JPH0795091B2 - Solar cell evaluation method - Google Patents

Solar cell evaluation method

Info

Publication number
JPH0795091B2
JPH0795091B2 JP4357570A JP35757092A JPH0795091B2 JP H0795091 B2 JPH0795091 B2 JP H0795091B2 JP 4357570 A JP4357570 A JP 4357570A JP 35757092 A JP35757092 A JP 35757092A JP H0795091 B2 JPH0795091 B2 JP H0795091B2
Authority
JP
Japan
Prior art keywords
current
solar cell
white light
weak white
series resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4357570A
Other languages
Japanese (ja)
Other versions
JPH06194430A (en
Inventor
尚正 由井
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP4357570A priority Critical patent/JPH0795091B2/en
Publication of JPH06194430A publication Critical patent/JPH06194430A/en
Publication of JPH0795091B2 publication Critical patent/JPH0795091B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、被測定太陽電池の等
価回路パラメータである光生成電流と直列抵抗に関する
受光面の分散分布を求めることにより行う太陽電池の評
価を行う方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating a solar cell by obtaining a dispersion distribution of a light receiving surface with respect to a photo-generated current and a series resistance which are equivalent circuit parameters of the measured solar cell.

【0002】[0002]

【従来の技術】従来、この種の等価回路パラメータの見
積方法の技術としては次に示す方法が知られている[ 由
井、 林: 電気学会論文誌B、112、9、835(平成4 年)]。即
ち、バイアス光(太陽光のスペクトル分布に近似な光)
を被測定太陽電池の全面に照射して動作中の直流電流−
直流電圧特性は、図4に示す代表的な等価回路を用いて
下記(1)式で表せる。
2. Description of the Related Art Conventionally, the following method has been known as a technique for estimating an equivalent circuit parameter of this kind [Yui, Hayashi: Transactions of the Institute of Electrical Engineers of Japan, B, 112, 9, 835 (1992). ]. That is, bias light (light similar to the spectral distribution of sunlight)
Direct current during operation by irradiating the entire surface of the measured solar cell
The DC voltage characteristic can be expressed by the following equation (1) using the typical equivalent circuit shown in FIG.

【0003】[0003]

【式2】 [Formula 2]

【0004】ここで、Ip:光生成電流、I、V :直流出力
電流と直流出力電圧、Rs、Rsh :直列抵抗と並列抵抗、
Is:ダイオードの飽和電流、n :ダイオードの理想因
子、q :電子の電荷、K :ボルツマン定数、T :温度
(k) である。
Where I p : photogenerated current, I, V: DC output current and DC output voltage, R s, R sh : series resistance and parallel resistance,
I s : diode saturation current, n: diode ideality factor, q: electron charge, K: Boltzmann constant, T: temperature
(k).

【0005】この状態に、バイアス光と同じスペクトル
分布で強度が無視できる極めて微弱な白色光Δφm[W]を
重畳したとき、その微弱出力電流Δi[A]は、直流出力電
圧が一定で、等価回路パラメータの変化も無視できると
仮定すると、微弱白色光の照射がある場合とない場合の
直流出力電流差で与えられるので、微弱白色光生成電流
をΔip[A] とすると、下記(2)式で表せる。
When an extremely weak white light Δφ m [W] having the same spectral distribution as the bias light and an intensity that can be ignored is superimposed on this state, the weak output current Δi [A] has a constant DC output voltage, Assuming that the change in equivalent circuit parameter can be ignored, it is given by the difference in DC output current with and without weak white light irradiation. Therefore, letting the weak white light generation current be Δi p [A], the following (2 ) Can be expressed as

【0006】[0006]

【式3】 [Formula 3]

【0007】ここで、{ }内の一部を下記(3)式に
示すAファクタで置き換えると、上記(2)式は下記
(4)式になる。
Here, if a part of {} is replaced by the A factor shown in the following equation (3), the above equation (2) becomes the following equation (4).

【0008】[0008]

【式4】 [Formula 4]

【0009】[0009]

【式5】 [Formula 5]

【0010】一方、上記(1)式を直流電圧Vで微分
し、(3)式を用いることにより下記(5)式が得ら
れ、よって上記(4)式は下記(6)式で整理できる。
On the other hand, the following formula (5) is obtained by differentiating the formula (1) by the DC voltage V and using the formula (3). Therefore, the formula (4) can be arranged by the formula (6) below. .

【0011】[0011]

【式6】 [Formula 6]

【0012】[0012]

【式7】 [Formula 7]

【0013】このようにして微弱白色光の照射に基づく
微弱出力電流Δi が直流電流−直流電圧特性と関連付け
られるので、これらの関係式を利用して動作点における
微弱白色光生成電流Δip、直列抵抗Rsの算出は次のよう
な方法によって行える。
Since the weak output current Δi based on the irradiation of the weak white light is associated with the DC current-DC voltage characteristic in this manner, the weak white light generation current Δi p at the operating point The resistance R s can be calculated by the following method.

【0014】ここで、動作点近傍においてΔi 、及びdI
/dV が測定量で与えられ、しかも微少電圧区間でΔi 、
及びRsが一定の値を示すと仮定できるならば、Δi 及び
dI/dV を変数とした上記(6)式が2組以上できるの
で、これを解くことによって動作点の微弱白色光生成電
流Δipと直列抵抗Rsの値が算出できる。
Here, Δi and dI near the operating point
/ dV is given as the measured quantity, and Δi,
And R s can be assumed to show a constant value, then Δ i and
Since there can be two or more sets of the above equation (6) with dI / dV as a variable, the values of the weak white light generation current Δi p and the series resistance R s at the operating point can be calculated by solving them.

【0015】ここで、バイアス光と微弱白色光の強度の
比が、例えば1 対100 であるとすれば、微弱白色光生成
電流Δipの百倍がバイアス光の照射による光生成電流の
大きさである。
Here, if the intensity ratio of the bias light and the weak white light is, for example, 1: 100, 100 times the weak white light generation current Δi p is the magnitude of the light generation current due to the irradiation of the bias light. is there.

【0016】このため、この方法は動作点における被測
定太陽電池のバイアス光生成電流Ip、或は微弱白色光生
成電流Δip及び直列抵抗Rsの値が決定できる。
Therefore, in this method, the values of the bias light generation current I p , the weak white light generation current Δi p and the series resistance R s of the measured solar cell at the operating point can be determined.

【0017】[0017]

【発明が解決しようとする課題】しかしながら、上記従
来の方法による微弱白色光生成電流Δipと直列抵抗Rs
評価は図4に示す等価回路のモデルが成立する場合、即
ち光生成電流Δipや直列抵抗Rsを始めとして、Aファク
ターを決める、n値、飽和電流値Is、並列抵抗Rsh など
が受光面内のいかなる部位においても一定の値を示すの
が前提条件であり、それが保証できる、例えば均一性に
優れた良質の単結晶シリコンで製造された太陽電池に限
られていた。
However, the evaluation of the faint white light generation current Δi p and the series resistance R s by the above conventional method is performed when the model of the equivalent circuit shown in FIG. 4 is satisfied, that is, the light generation current Δi p. And the series resistance R s , the A factor that determines the A factor, the n value, the saturation current value I s , the parallel resistance R sh, etc. show a constant value in any part of the light receiving surface. However, it was limited to solar cells made of high-quality single crystal silicon having excellent uniformity.

【0018】一方、結晶粒界、結晶欠陥などが多数混在
する多結晶シリコンで製造された太陽電池の受光面内で
は、少数キャリア寿命やpn接合深さが場所により不均
一であり、それに伴って光生成電流Δipの大きさや前記
n値、飽和電流Is、並列抵抗Rsh 、直列抵抗Rsなどが場
所的に不均一な値を示すと考えられ、上述の等価回路の
モデルが崩れるために上記(6)式の解析を適用して
も、微弱白色光生成電流Δipや直列抵抗Rsなどは不正確
な値しか得られず、厳密性や客観性に乏しく適用範囲が
狭いという重大な欠点があった。
On the other hand, the minority carrier lifetime and the pn junction depth are not uniform depending on the location in the light receiving surface of the solar cell made of polycrystalline silicon in which a large number of crystal grain boundaries, crystal defects and the like are mixed. It is considered that the magnitude of the photogenerated current Δi p, the n value, the saturation current I s , the parallel resistance R sh , the series resistance R s, etc. show spatially non-uniform values, and the model of the above equivalent circuit collapses. Even if the analysis of the above equation (6) is applied to, weak white light generation current Δi p , series resistance R s, etc. are only inaccurate values, and the scope is narrow because of lack of rigor and objectivity. There was a flaw.

【0019】[0019]

【課題を解決するための手段】以上の課題を解決するた
め、この発明では直流バイアス光と光軸、ビーム径、ス
ペクトル分布が一致する交流微弱白色光を被測定太陽電
池の受光面の特定部位に照射して直流電流−直流電圧
(I−V)特性と交流微弱白色光電流−直流電圧(Δi
−V)特性を測定し、
In order to solve the above-mentioned problems, according to the present invention, a DC bias light and an AC weak white light whose optical axis, beam diameter, and spectral distribution coincide with each other are provided in a specific portion of a light receiving surface of a measured solar cell. And the direct current-DC voltage (IV) characteristic and AC weak white light current-DC voltage (Δi
-V) Measure the characteristics,

【0020】[0020]

【式7】[Formula 7]

【0021】で表す解析式を適用して上記特定部位に対
する微弱白色光生成電流ΔiP と直列抵抗RS の値を求
める操作を上記被測定太陽電池の受光面の全面に行い、
これより得られた値を統計処理して上記被測定太陽電池
の受光面内の微弱白色光生成電流ΔiP と直列抵抗RS
の分散分布を求めるようにした太陽電池の評価方法を提
案するものである。
An operation for obtaining the values of the faint white light generation current Δi P and the series resistance R S for the specific portion by applying the analytical expression represented by is performed on the entire light receiving surface of the measured solar cell,
The value obtained from this is statistically processed to obtain a weak white light generation current Δi P and a series resistance R S in the light receiving surface of the measured solar cell.
It proposes an evaluation method for a solar cell which is designed to obtain the dispersion distribution of.

【0022】なお、この発明では図1に示すような、例
えば直流バイアス光(エアマス1.5,100mW/cm2)1と光軸
2、ビーム径3、スペクトル分布が一致する交流微弱白
色光(エアマス1.5,1mW/cm2 以下) 4をハーフミラー5
で合成し、ステージ6に搭載した被測定太陽電池7の受
光面の特定部位8を選択的に照射する光学系、及び被測
定太陽電池7の特定部位8における直流電流−直流電圧
特性11と交流微弱白色光電流−直流電圧特性12が測定で
きる電子計測器9とデータ処理用のコンピュータ10を配
備した測定系を使用できる。
In the present invention, for example, as shown in FIG. 1, for example, a DC bias light (air mass 1.5, 100 mW / cm 2 ) 1 and an AC weak white light (air mass 1.5, air beam 2, beam diameter 3, spectral distribution coincident with each other) (air mass 1.5 , 1mW / cm 2 or less) 4 is a half mirror 5
Optical system for selectively irradiating the specific portion 8 of the light receiving surface of the measured solar cell 7 mounted on the stage 6 and the direct current-direct current voltage characteristic 11 and the alternating current in the specific portion 8 of the measured solar cell 7 A measurement system provided with an electronic measuring instrument 9 capable of measuring the weak white light current-DC voltage characteristic 12 and a computer 10 for data processing can be used.

【0023】ここで、コンピュータ10はステージ6の位
置を移動する毎に直流電流−直流電圧特性11と交流微弱
白色光電流−直流電圧特性12の新しいデータを取り込み
保存しながら、前記(6)式に示す解析式を適用して交
流微弱白色光生成電流Δipや直列抵抗Rsなどの算出に用
いる。
Here, the computer 10 fetches and stores new data of the DC current-DC voltage characteristic 11 and the AC weak white light current-DC voltage characteristic 12 each time the position of the stage 6 is moved, and the equation (6) is stored. The analytical expression shown in is applied and used to calculate the AC weak white light generation current Δi p and series resistance R s .

【0024】[0024]

【作用】この発明によれば、バイアス光1と交流微弱白
色光4の照射により被測定太陽電池7と特定部位8で直
流光生成電流と交流微弱白色光生成電流が発生するが、
これらの光生成電流の一部は光照射のない部位にも流
れ、その配分の結果が直流電流−直流電圧特性11と交流
微弱白色光電流−直流電圧特性12のデータに現れる。
According to the present invention, the irradiation of the bias light 1 and the AC weak white light 4 generates the DC light generation current and the AC weak white light generation current in the measured solar cell 7 and the specific portion 8.
A part of these photo-generated currents also flows to the part without light irradiation, and the distribution result appears in the data of DC current-DC voltage characteristic 11 and AC weak white light current-DC voltage characteristic 12.

【0025】即ち、光生成電流の源は特定部位8に限ら
れているが、その電気的負荷は特定部位8を含む被測定
太陽電池7の全域に及ぶために、直流電流−直流電圧特
性11と交流微弱白色光電流−直流電圧特性12はAファク
タ、交流微弱白色光生成電流Δip、及び直列抵抗Rsにつ
いてそれぞれ共通な値を有する。
That is, the source of the photo-generated current is limited to the specific portion 8, but since the electric load thereof extends over the entire area of the measured solar cell 7 including the specific portion 8, the direct current-direct current voltage characteristic 11 And the AC weak white light current-DC voltage characteristic 12 have common values for the A factor, AC weak white light generation current Δi p , and series resistance R s .

【0026】そのため、上記(6)式の適用が可能とな
り、特定部位8に付随した交流微弱白色光生成電流Δip
と直列抵抗Rsの正確な値が分かる。
Therefore, the above equation (6) can be applied, and the AC weak white light generation current Δi p associated with the specific portion 8 is obtained.
And the exact value of the series resistance R s is known.

【0027】したがって、このプロセスを被測定太陽電
池7の受光面の全てに適用して、それぞれの部位に対応
した交流微弱白色光生成電流Δipや直列抵抗Rsを求め、
これらの値をヒストグラムなどの統計処理を施すことに
よって被測定太陽電池7の受光面についての交流微弱白
色光生成電流Δipの分散分布13と直列抵抗Rsの分散分布
14が求められ、これより被測定太陽電池7の定量的かつ
客観的な評価が可能となる。
Therefore, this process is applied to all the light-receiving surfaces of the measured solar cell 7 to find the AC weak white light generation current Δi p and the series resistance R s corresponding to the respective parts,
By subjecting these values to statistical processing such as a histogram, a dispersion distribution 13 of the AC weak white light generation current Δi p and a dispersion distribution of the series resistance R s on the light receiving surface of the measured solar cell 7 are obtained.
14 is obtained, which enables quantitative and objective evaluation of the measured solar cell 7.

【0028】[0028]

【実施例】以下、この発明を第2図に示す実施例に基づ
いて更に詳細に説明すると、直流点灯のキセノンランプ
20からの光をエアマス1.5 のフィルタ21を経由してハー
フミラー22で分け、そのひとつをアパチャー23、ハーフ
ミラー5を経由させて直流白色光1(100mW/cm2) とす
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in more detail with reference to the embodiment shown in FIG.
The light from 20 is split by a half mirror 22 via a filter 21 of air mass 1.5, and one of them is passed through an aperture 23 and a half mirror 5 to be a DC white light 1 (100 mW / cm 2 ).

【0029】他のひとつは減光器24、ミラー25、機械的
チョッパー26、アパチャー27、ミラー28、ハーフミラー
5を経由させて交流微弱白色光4(1mW/cm2) とする。
The other one is made into AC weak white light 4 (1 mW / cm 2 ) through the dimmer 24, mirror 25, mechanical chopper 26, aperture 27, mirror 28 and half mirror 5.

【0030】両光ともに、ビーム径3( 例えば、数十μ
m)、光軸2を合わせた上、可動ステージ6の上に固定
した被測定太陽電池7の任意の測定部位8に照射する。
For both lights, the beam diameter is 3 (for example, several tens μ
m), irradiating an arbitrary measurement site 8 of the measured solar cell 7 fixed on the movable stage 6 with the optical axis 2 aligned.

【0031】このような光照射の下で被測定太陽電池7
の測定部位8において、直流電流−直流電圧特性11とほ
ぼ等しいスペクトルを有する交流微弱白色電流−直流電
圧特性12が得られるが、その測定系は次の通りである。
Under such light irradiation, the measured solar cell 7
The AC weak white current-DC voltage characteristic 12 having a spectrum substantially equal to the DC current-DC voltage characteristic 11 is obtained at the measurement site 8 of 1., but the measurement system is as follows.

【0032】即ち、プログラマブル電源30で発する直流
電圧を入力インピーダンスが無限少の電流電圧変換回路
31経由で被測定太陽電池7の交流、及び直流短絡電流を
適当な大きさの交流、及び直流電圧に変換した後、交流
微弱白色生成電流信号測定用のロックインアンプ32と直
流電流信号測定用の直流電圧計33に接続し、コンピュー
タ10は自動計測とデータ処理のために用いる。
That is, a DC voltage generated by the programmable power supply 30 is converted into a current-voltage conversion circuit having an infinite input impedance.
After converting the AC and DC short-circuit currents of the solar cell 7 to be measured to an AC and DC voltage of appropriate magnitude via 31, a lock-in amplifier 32 for measuring AC weak white generated current signal and DC current signal measurement The computer 10 is used for automatic measurement and data processing.

【0033】以上の測定系では、プログラマブル電源30
で直流電圧の増加率を設定した後、ロックインアンプ32
と直流電圧計33の指示値を読み込み、保存するサイクル
を開放電圧に至るまで繰り返すようにコンピュータ10の
プログラムが組まれており、これにより直流電流ー直流
電圧特性11と交流微弱白色光電流−直流電圧特性12が得
られ、更にこれより上記(6)式の適用により動作点で
の微弱白色光生成電流Δipと直列抵抗Rsが求まる。
In the above measurement system, the programmable power supply 30
After setting the increase rate of the DC voltage with, lock-in amplifier 32
The program of the computer 10 is built to repeat the cycle of reading and storing the indicated value of the DC voltmeter 33 until the open voltage is reached, which allows the DC current-DC voltage characteristic 11 and the AC weak white light current-DC voltage. The characteristic 12 is obtained, and from this, the weak white light generation current Δi p and the series resistance R s at the operating point are obtained by applying the above equation (6).

【0034】また、可動ステージ6の操作によって被測
定太陽電池7の別の測定部位8における微弱白色光生成
電流Δipと直列抵抗Rsが求まり、こうして取得したデー
タを基にしてΔipのヒストグラム13、及びRsのヒストグ
ラム14を作成してそれぞれの受光面での分散分布を知る
ことができる。
Further, by operating the movable stage 6, a weak white light generation current Δi p and a series resistance R s at another measurement site 8 of the measured solar cell 7 are obtained, and a histogram of Δi p is obtained based on the data thus obtained. 13 and the histogram 14 of R s can be created to know the dispersion distribution on each light receiving surface.

【0035】[0035]

【発明の効果】以上要するに、この発明によれば従来不
可能であった被測定太陽電池の受光面内における微弱白
色光生成電流Δipや直列抵抗Rsの分散分布が分かり、そ
の分散度合いから被測定太陽電池の品質を的確に評価で
きる。
In summary, according to the present invention, the dispersion distribution of the weak white light generation current Δi p and the series resistance R s in the light receiving surface of the measured solar cell, which has been impossible in the past, can be known, and The quality of the measured solar cell can be accurately evaluated.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の概念図FIG. 1 is a conceptual diagram of the present invention.

【図2】この発明の一実施例を示す測定系統図FIG. 2 is a measurement system diagram showing an embodiment of the present invention.

【図3】同上の測定系統で得られた統計処理図[Fig. 3] Statistical processing diagram obtained by the above measurement system

【図4】太陽電池の等価回路FIG. 4 Equivalent circuit of solar cell

【符号の説明】[Explanation of symbols]

1 直流バイアス光 2 光軸 3 ビーム径 4 交流微弱白色光 5 ハーフミラー 6 ステージ 7 被測定太陽電池 8 測定部位 9 電子計測器 10 コンピュータ 11 直流電流−直流電圧特性 12 交流微弱白色光電流−直流電圧特性 13 被測定太陽電池の交流微弱白色光生成電流Δipの分
散分布曲線 14 被測定太陽電池の直列抵抗Rsの分散分布曲線 20 直流点灯のキセノンランプ 21 フィルタ 22 ハーフミラー 23 アパチャー 24 減光器 25 ミラー 26 機械的チョッパー 27 アパチャー 28 ミラー 30 プログラマブル電源 31 電流電圧変換回路 32 ロックインアンプ 33 直流電圧計
1 DC bias light 2 Optical axis 3 Beam diameter 4 AC weak white light 5 Half mirror 6 Stage 7 Solar cell to be measured 8 Measurement site 9 Electronic measuring instrument 10 Computer 11 DC current-DC voltage characteristic 12 AC weak white light current-DC voltage Characteristic 13 Dispersion distribution curve of AC weak white light generation current Δi p of measured solar cell 14 Dispersion distribution curve of series resistance R s of measured solar cell 20 Xenon lamp with DC lighting 21 Filter 22 Half mirror 23 Aperture 24 Dimmer 25 Mirror 26 Mechanical chopper 27 Aperture 28 Mirror 30 Programmable power supply 31 Current-voltage conversion circuit 32 Lock-in amplifier 33 DC voltmeter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 直流バイアス光と光軸、ビーム径、スペ
クトル分布が一致する交流微弱白色光を被測定太陽電池
の受光面の特定部位に照射して直流電流−直流電圧(I
−V)特性と交流微弱白色光電流−直流電圧(Δi−
V)特性を測定し、 で表す解析式を適用して上記特定部位に対する微弱白色
光生成電流Δiと直列抵抗Rの値を求める操作を上
記被測定太陽電池の受光面の全面に行い、これより得ら
れた値を統計処理して上記被測定太陽電池の受光面内の
微弱白色光生成電流Δiと直列抵抗Rの分散分布を
求めるようにしたことを特徴とする太陽電池の評価方
法。
1. A direct current-direct current voltage (I)
-V) characteristics and AC weak white light current-DC voltage (Δi-
V) Measure the characteristics, The operation of obtaining the values of the faint white light generation current Δi p and the series resistance R s for the specific portion by applying the analytical formula expressed by is performed on the entire light receiving surface of the measured solar cell, and the value obtained from this is calculated. A method of evaluating a solar cell, characterized in that a statistical distribution is obtained to obtain a dispersion distribution of a weak white light generation current Δi p and a series resistance R s in the light receiving surface of the measured solar cell.
JP4357570A 1992-12-24 1992-12-24 Solar cell evaluation method Expired - Lifetime JPH0795091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4357570A JPH0795091B2 (en) 1992-12-24 1992-12-24 Solar cell evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4357570A JPH0795091B2 (en) 1992-12-24 1992-12-24 Solar cell evaluation method

Publications (2)

Publication Number Publication Date
JPH06194430A JPH06194430A (en) 1994-07-15
JPH0795091B2 true JPH0795091B2 (en) 1995-10-11

Family

ID=18454803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4357570A Expired - Lifetime JPH0795091B2 (en) 1992-12-24 1992-12-24 Solar cell evaluation method

Country Status (1)

Country Link
JP (1) JPH0795091B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010079059A (en) * 2001-06-11 2001-08-22 김태엽 Parameter estimation algorithm and measurement equipment of solar cell
JP4765052B2 (en) * 2002-12-19 2011-09-07 独立行政法人産業技術総合研究所 Integrated thin film solar cell evaluation apparatus and evaluation method
JP5892597B2 (en) * 2012-02-24 2016-03-23 株式会社Screenホールディングス Inspection apparatus and inspection method
CN109039284A (en) * 2018-09-26 2018-12-18 武汉爱疆科技有限公司 A kind of solar photovoltaic assembly IV characteristic test device

Also Published As

Publication number Publication date
JPH06194430A (en) 1994-07-15

Similar Documents

Publication Publication Date Title
Dittrich Materials concepts for solar cells
Shen et al. Spatially resolved photoluminescence imaging of essential silicon solar cell parameters and comparison with CELLO measurements
CN104218890B (en) I-v characteristic measuring apparatus and i-v characteristic measuring method for solar cell
JP4944231B2 (en) Solar cell evaluation device and light source evaluation device used therefor
US4467438A (en) Method and apparatus for determining spectral response and spectral response mismatch between photovoltaic devices
Phillips et al. High speed, intermediate resolution, large area laser beam induced current imaging and laser scribing system for photovoltaic devices and modules
Adelhelm et al. Performance and parameter analysis of tandem solar cells using measurements at multiple spectral conditions
US9124214B2 (en) Method for spatially determining the series resistance of a semiconductor structure
Guvench Solar simulator and IV measurement system for large area solar cell testing
CN102338847B (en) Device and method for measuring solar battery performance curves
JPH0795091B2 (en) Solar cell evaluation method
Schüler et al. Limitations in the accuracy of photoconductance-based lifetime measurements
Hartman et al. Spectral response measurements for solar cells
CN105527483A (en) Transient photovoltage test system capable of realizing electro-optic independent modulation
Hamadani et al. Versatile light-emitting-diode-based spectral response measurement system for photovoltaic device characterization
CN101871992A (en) Alternating current measuring device for quantum efficiency of solar battery and using method thereof
Kumar et al. GaAs/Ge solar cell AC parameters under illumination
Ramspeck et al. Correlation between spatially resolved solar cell efficiency and carrier lifetime of multicrystalline silicon
Dumbrell et al. Extracting surface saturation current density from lifetime measurements of samples with metallized surfaces
Bouřa Characterization of a small amorphous photovoltaic panel and derivation of its SPICE model
Zavorotnyi et al. The laboratory tester of solar cells with dynamic reconfigutration of measuring system
Usachev et al. Estimation of the Level of Uncertainty when Reproducing a Unit of Spectral Radiance Based on Temperature Ribbon and Halogen Lamps
RU2143704C1 (en) Process of inspection of integrated circuits for defects
Fafard et al. The “fill-factor bias measurement” for advanced triple-junction solar cell characterization and quality control
Scuto et al. Data on the design optimization, indoor characterization and outdoor testing of GaAs/Bifacial Si heterojunction four-terminal photovoltaic systems

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term