrostatic discharging device | |
JPS60191037A (en) | Formation of thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |