JPH0795167B2 - Complex film coated element and method of using the same - Google Patents

Complex film coated element and method of using the same

Info

Publication number
JPH0795167B2
JPH0795167B2 JP62082047A JP8204787A JPH0795167B2 JP H0795167 B2 JPH0795167 B2 JP H0795167B2 JP 62082047 A JP62082047 A JP 62082047A JP 8204787 A JP8204787 A JP 8204787A JP H0795167 B2 JPH0795167 B2 JP H0795167B2
Authority
JP
Japan
Prior art keywords
complex
film
voltage
complex film
polymer compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62082047A
Other languages
Japanese (ja)
Other versions
JPS63247731A (en
Inventor
正夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP62082047A priority Critical patent/JPH0795167B2/en
Publication of JPS63247731A publication Critical patent/JPS63247731A/en
Publication of JPH0795167B2 publication Critical patent/JPH0795167B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電圧を印加することにより電位勾配を表現する
ことのできる新規な錯体膜被覆素子及びその使用法に関
する。
TECHNICAL FIELD The present invention relates to a novel complex film coated element capable of expressing a potential gradient by applying a voltage and a method of using the same.

〔従来の技術〕[Conventional technology]

電極表面の化学修飾の為に高分子化合物を積極的に使用
する試みは、1977〜8年に開始され、電気化学分野のみ
ならず他分野からの研究者が参加して新しい流れをつく
っている。従来、電極を錯体膜によって被覆し、電圧を
印加することにより錯体膜に特定の電子状態または電位
状態を誘起せしめることは知られており、この原理はエ
レクトロクロミック表示素子等に用いられてきた。しか
し、錯体膜によって被覆された導電性支持体の両端に導
線を設け、これを素子として用いること、及びこの素子
に電圧を印加してその連続的な電位勾配を錯体膜の吸収
スペクトル、磁気的性質、反応性等の連続的な変化によ
って表現することは知られていなかった。
An attempt to actively use polymer compounds for chemical modification of the electrode surface was started in 1977-8, and researchers from not only the electrochemical field but also other fields have joined to create a new trend. . It is conventionally known that an electrode is covered with a complex film and a specific electronic state or potential state is induced in the complex film by applying a voltage, and this principle has been used for an electrochromic display element and the like. However, a conductive wire is provided at both ends of a conductive support coated with a complex film, and this is used as an element, and a voltage is applied to this element to generate a continuous potential gradient, and the absorption spectrum of the complex film, the magnetic field It was not known to express by continuous changes in properties, reactivity, etc.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来、電位変化を色変化等によって連続的に表現する手
段は知られていなかった。従って本発明は、電位勾配を
表現することのできるインジケーター等に用いる素子を
提供するものである。
Hitherto, no means has been known for expressing potential changes continuously by color changes or the like. Therefore, the present invention provides an element used for an indicator or the like that can express a potential gradient.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、錯体膜で一部または全部を被覆した導伝性支
持体の両端に導線を設けてなる錯体膜被覆素子、に関す
る。
The present invention relates to a complex film-covered element in which conductive wires are provided at both ends of a conductive support which is partially or wholly coated with a complex film.

また本発明は、錯体膜で一部または全部を被覆した導電
性支持体の両端に導線を設けてなる錯体膜被覆素子の両
端の導線間に、該被膜が電解液に接触しているかまたは
電解液を含浸している条件下で、電圧を印加することに
より、該錯体膜の電子状態を電位勾配に応じて連続的に
変化せしめる方法に関する。
The present invention also provides a complex film-covered element, which is provided with conductive wires at both ends of a conductive support partially or wholly coated with a complex film, between the conductive wires at both ends of the complex film-coated element. The present invention relates to a method of continuously changing the electronic state of the complex film according to a potential gradient by applying a voltage under the condition of impregnating the liquid.

本明細書中、素子とは、電気回路の中で特定の機能を有
する構成要素として存在し、通電されることによりその
機能を発揮する受動素子をいう。
In the present specification, an element refers to a passive element that exists as a constituent element having a specific function in an electric circuit and exhibits the function when energized.

以下、本発明の素子及びその使用法について詳細に説明
する。
Hereinafter, the device of the present invention and the method of using the device will be described in detail.

(支持体) 本発明の素子に用いる導電性支持体は、通常抵抗値が10
-2〜104オーム、好ましくは101〜102オームの導電性物
質であり、例えばネサガラス、グラファイトその他の導
電性高分子物質を用いることが好ましい。また形状は両
端に導線を有し、通電することのできるものであればい
かなる形状のものでもよく、通常両端の導線間の長さが
1mm〜1mの任意の幅の支持体を用いることができる。
(Support) The conductive support used in the element of the present invention usually has a resistance value of 10
It is a conductive substance of -2 to 10 4 ohms, preferably 10 1 to 10 2 ohms, and it is preferable to use, for example, Nesa glass, graphite or other conductive polymer substances. The shape may be any shape as long as it has conducting wires at both ends and can conduct electricity.
A support having an arbitrary width of 1 mm to 1 m can be used.

適当な電圧を印加するためには、導電性が高すぎると過
大な電流が流れてしまうので好ましくない。また一方で
は錯体膜の電子状態を変化させるために錯体膜のレドッ
クス反応やドーピング/脱ドーピング反応を介するた
め、支持体に適当な電流が流れることが必要となり、導
電性が低すぎることも好ましくない。即ち、支持体の大
きさや、錯体膜の種類、厚さ、印加すべき電圧等に応じ
て適当な導電性を有する支持体材料を用いることが必要
である。例えば両端の導線間の長さが数センチメートル
の素子に対しては、1〜100オーム程度の抵抗値を持つ
支持体、例えばネサガラス(InSnO2被覆ガラス)等を用
いることが好ましい。
To apply an appropriate voltage, if the conductivity is too high, an excessive current will flow, which is not preferable. On the other hand, since a redox reaction or a doping / dedoping reaction of the complex film is performed to change the electronic state of the complex film, an appropriate electric current needs to flow through the support, and it is not preferable that the conductivity is too low. . That is, it is necessary to use a support material having an appropriate conductivity depending on the size of the support, the type and thickness of the complex film, the voltage to be applied, and the like. For example, it is preferable to use a support having a resistance value of about 1 to 100 ohms, for example, Nesa glass (InSnO 2 coated glass) or the like, for an element having a length of several centimeters between both ends of the conductive wire.

(錯体膜) 本発明に用いることのできる錯体膜としては、 1)多核型金属錯体の膜、 2)錯体を含有する有機または無機高分子化合物の膜、 3)適当な電圧の印加により、陰イオンまたは陽イオン
が膜中にドープまたは脱ドープして、その電圧に固有の
錯体状態をとる有機高分子化合物の膜、 の3種類があり、膜の厚さは0.05〜100μm程度が好ま
しい。
(Complex film) As the complex film that can be used in the present invention, 1) a film of a polynuclear metal complex, 2) a film of an organic or inorganic polymer compound containing a complex, and 3) application of an appropriate voltage, There are three types of films, that is, an organic polymer compound film in which ions or cations are doped or dedoped into the film to form a complex state specific to the voltage, and the film thickness is preferably about 0.05 to 100 μm.

以下、これらの錯体膜及びその形成方法について、詳細
に説明する。
Hereinafter, these complex films and the formation method thereof will be described in detail.

1)多核型金属錯体の膜 本発明に用いることのできる多核型金属錯体の膜は、支
持体上に電析させた下記組成式(i)で表わされる多核
型金属錯体の膜である。
1) Film of polynuclear metal complex A film of the polynuclear metal complex that can be used in the present invention is a film of a polynuclear metal complex represented by the following composition formula (i), which is electrodeposited on a support.

(MI l+)x〔MII m+(CN)6yzH2O (i) ただし、MI及びMIIは同一であっても相異していてもよ
い周期律表VIA、VIIA、VIII、IB、IIB及びIVB族からな
る群より選ばれる金属イオンであり、l及びmは金属イ
オンの価数であり、x及びyは1〜4の整数であり、z
は0又は1以上の整数であり、l、m、x、yは次の関
係式(イ)を満足する。
(M I l + ) x [M II m + (CN) 6 ] y · z H 2 O (i) However, M I and M II may be the same or different. Periodic Table VIA, VIIA , VIII, IB, IIB, and IVB, a metal ion selected from the group consisting of the following, 1 and m are valences of the metal ion, x and y are integers from 1 to 4, and z
Is an integer of 0 or 1 or more, and l, m, x, and y satisfy the following relational expression (a).

lx=y(6−m) (イ) この組成式(I)で表わされる多核型金属錯体の代表的
な例として、プルシアンブルー(以下PBと略す):(Fe
3+)4〔Fe2+(CN)6)3 4-・zCH2Oを挙げることができる。
lx = y (6-m) (a) As a typical example of the polynuclear metal complex represented by the composition formula (I), Prussian blue (hereinafter abbreviated as PB): (Fe
3+ ) 4 [Fe 2+ (CN) 6 ) 3 4 -.zCH 2 O can be mentioned.

PBはFe2+−Fe3+の混合原子価錯体であるが、これを還元
するとFe2+−Fe2+のプルシアンホワイト(以下PWと略
す)となり、逆に酸化するとFe3+−Fe3+のベルリングリ
ーン(以下BGと略す)となる。PBはこのようなPW−PB−
BG間の連続的な電子状態を取ることができる。
PB but is a mixed-valence complex of Fe 2+ -Fe 3+, when reduced to (hereinafter abbreviated as PW) Prussian white Fe 2+ -Fe 2+ becomes, is oxidized in the opposite Fe 3+ -Fe 3 + Berlin Green (abbreviated as BG below). PB is such PW-PB-
It can take continuous electronic states between BGs.

多核型金属錯体は電析法により容易に電極上に被覆膜と
して得られる。たとえばPBに例をとると、K3〔Fe(C
N)63-とFeCl3それぞれの水溶液を混合してBGの水溶液
を調製し、KCl、K2SO4、HCl等の適当な電解質を加え
る。これに被覆されるべき支持体(以下作用極とい
う)、Ag−AgCl等の参照電極及び白金対極を浸漬して、
作用極に還元電位(例えば参照電位に対して−0.5V)を
印加してBGをPBに還元すると同時に、作用極上にPB膜を
析出させることができる。
The polynuclear metal complex can be easily obtained as a coating film on the electrode by the electrodeposition method. Taking PB as an example, K 3 [Fe (C
N) 6 ] 3− and FeCl 3 aqueous solutions are mixed to prepare a BG aqueous solution, and an appropriate electrolyte such as KCl, K 2 SO 4 or HCl is added. A support to be coated on this (hereinafter referred to as working electrode), a reference electrode such as Ag-AgCl, and a platinum counter electrode are immersed,
A reduction potential (for example, −0.5 V with respect to the reference potential) is applied to the working electrode to reduce BG to PB, and at the same time, a PB film can be deposited on the working electrode.

このようにして調製したPB膜被覆支持体を、KCl、HClな
どの電解質を含む水中に浸漬し、予め付した両端の2本
の導線間に電圧を印加する。抵抗が12Ωのネサガラスを
電極として用いた場合、両端の導線間に1.5Vをかける
と、膜の両端間に電位勾配が生じ、正極に近い膜は淡褐
色(BG)負極に近い膜は無色(PW)、中間は青色とな
り、この色調は端から端迄連続的に変化する。印加電圧
を遮断すると、膜は直ちに一面に青色(PB)となり、全
てPBに一様に変化したことがわかる。
The PB membrane-coated support thus prepared is immersed in water containing an electrolyte such as KCl or HCl, and a voltage is applied between the two lead wires previously attached at both ends. When Nesa glass with a resistance of 12 Ω is used as an electrode, applying 1.5 V between the conductors at both ends creates a potential gradient between both ends of the film, the film near the positive electrode is light brown (BG) and the film near the negative electrode is colorless ( PW), the middle is blue, and this color tone changes continuously from end to end. It can be seen that when the applied voltage was cut off, the film immediately turned blue (PB) over the entire surface and changed uniformly to PB.

2)錯体を含有する有機又は無機高分子化合物の膜 錯体を含有する有機または無機高分子化合物の膜を作る
方法は大別して2つある。1つは錯体基を共有結合で含
有する高分子錯体を電極上に膜化する方法、他は有機ま
たは無機高分子化合物の膜を予め電極上に被覆し、この
膜中に錯体を吸着する方法である。錯体基を共有結合で
含有する有機高分子錯体の例としては、トリス(2,2′
−ビピリジン)ルテニウム(II)錯体〔Ru(bpy)3 2+〕を
含有する単独または共重合体などがあり、その組成は
(ii)式で表わされる。
2) Film of Organic or Inorganic Polymer Compound Containing Complex There are roughly two methods for forming a film of an organic or inorganic polymer compound containing a complex. One is a method of forming a polymer complex containing a complex group by a covalent bond on an electrode, and the other is a method of previously coating a film of an organic or inorganic polymer compound on the electrode and adsorbing the complex in the film. Is. An example of an organic polymer complex containing a complex group by a covalent bond is tris (2,2 ′
-Bipyridine) ruthenium (II) complex [Ru (bpy) 3 2+ ] is included in the homopolymer or copolymer, and its composition is represented by the formula (ii).

たゞしここでMは単量体単位、 は2,2′ビピリジン、x、y、zはそれぞれの繰り返し
単位で、xは0〜0.99、yは0〜0.99、zは0.01〜1.00
の範囲の値をとる。
However, where M is a monomer unit, Is 2,2'-bipyridine, x, y, and z are repeating units, x is 0 to 0.99, y is 0 to 0.99, and z is 0.01 to 1.00.
Takes a value in the range.

組成式(ii)でMとしてはスチレン、アクリル酸、メチ
ルメタクリレート、ヒドロキシエチルメタクリレート、
ビニルピリジンなどが挙げられる。
In the composition formula (ii), M is styrene, acrylic acid, methyl methacrylate, hydroxyethyl methacrylate,
Vinyl pyridine etc. are mentioned.

またポリ(ビニルピリジン)と銅、鉄、コバルト、ニッ
ケルなどのイオンや錯体との高分子錯体なども用いるこ
とができる。これらの高分子錯体は、溶液からキャスト
法やスピンコーティング法などで支持体上に容易に膜化
できる。
Further, a polymer complex of poly (vinyl pyridine) and an ion or complex of copper, iron, cobalt, nickel or the like can be used. These polymer complexes can be easily formed into a film from a solution by a casting method, a spin coating method, or the like.

予め有機高分子化合物の膜を支持体上に被覆してから膜
中に錯体を吸着する方法は、高分子としてポリアニオン
またはポリカチオンを用い、キャスト法やスピンコーテ
ィング法などにより予め高分子膜を被覆し、この膜中に
カチオンまたはアニオン型の錯体を静電的に取り込むの
がよい。ポリアニオンとしてはナフィオン、ポリ(スチ
レンスルホン酸ナトリウム)、ポリ(アクリル酸ナトリ
ウム)などが挙げられ、これに取り込まれるカチオン型
錯体としては、Ru(bpy)3 2+、トリス(o−フェナントロ
リン)ルテニウム(II)錯体、 〔Ru(NH3)63+〔(bpy)2Ru-O-Ru(bpy)24+、CdS、などが挙げられ、ま
たビオロゲン類、チオニンなどのカチオン型色素類など
は取り込まれてイオン的錯体となる。ポリカチオンとし
ては、四級化型又はプロトン化型ポリビニルピリジン、
式(ii)の高分子Ru(bpy)3 2+錯体、高分子ペンダント型
ビオロゲン、ポリキシリルビオロゲンなどの積層型ポリ
カチオンなどが挙げられ、これに取り込まれるアニオン
型錯体としては、〔Fe(CN)63-、〔Fe(CN)64-、〔Fe
(CN)5Cl〕2-、IrCl6 3-、Mo(CN)8 4-、〔W(CN)84-など
が挙げられる。
The method of pre-coating the organic polymer compound film on the support and then adsorbing the complex into the film is to use a polyanion or polycation as the polymer and pre-coat the polymer film by a casting method or a spin coating method. However, it is preferable to electrostatically incorporate a cation or anion type complex into this film. Examples of the polyanion include Nafion, poly (sodium styrenesulfonate), poly (sodium acrylate), and the like. Cationic complexes incorporated therein are Ru (bpy) 3 2+ , tris (o-phenanthroline) ruthenium ( II) complex, [Ru (NH 3 ) 6 ] 3+ , [(Bpy) 2 Ru-O-Ru (bpy) 2 ] 4+ , CdS, and the like are included, and viologens, cationic dyes such as thionine, and the like are incorporated to form an ionic complex. As the polycation, quaternized or protonated polyvinyl pyridine,
Examples include polymer Ru (bpy) 3 2+ complex of formula (ii), polymer pendant viologen, and laminated polycations such as polyxylyl viologen. CN) 6 ] 3- , [Fe (CN) 6 ] 4- , [Fe
(CN) 5 Cl] 2− , IrCl 6 3− , Mo (CN) 8 4− , [W (CN) 8 ] 4− and the like.

無機高分子化合物の膜を用いる場合は、無機高分子化合
物の代表例として、カオリン、ベントナイト、モンモリ
ロナイトなどの粘土が挙げられる。これらの微粒子の水
懸濁液を電極上に添加して乾燥することにより、膜化す
ることができる。
When an inorganic polymer compound film is used, typical examples of the inorganic polymer compound include clay such as kaolin, bentonite, and montmorillonite. A film can be formed by adding an aqueous suspension of these fine particles onto the electrode and drying.

これらの有機または無機高分子化合物の膜中に錯体など
の化合物を取り込むには、膜被覆電極を被吸着化合物を
含む溶液中に浸漬することにより、容易に行なうことが
できる。
Incorporation of a compound such as a complex into the film of these organic or inorganic polymer compounds can be easily carried out by immersing the film-coated electrode in a solution containing the compound to be adsorbed.

3)ドーピング/脱ドーピングが可能な有機高分子化合
物の膜 ドーピング/脱ドーピングが可能な有機高分子化合物の
膜としては、アニリン、ピロール、チオフェンあるいは
これらの誘導体の重合体のような、電解重合で得られる
高分子膜や、ポリアセチレン、ポリ(N−ビニルカルバ
ゾール)のような高分子の膜などが挙げられる。
3) Membrane of organic polymer compound capable of doping / dedoping As a membrane of organic polymer compound capable of doping / dedoping, electrolytic polymerization such as a polymer of aniline, pyrrole, thiophene or a derivative thereof can be used. Examples of the obtained polymer film and films of polymers such as polyacetylene and poly (N-vinylcarbazole).

これらの高分子膜を被覆した支持体を電解質溶液に浸漬
して、−2〜2Vの範囲の適当な電圧を印加すると、その
電圧に応じて陰イオンやプロトンが膜中にドープまたは
膜中から脱ドープしてその電圧に固有の錯体状態(電子
状態)をとることが知られている。このような高分子膜
を本発明において適用すれば、上述してきたと同様に電
位勾配に応じた電子状態の勾配を持つ膜が得られる。電
子状態に応じて吸収スペクトルが変るので、一端から他
端に至る連続的に色調が変化する膜が出来る。また、こ
のような膜へのアノード条件下におけるアニオンドーピ
ングを利用すると、アニオン性の錯体や化合物を膜中に
ドーパントとして取り込むことも出来、本発明における
錯体膜として使用出来る。
When the support coated with these polymer membranes is dipped in an electrolyte solution and an appropriate voltage in the range of -2 to 2V is applied, anions and protons are doped into the membrane or are removed from the membrane depending on the voltage. It is known that dedoping takes a complex state (electronic state) specific to the voltage. If such a polymer film is applied in the present invention, a film having a gradient of an electronic state corresponding to a potential gradient can be obtained as described above. Since the absorption spectrum changes depending on the electronic state, a film whose color tone changes continuously from one end to the other end is formed. Further, by utilizing anion doping of such a film under an anodic condition, an anionic complex or compound can be incorporated into the film as a dopant and can be used as a complex film in the present invention.

(電圧の印加) 本発明の素子に電圧を印加して、電位勾配に応じた電子
状態の連続的変化が錯体膜中で実現している状態におい
ては、膜中の異なる電子状態にある成分間での電子移動
反応が常に生起している。このような電子移動反応は、
膜の隣接する成分間で直接に、または膜中の離れている
成分間で支持体の導電を介して間接的に、定常的に起っ
ている。この電子移動反応により電位勾配は打ち消され
るので、これに打ち勝つだけの電流を常に外部より加え
てやることが、電位勾配を保つための要件である。
(Applying Voltage) In a state in which a voltage is applied to the device of the present invention to continuously change the electronic state according to the potential gradient in the complex film, between the components in different electronic states in the film. The electron transfer reaction at is always occurring. Such electron transfer reaction is
It occurs steadily either directly between adjacent components of the membrane or indirectly between distant components in the membrane, via the conduction of the support. Since the potential gradient is canceled by this electron transfer reaction, it is a requirement for maintaining the potential gradient that a current sufficient to overcome this is always applied from the outside.

また本発明においては膜成分のレドックス反応やドーピ
ング/脱ドーピング反応を生起せしめる必要があるの
で、膜が電解質溶液と接触しているか、あるいはこれを
含浸していることが必要である。錯体膜被覆素子を電解
質溶液に浸漬して電圧を印加することが簡便な方法であ
る。媒体としては水が通常用いられるが、錯体膜を溶解
しない媒体なら何でもよい。
Further, in the present invention, since it is necessary to cause the redox reaction and the doping / dedoping reaction of the membrane component, it is necessary that the membrane is in contact with or impregnated with the electrolyte solution. A simple method is to immerse the complex film-coated element in an electrolyte solution and apply a voltage. Water is usually used as the medium, but any medium that does not dissolve the complex film may be used.

印加する電圧は膜の化学的成分、厚さ、支持体材料など
に依存するが、0.01〜10Vの範囲が適当である。
The applied voltage depends on the chemical composition of the film, the thickness, the support material, etc., but the range of 0.01 to 10 V is suitable.

以下実施例を以て本発明を説明する。The present invention will be described below with reference to examples.

実施例1 長さ5.5cm、巾0.5cm、厚さ5.1mmのネサガラス(抵抗値1
0Ω)を支持体として用い、その両端に銅線を銀エポキ
シで付し、その周囲を絶縁性エポキシで固めて電極を作
製した。この電極(作用極)、Ag−AgCl参照用電極およ
び白金板対極を、K3〔Fe(CN)63-とFeCl3をそれぞれ20
mM含む水溶液に浸漬し、作用極の導線の一方にカソード
電圧を加えて50μAcm-2の条件で定電流電解を行ない、
作用極上に1〜2μmのPB膜を還元的に析出させた。
Example 1 Nesa glass having a length of 5.5 cm, a width of 0.5 cm and a thickness of 5.1 mm (resistance value 1
0 Ω) was used as a support, copper wires were attached to both ends of the support with silver epoxy, and the periphery thereof was fixed with insulating epoxy to prepare an electrode. This electrode (working electrode), the Ag-AgCl reference electrode, and the platinum plate counter electrode were replaced with K 3 [Fe (CN) 6 ] 3− and FeCl 3 respectively.
Immerse in an aqueous solution containing mM, apply a cathode voltage to one of the conductors of the working electrode, and carry out constant current electrolysis under the condition of 50 μA cm -2 .
A 1-2 μm PB film was reductively deposited on the working electrode.

このように作成した本発明のPB膜被覆素子を、10mM HCl
と25mM KClを含む水溶液に浸漬し、素子の両端に付した
導線間に1.5Vの電圧を印加すると、正極付近のPBは酸化
されてBGとなって黄色に変化し、負極付近のPBは還元さ
れてPWとなって無色となり、一方中央付近にはPBが残っ
て青色となり、これらの色調は一端から他端まで連続的
に変化した(第1図参照)。この膜の各位置における透
過可視吸収スペクトルを測定し、第2図に示した。スペ
クトルが端から端迄連続的に変ることがわかる。またス
ペクトルは膜の電子状態を反映しているので、膜の電子
状態がPWからPBを経てBGに至る迄連続的に変化している
のがわかる。これは即ち、膜がこの条件下で電子状態の
勾配を有していることを示している。この条件下で15mA
の電流が定常的に流れていた。
The PB film-coated device of the present invention thus prepared was treated with 10 mM HCl.
When a voltage of 1.5 V is applied between the conducting wires attached to both ends of the device by immersing it in an aqueous solution containing 25 mM KCl and 25 mM KCl, PB near the positive electrode is oxidized to BG and turns yellow, and PB near the negative electrode is reduced. As a result, it became PW and became colorless, while PB remained in the vicinity of the center and became blue, and these color tones continuously changed from one end to the other end (see FIG. 1). The transmission visible absorption spectrum at each position of this film was measured and is shown in FIG. It can be seen that the spectrum changes continuously from end to end. Since the spectrum reflects the electronic state of the film, it can be seen that the electronic state of the film changes continuously from PW to PB to BG. This means that the film has an electronic state gradient under these conditions. 15mA under this condition
The current was constantly flowing.

印加電圧を遮断すると、膜は直ちに全て青色のPBとなっ
た。再び電圧を印加すると膜は前述と同様の電位勾配を
表示し、このような電圧の印加、遮断による膜の変化は
繰り返し再現された。
When the applied voltage was cut off, the film immediately became all-blue PB. When the voltage was applied again, the film displayed the same potential gradient as that described above, and such changes in the film due to the application and interruption of the voltage were repeatedly reproduced.

実施例2 ルテニウムパープル(RP); (Fe3+)4〔Ru2+(CN)63 4-を実施例1と同じ電極上に、K
3Ru(CN)6とFeCl3の1mM混合水溶液から実施例1と同様な
電解還元法により膜として析出させた。このRP膜被覆素
子を実施例1と同様にして、両端に付した導線間に1.0V
の電圧を印加する。正極の近傍は赤紫色に、負極の近傍
は無色となり、正極端から負極端に至る迄連続的に色調
が変る膜となり、電位勾配が表示された。
Example 2 Ruthenium Purple (RP); a (Fe 3+) 4 [Ru 2+ (CN) 6] 3 4 the same electrode on as Example 1, K
A film was deposited from a 1 mM mixed aqueous solution of 3 Ru (CN) 6 and FeCl 3 by the same electrolytic reduction method as in Example 1. This RP film-covered element was manufactured in the same manner as in Example 1, and 1.0 V was applied between the conductors attached to both ends.
Voltage is applied. The vicinity of the positive electrode became reddish purple, and the vicinity of the negative electrode became colorless, forming a film in which the color tone changed continuously from the positive electrode end to the negative electrode end, and the potential gradient was displayed.

実施例3 実施例1と同じ電極上に、組成式(ii)においてMがス
チレン、xが0.934、yが0.033、zが0.033である高分
子ペンダント型Ru(bpy)3 2+錯体を、その1mM Ru錯体単位
を含むDMF溶液を32μlcm-2の割合で添加して均一に拡
げた後、乾燥して膜とした。この被覆素子を50mM HClを
含む水溶液に浸漬し、両端の導線間に1.8Vの電圧を印加
すると、正極近傍は緑色に、負極近傍は赤色になり、一
端から他端に至る迄連続的に変化する色調を呈し、電位
勾配が表示されていることを示した。
Example 3 On the same electrode as in Example 1, a polymer pendant type Ru (bpy) 3 2+ complex in which M was styrene, x was 0.934, y was 0.033, and z was 0.033 in the composition formula (ii) was prepared. A DMF solution containing 1 mM Ru complex unit was added at a ratio of 32 μl cm −2 and uniformly spread, and then dried to form a film. When this coated element is immersed in an aqueous solution containing 50 mM HCl and a voltage of 1.8 V is applied between the conductors at both ends, the positive electrode turns green, the negative electrode turns red, and changes continuously from one end to the other. The color tone was changed to show that the potential gradient was displayed.

実施例4 長さが7cm、巾0.5cmのグラファイト板電極の両端に2本
の銅線を付して実施例1と同様な電極を作製した。この
電極表面に塩化ベンジルで4級化したポリ(4−ビニル
ピリジン)をDMF溶液からキャスト法で膜化した後、こ
れをK3〔Fe(CN)63-を10mM含む水溶液に浸漬すると、
3時間後に〔Fe(CN)63-が充分吸着された。この被覆
素子の膜にKClを10mM含む水溶液を含浸させ、2本の銅
線間に1.1Vを印加することにより、正極付近は褐色ない
し黄色、負極付近は無色となり、この色調は連続的に変
化し、電位勾配が表示された。
Example 4 An electrode similar to that of Example 1 was prepared by attaching two copper wires to both ends of a graphite plate electrode having a length of 7 cm and a width of 0.5 cm. When poly (4-vinylpyridine) quaternized with benzyl chloride was formed into a film from a DMF solution by a casting method on the surface of this electrode, it was immersed in an aqueous solution containing 10 mM of K 3 [Fe (CN) 6 ] 3 −. ,
After 3 hours, [Fe (CN) 6 ] 3− was sufficiently adsorbed. By impregnating the membrane of this coated element with an aqueous solution containing 10 mM of KCl and applying 1.1 V between the two copper wires, the color near the positive electrode became brown or yellow and the color near the negative electrode became colorless, and this color tone changed continuously. Then, the potential gradient was displayed.

実施例5 実施例1と同じ電極上に、ナフィオンをDMSO溶液からキ
ャスト法で膜として被覆し、この膜被覆電極をRu(bpy)3
2+を5mM含む水溶液に浸漬し、一夜放置することによ
り、Ru(bpy)3 2+がナフィオン膜中に吸着される。これを
用いて、実施例3と同様にして電圧を印加すると、実施
例3と同様の色調の変化が生じ、電位勾配が表示され
た。
Example 5 Nafion was coated on the same electrode as in Example 1 as a film from a DMSO solution by a casting method, and the film-coated electrode was Ru (bpy) 3
Ru (bpy) 3 2+ is adsorbed in the Nafion membrane by immersing it in an aqueous solution containing 2 + 5 mM and leaving it to stand overnight. When a voltage was applied using this in the same manner as in Example 3, the same color tone change as in Example 3 occurred, and the potential gradient was displayed.

実施例6 長さ4.5cm、巾0.7cm、厚さ5.1mmのネサガラス(抵抗値2
0Ω)を用いて実施例1と同様な電極を作製し、この上
にカオリンの微粉末を0.1g/5mlの割合で含む懸濁水溶液
を75μlcm-2の割合で添加し、拡げて乾燥し、カオリン
膜を被覆した。この膜被覆電極を、 錯体を5mM含む水溶液に浸漬してMn錯体を膜内に吸着さ
せた。この素子の2本の導線間に1.4Vの電圧を印加する
ことにより、正極付近は褐色、負極付近は緑色となり、
電位勾配が表示された。
Example 6 Nesa glass having a length of 4.5 cm, a width of 0.7 cm and a thickness of 5.1 mm (resistance value 2
0 Ω) was used to prepare an electrode similar to that of Example 1, and a suspension aqueous solution containing fine powder of kaolin at a rate of 0.1 g / 5 ml was added thereto at a rate of 75 μl cm −2 , spread and dried, A kaolin film was coated. This membrane-coated electrode The complex was immersed in an aqueous solution containing 5 mM to adsorb the Mn complex in the film. By applying a voltage of 1.4 V between the two conducting wires of this element, the positive electrode area becomes brown and the negative electrode area becomes green.
The potential gradient was displayed.

実施例7 実施例1で用いたと同じ電極を用い、これをAg−AgCl参
照用電極、白金板対極とともに1Mアニリンと2MHClを含
む水溶液に浸漬し、1V(vs.Ag−AgCl)定電電解法でア
ニリンを酸化的に重合し、ポリアニリン膜を被覆した素
子を作製した。この膜被覆電極を、0.2M LiClと10mM HC
lを含む水溶液に浸漬し、二本の導線間に1.3Vを印加す
ると、正極近傍は紫〜褐色に、真中付近は緑〜青色に、
負極付近は黄色となり、電位勾配を表示する素子となっ
た。
Example 7 The same electrode as used in Example 1 was used, and this was immersed in an aqueous solution containing 1M aniline and 2M HCl together with an Ag-AgCl reference electrode and a platinum plate counter electrode, and subjected to 1V (vs. Ag-AgCl) constant current electrolysis. An aniline was oxidatively polymerized to prepare a device coated with a polyaniline film. This membrane-coated electrode was mixed with 0.2M LiCl and 10mM HC.
When immersed in an aqueous solution containing l and applying 1.3 V between the two conductors, the area near the positive electrode turns purple to brown, the area near the center turns green to blue,
The area around the negative electrode turned yellow, and the device displayed an electric potential gradient.

〔発明の効果〕〔The invention's effect〕

本発明の錯体膜被覆素子を本発明の方法によって使用す
ることにより、該錯体膜上に電位勾配に応じて連続的に
変化する電子状態を生起せしめることができる。
By using the complex film-coated element of the present invention by the method of the present invention, it is possible to generate an electronic state on the complex film that continuously changes according to a potential gradient.

インジケーターへの応用は今後の課題であるが、例えば
反応の進行をスペクトルで追うことのできる化合物であ
れば、これを膜に吸着させて電圧をかけ、素子の各位置
におけるスペクトルを端から端まで測定すれば、どの電
位で化合物が反応したかがわかり、その化合物の反応性
やレドックス電位を知ることができる。
Application to an indicator is a future issue, but for example, if it is a compound that can follow the progress of the reaction in a spectrum, it is adsorbed on a film and a voltage is applied, and the spectrum at each position of the element is covered from end to end. By measuring, it is possible to know at which potential the compound reacted, and to know the reactivity and redox potential of the compound.

【図面の簡単な説明】[Brief description of drawings]

第1図は、PB膜で被覆した本発明の素子の1例を示す。
ここで〜はスペクトルを測定した位置を示し、第2
図の〜に対応する。電圧をかけると、錯体膜は正極
端から負極端にかけてBG、PB、PWと連続的に変化する。 第2図は、第1図に示した素子に1.5V印加した場合の
〜までの各位置における可視吸収スペクトルの連続的
変化を示す。 1…導線、2…銀エポキシ 3…絶縁性エポキシ 4…PB膜で被覆された支持体(ネサガラス)
FIG. 1 shows an example of a device of the present invention coated with a PB film.
Is the position where the spectrum was measured,
Corresponds to ~ in the figure. When a voltage is applied, the complex film continuously changes from BG to PB to PW from the positive electrode end to the negative electrode end. FIG. 2 shows a continuous change in the visible absorption spectrum at each position up to when a voltage of 1.5 V was applied to the device shown in FIG. DESCRIPTION OF SYMBOLS 1 ... Conductive wire, 2 ... Silver epoxy 3 ... Insulating epoxy 4 ... Support body covered with PB film (nesa glass)

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】錯体膜で1部または全部を被覆した導電性
支持体の両端に導線を設けてなる錯体膜被覆素子。
1. A complex film-covered element comprising a conductive support, which is coated with a part or the whole of a complex film, and conductive wires provided at both ends thereof.
【請求項2】錯体膜が支持体上に電析させた下記組成式
(i)で表わされる多核型金属錯体の膜である、特許請
求の範囲第(1)項記載の錯体膜被覆素子。 (MI l+)x〔MII m+(CN)6yzH2O (i) ただし、MI及びMIIは同一であっても相異していてもよ
い周期律表VIA、VIIA、VIII、IB、IIB及びIVB族からな
る群より選ばれる金属イオンであり、l及びmは金属イ
オンの価数であり、x及びyは1〜4の整数であり、z
は0又は1以上の整数であり、l、m、x、yは次の関
係式(イ)を満足する。 lx=y(6−m) (イ)
2. The complex film-coated device according to claim 1, wherein the complex film is a film of a polynuclear metal complex represented by the following composition formula (i), which is electrodeposited on a support. (M I l + ) x [M II m + (CN) 6 ] y · z H 2 O (i) However, M I and M II may be the same or different. Periodic Table VIA, VIIA , VIII, IB, IIB, and IVB, a metal ion selected from the group consisting of the following, 1 and m are valences of the metal ion, x and y are integers from 1 to 4, and z
Is an integer of 0 or 1 or more, and l, m, x, and y satisfy the following relational expression (a). lx = y (6-m) (a)
【請求項3】錯体膜が、錯体を含有する有機高分子化合
物の膜である、特許請求の範囲第(1)項記載の錯体膜
被覆素子。
3. The complex film-covered element according to claim 1, wherein the complex film is a film of an organic polymer compound containing a complex.
【請求項4】錯体膜が、錯体を含有する無機高分子化合
物の膜である、特許請求の範囲第(1)項記載の錯体膜
被覆素子。
4. The complex film-covered element according to claim 1, wherein the complex film is a film of an inorganic polymer compound containing a complex.
【請求項5】錯体膜が、適当な電圧の印加により、陰イ
オンまたは陽イオンが該錯体膜中にドープまたは脱ドー
プして、その電圧に固有の錯体状態をとる有機高分子化
合物である、特許請求の範囲第(1)項記載の錯体膜被
覆素子。
5. The complex film is an organic polymer compound in which an anion or a cation is doped or dedoped into the complex film by applying an appropriate voltage to take a complex state specific to the voltage. The complex film-covered element according to claim (1).
【請求項6】錯体膜で一部または全部を被覆した導電性
支持体の両端に導線を設けてなる錯体膜被覆素子の両端
の導線間に、該被膜が電解液に接触しているかまたは電
解液を含浸している条件下で、電圧を印加することによ
り、該錯体膜の電子状態を電位勾配に応じて連続的に変
化せしめる方法。
6. A complex film-covered element comprising a conductive support, which is partially or wholly coated with a complex film, provided with conductive wires at both ends thereof. A method of continuously changing the electronic state of the complex film according to a potential gradient by applying a voltage under the condition of impregnating the liquid.
【請求項7】錯体膜が、支持体上に電析させた下記組成
式(i)で表わされる多核型金属錯体の膜であり、電圧
が0.5〜10Vである特許請求の範囲第(6)項記載の方
法。 (MI l+)x〔MII m+(CN)6yzH2O (i) ただし、MI及びMIIは同一であっても相異していてもよ
い周期律表VIA、VIIA、VIII、IB、IIB及びIVB族からな
る群より選ばれる金属イオンであり、l及びmは金属イ
オンの価数であり、x及びyは1〜4の整数であり、z
は0又は1以上の整数であり、l、m、x、yは次の関
係式(イ)を満足する。 lx=y(6−m) (イ)
7. The complex membrane is a membrane of a polynuclear metal complex represented by the following composition formula (i), which is electrodeposited on a support, and has a voltage of 0.5 to 10 V. Method described in section. (M I l + ) x [M II m + (CN) 6 ] y · z H 2 O (i) However, M I and M II may be the same or different. Periodic Table VIA, VIIA , VIII, IB, IIB, and IVB, a metal ion selected from the group consisting of the following, 1 and m are valences of the metal ion, x and y are integers from 1 to 4, and z
Is an integer of 0 or 1 or more, and l, m, x, and y satisfy the following relational expression (a). lx = y (6-m) (a)
【請求項8】錯体膜が、錯体を含有する有機高分子化合
物の膜であり、電圧が0.1〜10Vである特許請求の範囲第
(6)項記載の方法。
8. The method according to claim 6, wherein the complex film is a film of an organic polymer compound containing a complex and the voltage is 0.1 to 10V.
【請求項9】錯体膜が、錯体を含有する無機高分子化合
物の膜であり、電圧が0.1〜10Vである特許請求の範囲第
(6)項記載の方法。
9. The method according to claim 6, wherein the complex film is a film of an inorganic polymer compound containing a complex and the voltage is 0.1 to 10V.
【請求項10】錯体膜が、適当な電圧の印加により、陰
イオンまたは陽イオンが該錯体膜中にドープまたは脱ド
ープして、その電圧に固有の錯体状態をとる有機高分子
化合物であり、電圧が−2〜2Vである特許請求の範囲第
(6)項記載の方法。
10. A complex film is an organic polymer compound in which an anion or a cation is doped or dedoped into the complex film by applying an appropriate voltage to obtain a complex state specific to the voltage. The method according to claim 6, wherein the voltage is -2 to 2V.
JP62082047A 1987-04-02 1987-04-02 Complex film coated element and method of using the same Expired - Lifetime JPH0795167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62082047A JPH0795167B2 (en) 1987-04-02 1987-04-02 Complex film coated element and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62082047A JPH0795167B2 (en) 1987-04-02 1987-04-02 Complex film coated element and method of using the same

Publications (2)

Publication Number Publication Date
JPS63247731A JPS63247731A (en) 1988-10-14
JPH0795167B2 true JPH0795167B2 (en) 1995-10-11

Family

ID=13763599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62082047A Expired - Lifetime JPH0795167B2 (en) 1987-04-02 1987-04-02 Complex film coated element and method of using the same

Country Status (1)

Country Link
JP (1) JPH0795167B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134521U (en) * 1989-04-12 1990-11-08
EP3228624A3 (en) * 2005-02-10 2017-11-01 Yeda Research And Development Co., Ltd. Redox-active chromophore molecules and devices utilizing the same
IL229525A0 (en) 2013-11-20 2014-01-30 Yeda Res & Dev Metal-based tris-bipyridyl complexes and uses thereof in electrochromic applications

Also Published As

Publication number Publication date
JPS63247731A (en) 1988-10-14

Similar Documents

Publication Publication Date Title
Mao et al. Electronically conductive anion exchange polymers based on polypyrrole: Preparation, characterization, electrostatic binding of ferrocyanide and electrocatalysis of ascorbic acid oxidation
Ugo et al. Ion‐exchange voltammetry at polymer‐coated electrodes: Principles and analytical prospects
Kulesza et al. Electrochemical preparation and characterization of hybrid films composed of Prussian blue type metal hexacyanoferrate and conducting polymer
KR100263400B1 (en) Electrically conductive polymer composition, method of making same and device incorporating same
JP2788121B2 (en) Electrochromic device
Tieke Coordinative supramolecular assembly of electrochromic thin films
JPH08504968A (en) Electrochromic materials and displays
Leventis et al. Electrochemically Assisted Sol− Gel Process for the Synthesis of Polysiloxane Films Incorporating Phenothiazine Dyes Analogous to Methylene Blue. Structure and Ion-Transport Properties of the Films via Spectroscopic and Electrochemical Characterization
Sydam et al. Electrochromic device response controlled by an in situ polymerized ionic liquid based gel electrolyte
KR20080009697A (en) Conductive material and conductive film and process for producing them
Martel et al. Electrochemical study of multilayer films built on glassy carbon electrode with polyoxometalate anions and two multi-charged molecular cationic species
Efremenko et al. Poly-3-thienylboronic acid: a chemosensitive derivative of polythiophene
JPH0795167B2 (en) Complex film coated element and method of using the same
Opallo et al. Electroactive ceramic carbon electrode impregnated with organic liquid
JPS63311156A (en) Solid reference electrode and manufacture thereof
Guo et al. Charge propagation in nickel 6, 6′-bis (2′-hydroxyphenyl)-2, 2′-bipyridine polymer film doped with perchlorate anions
Lin et al. Electrochemical behaviors of polyaniline–poly (styrene‐sulfonic acid) complexes and related films
Wang et al. Electrochemical behavior of polypyrrole/Kodak AQ composite polymeric films
Okamoto et al. Protonic conduction and electrochromism of amorphous peroxopolytungstic acid
Li et al. Electrochemical assembly of conducting polymer films on an insulating surface
JP2709130B2 (en) Polymer gel-coated conductor, method for forming the same, and battery using core polymer gel-coated conductor
Qi Synthesis of conducting polymer colloids, hollow nanoparticles, and nanofibers
JPH11506843A (en) Light modulation device and method
JPS58172541A (en) Ion electrode substrate and ion electrode
JP2004045279A (en) Reference electrode and electrolytic cell having the same