JPH0794903A - Nrd guide curve circuit - Google Patents

Nrd guide curve circuit

Info

Publication number
JPH0794903A
JPH0794903A JP5254711A JP25471193A JPH0794903A JP H0794903 A JPH0794903 A JP H0794903A JP 5254711 A JP5254711 A JP 5254711A JP 25471193 A JP25471193 A JP 25471193A JP H0794903 A JPH0794903 A JP H0794903A
Authority
JP
Japan
Prior art keywords
bend
nrd guide
divided
angle
lower conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5254711A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Hamabe
剛志 浜部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5254711A priority Critical patent/JPH0794903A/en
Publication of JPH0794903A publication Critical patent/JPH0794903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguides (AREA)

Abstract

PURPOSE:To reduce the size of a circuit and to improve the degree of freedom for the connection of lines in the case of wiring a continuous curved line by means of an NR guide. CONSTITUTION:In an NRD guide curve circuit constituted of upper and lower conductor plates and a dielectric line material for transmitting a signal arranged between the upper and lower conductor plates and having an NRD guide setting up an interval between the upper and lower conductor plate to a value less than the half wavelength of frequency to be used for the upper and lower conductor paltes on the outside of the dielectric line material as a principle, the radius of curvature of a dielectric line constituting a bend with a bend angle ntheta (n) is a positive integer and theta is an angle) is Rntheta and a bend with the radius Rntheta of curvature is divided into (n) divided small bend parts 101 with an angle thetaand the (n) bend parts 101 are continuously connected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は,NRDガイド(No
n Radiative Dielectric Wa
ve Guide:非放射性誘電体線路)を用いたNR
Dガイド曲線回路に関するものである。
BACKGROUND OF THE INVENTION This invention relates to an NRD guide (No.
n Radiative Dielectric Wa
ve Guide: Non-radiative dielectric line) NR
The present invention relates to a D guide curve circuit.

【0002】[0002]

【従来の技術】一般に,誘電体を用いた高周波用直線状
線路は,周波数が高くなるほど低損失になり,例えば,
ミリ波等では非常に低損失になることが知られている。
ところが,線路がベンド(曲がり)を有する場合には,
直線部を伝送されてきた信号が線路外に放射され,誘電
体線路ベンドを経由して伝送される信号電力が極めてわ
ずかになるという欠点があった。
2. Description of the Related Art Generally, a high-frequency linear line using a dielectric has a lower loss as the frequency becomes higher.
It is known that the loss is extremely low in millimeter waves and the like.
However, if the track has bends,
The signal transmitted through the straight line is radiated to the outside of the line, and the signal power transmitted via the dielectric line bend is extremely small.

【0003】このため,これを解決するものとして,図
9に示すように,上導体板901と下導体板902との
間に断面が高さa×幅bの信号伝送用の誘電体線路材9
03を配置してNRDガイドを形成し,かつ,上導体板
901と下導体板902との間隔(すなわち,高さa)
を誘電体線路材903外の上導体板901と下導体板9
02間部分における使用周波数の1/2波長以下とする
ことにより,一定条件下で無損失なベンドを得ることが
できるNRDガイド曲線回路が提供されている。
Therefore, as a solution to this, as shown in FIG. 9, a dielectric line material for signal transmission having a cross section of height a × width b between an upper conductor plate 901 and a lower conductor plate 902. 9
03 is arranged to form the NRD guide, and the distance between the upper conductor plate 901 and the lower conductor plate 902 (that is, the height a).
The upper conductor plate 901 and the lower conductor plate 9 outside the dielectric line member 903.
There is provided an NRD guide curve circuit capable of obtaining a lossless bend under a certain condition by setting the frequency to be 1/2 wavelength or less of the used frequency in the section 02.

【0004】図9に示したNRDガイド曲線回路におい
て,誘電体線路材の材質による比誘電率と線路断面寸法
(高さa×幅b)およびベンド角度θ0 を決めると,下
記表1に示すようにそれぞれのベンド角度によりそれぞ
れベンド半径が離散化されるものの,ベンドによる損失
のない無損失ベンドが実現できる。なお,数1に無損失
ベンドを構成するベンド角毎の曲率半径Rの算出式を示
す。
In the NRD guide curve circuit shown in FIG. 9, the relative permittivity depending on the material of the dielectric line material, the line cross-sectional dimension (height a × width b) and the bend angle θ 0 are determined and shown in Table 1 below. Although the bend radii are discretized according to the bend angles, a lossless bend with no loss due to the bend can be realized. It should be noted that Equation 1 shows the formula for calculating the radius of curvature R for each bend angle that constitutes the lossless bend.

【0005】[0005]

【表1】 [Table 1]

【0006】[0006]

【数1】 [Equation 1]

【0007】図10および図11は,従来におけるNR
Dガイド曲線回路のベント例を示し,図10(a)は9
0°ベンド,図10(b)は180°ベンドをそれぞれ
示しており,1001はベンド部分,1002は誘電体
直線線路部である。また,図11(a)は90°ベンド
を2個使用して180°ベンドを構成した例,図11
(b)は90°ベンドを2個使用して「S字」回路を構
成した例である。なお,説明を簡単にするためにを上下
導体板の図示を省略する。
FIGS. 10 and 11 show the conventional NR.
An example of venting of a D-guide curve circuit is shown in FIG.
A 0 ° bend and a 180 ° bend are shown in FIG. 10B. Reference numeral 1001 is a bend portion, and 1002 is a dielectric straight line portion. Further, FIG. 11A shows an example in which two 90 ° bends are used to form a 180 ° bend, and FIG.
(B) is an example of configuring an "S-shaped" circuit by using two 90 ° bends. The upper and lower conductor plates are not shown for simplicity of description.

【0008】[0008]

【発明が解決しようとする課題】しかしながら,このよ
うな従来のNRDガイド曲線回路にあっては,上記表1
に示すように,それぞれのベンド角度で任意の曲率半径
をとることができないため,NRDガイドを配線する場
合における配線の自由度が著しく悪いという問題点があ
った。
However, in such a conventional NRD guide curve circuit, the above-mentioned Table 1 is used.
As shown in FIG. 3, since it is not possible to take an arbitrary radius of curvature at each bend angle, there is a problem that the degree of freedom of wiring when wiring the NRD guide is extremely poor.

【0009】例えば,上記従来の考え方によれば,「コ
の字」や「S字」型にNRDガイドを配線する場合,
「コの字」型の場合は,図10(b)のように曲率半径
の小さい180°ベンドを用いる方法と,図11(a)
のような180°ベンドより曲率半径の大きい90°ベ
ンドを2個並べる方法との2つの自由度があるが,「S
字」型の場合には,90°ベンドを2個並べて「S字」
型に接続する方法しかなく,また,全体の回路構成規模
が大きくなるという問題点と共に,毎回,必要なベンド
角度の線路を設計しなければならず,さらに,その曲率
半径はベンド角度によって変わるため,NRDガイドに
よる複合回路全体の入出力座標を決めて線路結線を設計
する場合に配線の設計の自由度が小さいという問題点が
あった。
For example, according to the above conventional concept, when the NRD guide is wired in a "U" shape or an "S" shape,
In the case of the “U-shaped” type, a method of using a 180 ° bend with a small radius of curvature as shown in FIG. 10B, and FIG.
There are two degrees of freedom, such as the method of arranging two 90 ° bends having a larger radius of curvature than a 180 ° bend like
In the case of "shape" type, two 90 ° bends are lined up to form "S shape"
Since there is only a method of connecting to the mold and the problem that the whole circuit configuration scale becomes large, a line with a necessary bend angle must be designed every time, and the radius of curvature changes depending on the bend angle. However, when designing the line connection by determining the input / output coordinates of the entire composite circuit by the NRD guide, there is a problem that the degree of freedom in wiring design is small.

【0010】この発明は,上記に鑑みてなされたもので
あって,NRDガイドを用いた任意のベンド角度で設計
された一定曲率半径のベンドをn分割し,そのn個の分
割された小ベンド全部を使用して一筆書の連続した1本
の曲線線路配線を行うことにより,配線の設計の自由度
を拡大することを目的としている。
The present invention has been made in view of the above, and divides a bend having a constant radius of curvature designed by an NRD guide with an arbitrary bend angle into n and dividing the bend into n small bends. The purpose is to expand the degree of freedom in wiring design by using one line to make one continuous curved line wiring.

【0011】[0011]

【課題を解決するための手段】この発明は,上記の目的
を達成するために,上下導体板の間に信号伝送用の誘電
体線路材を配置してNRDガイドを形成し,かつ,前記
上下導体板の間隔を前記誘電体線路材外の上下導体板間
部分での使用周波数の半波長以下に設定したNRDガイ
ド曲線回路において,前記NRDガイドは,曲げ角度n
θ(nは正整数,θは角度)のベンドを構成する誘電体
線路材の曲率半径をRnθとし,1つのRnθの曲率の
ベンドをn個の角度θの分割小ベンド部に分割し,前記
n個に分割された分割小ベンド部を任意に連続的に接続
したNRDガイド曲線回路を提供するものである。
In order to achieve the above object, the present invention forms an NRD guide by arranging a dielectric transmission line material for signal transmission between upper and lower conductor plates, and further comprises the upper and lower conductor plates. In the NRD guide curve circuit in which the distance between the NRD guides is set to be equal to or less than a half wavelength of the frequency used between the upper and lower conductor plates outside the dielectric line material, the NRD guide has a bending angle n.
Let Rnθ be the radius of curvature of the dielectric line material that constitutes a bend of θ (n is a positive integer, θ is an angle), and divide one bend of curvature of Rnθ into n number of divided small bends of angle θ. The present invention provides an NRD guide curve circuit in which divided small bend portions divided into n pieces are arbitrarily and continuously connected.

【0012】また,前記NRDガイドは,前記分割小ベ
ンド部と分割小ベンド部との間に,前記分割小ベンド部
と同一線路断面形状を有する長さP・λg/2(λgは
線路内波長,Pは正整数)の直線の誘電体線路材を挿入
して直線部分を構成するものである。
The NRD guide has a length P · λg / 2 (where λg is an in-line wavelength) between the divided small bend portions and the divided small bend portions and having the same line sectional shape as the divided small bend portions. , P is a positive integer) and a linear dielectric line member is inserted to form a linear portion.

【0013】[0013]

【作用】この発明に係るNRDガイド曲線回路は,上下
導体板の間に信号伝送用の誘電体線路材を配置してNR
Dガイドを形成し,かつ,上下導体板の間隔を誘電体線
路材外の上下導体板間部分での使用周波数の半波長以下
に設定し,NRDガイドの曲げ角度nθのベンドを構成
する誘電体線路材の曲率半径をRnθとし,1つのRn
θの曲率のベンドをn個の角度θの分割小ベンド部に分
割し,n個に分割された分割小ベンド部を任意に連続的
に接続することにより,一筆書の連続した1本の曲線線
路配線を行う。
In the NRD guide curve circuit according to the present invention, the dielectric line material for signal transmission is arranged between the upper and lower conductor plates to reduce the NR.
A dielectric that forms a D guide, and sets the interval between the upper and lower conductor plates to be less than or equal to a half wavelength of the frequency used between the upper and lower conductor plates outside the dielectric line material to form a bend with a bending angle nθ of the NRD guide. The radius of curvature of the line material is Rnθ, and one Rn
The bend of the curvature of θ is divided into n divided small bends with an angle of θ, and the divided small bends divided into n are continuously connected arbitrarily to form a continuous curve of one stroke. Conduct track wiring.

【0014】[0014]

【実施例】以下,この発明に係る実施例を添付図面に基
づいて説明する。図1は,この発明によるNRDガイド
曲線回路の主要構成を示す説明図であり,図1(a)
は,「S字」型直結の例,図1(b)は,「S字」間に
直線部を接続した例,図1(c)は「コの字」型の例を
それぞれ示している。なお,この場合,上下に配置され
る導体板は省略してある。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is an explanatory diagram showing a main configuration of an NRD guide curve circuit according to the present invention, and FIG.
Shows an example of "S-shaped" type direct connection, Fig. 1 (b) shows an example of connecting a straight line portion between "S-shaped", and Fig. 1 (c) shows an example of "U-shaped" type. . In this case, the conductor plates arranged above and below are omitted.

【0015】図1(a)は,ベンド角180°の無損失
ベンドを構成する曲率半径R180 を用意し,これを2分
割してベンド角90°の2つのベンド状誘電体線路部1
01を作成し,この2つのベンド状誘電体線路部101
を「S字」状に再接続し,該S字の両端に誘電体直線線
路部102をそれぞれ接続した構成である。
In FIG. 1A, a radius of curvature R 180 which constitutes a lossless bend having a bend angle of 180 ° is prepared, and this is divided into two to form two bend-shaped dielectric line portions 1 having a bend angle of 90 °.
01 is made, and these two bend-shaped dielectric line parts 101 are formed.
Is re-connected in an "S" shape, and the dielectric straight line portions 102 are connected to both ends of the S shape, respectively.

【0016】また,図1(b)は,上記図1(a)の
「S字」状を構成するベンド状誘電体線路部101間
に,一定長lの直線誘電体線路部103を挿入して,
「S字」状に再接続した構成である。さらに,図1
(c)は上記図1(b)と同様の手順で,「コの字」型
に再接続した構成である。
Further, FIG. 1B shows that a linear dielectric line portion 103 having a constant length l is inserted between the bend-shaped dielectric line portions 101 forming the "S" shape of FIG. 1A. hand,
It is a configuration that is reconnected in an "S" shape. Furthermore, FIG.
(C) shows a configuration in which the "U-shaped" type is reconnected by the same procedure as in FIG. 1 (b).

【0017】次に,以上のように構成されたNRDガイ
ド曲線回路の動作について説明する。なお,図2は,1
80°ベンドで設計したベンドを90°ずつ分割した場
合における反射特性(b),通過特性(c),およびそ
の回路図(a)を示す説明図である。NRDガイドにお
いては,線路材質(比誘電率),線路断面形状(高さお
よび幅),設計周波数f0 ,ベンド角度θ0 を決める
と,無損失ベンド半径は離散化されて決定される。この
ため,例えば,図2(b),(c)に示す反射特性およ
び通過特性のように,著しく通過損失や反射特性が悪化
する。これはベンドのように線路の信号伝送方向に対し
て,線路断面あるいは線路の信号伝送方向に対する連続
構造が非対称となる部分では,主要モード(以下,LS
Mという)以外の不要モード(以下,LSEという)が
NRDガイドに誘起され,LSMとLSEの両モードが
干渉するためである。
Next, the operation of the NRD guide curve circuit configured as above will be described. In addition, in FIG.
It is explanatory drawing which shows the reflection characteristic (b), the passage characteristic (c), and its circuit diagram (a) at the time of dividing the bend designed by 80 degree bend into 90 degree units. In the NRD guide, when the line material (relative permittivity), line cross-sectional shape (height and width), design frequency f 0 , and bend angle θ 0 are determined, the lossless bend radius is discretized and determined. For this reason, for example, the passage loss and the reflection characteristic are significantly deteriorated like the reflection characteristic and the passage characteristic shown in FIGS. 2B and 2C. This is because the main mode (hereinafter referred to as LS) is present in a portion such as a bend where the line cross section or the continuous structure in the line signal transmission direction is asymmetric with respect to the line signal transmission direction.
This is because unnecessary modes other than M) (hereinafter referred to as LSE) are induced in the NRD guide, and both LSM and LSE modes interfere with each other.

【0018】したがって,180°ベンドを例にとって
説明すると,無損失ベンドは,ベンドの入口(0°の位
置)と出口(180°の位置)にて主要モードであるL
SMが保存されるように設計し,角度0°と角度180
°の間における位置に関しては場所によりLSMとLS
Eの存在比が変わるため,NRDガイドの180°ベン
ドを2分割した90°ベンドは,図2に示すようにベン
ド損失が大きな線路となる。
Therefore, taking a 180 ° bend as an example, the lossless bend is L, which is the main mode at the bend inlet (0 ° position) and outlet (180 ° position).
Designed to preserve SM, angle 0 ° and angle 180
LSM and LS depending on location for locations between °
Since the existence ratio of E changes, the 90 ° bend obtained by dividing the 180 ° bend of the NRD guide into two becomes a line with a large bend loss as shown in FIG.

【0019】これに対し,図1(a),(b)に示すよ
うに,180°ベンドを2分割したものを「S字」状に
再接続する場合,図1(a)では,入口(0°の位置)
から入った信号波は,90°位置のLSMとLSEの存
在比および位相情報をもったままの状態で次の90°ベ
ンド分まで連続的に進むため,結果的に180°ベンド
と同等の経路を信号波が通ることになり,180°ベン
ドと同等の無損失ベンド特性となる。
On the other hand, as shown in FIGS. 1 (a) and 1 (b), when the 180 ° bend is divided into two parts and reconnected in an "S" shape, the inlet ( 0 ° position)
Since the signal wave that entered from the 90 ° position continuously advances to the next 90 ° bend for the 90 ° position with the existence ratio and phase information of the LSM and LSE at the 90 ° position, the result is a path equivalent to the 180 ° bend. As a result, the signal wave passes through, and the lossless bend characteristic is equivalent to the 180 ° bend.

【0020】また,図1(b)では,無損失180°ベ
ンドで設計した一定曲率半径R180のベンドを2分割
し,その2つの分割小ベンド(ベンド状誘電体線路部1
01)間に,誘電体線路断面形状がベンド部と同一で,
該誘電体の直線線路の線路内波長λgに対して, l=P・λg/2 (Pは整数) となる直線誘電体線路部103を挿入させ,「S字」状
に再接続する。これは曲率半径R180 の90°分割の分
割小ベンド(ベンド状誘電体線路部101)の0°から
90°位置に進んだ信号波を,LSMとLSEモードと
を混在したままの状態で,直線線路部での信号の半波長
の整数倍の線路に入れる。このため,誘電体線路部10
3の入出力では,モードおよび位相が共にほぼ保存され
た状態で,次の90°分割小ベンド(ベンド状誘電体線
路部101)に入るため,ほとんど,180°ベンドと
同様の入出力端子条件が得られ,ほぼ無損失な「S字」
状回路を構成することができる。
Also, in FIG. 1B, a bend having a constant radius of curvature R 180 designed with a lossless 180 ° bend is divided into two, and the two divided small bends (bend-shaped dielectric line portion 1).
01), the cross-sectional shape of the dielectric line is the same as the bend part,
For the in-line wavelength λg of the dielectric linear line, the linear dielectric line portion 103 with l = P · λg / 2 (P is an integer) is inserted and reconnected in an “S” shape. This is a state in which a signal wave that has advanced from a 0 ° position to a 90 ° position in a small bend (bend-shaped dielectric line portion 101) with a 90 ° radius of curvature R 180 remains mixed with the LSM and LSE modes. Put it in a line that is an integral multiple of half the wavelength of the signal in the straight line section. Therefore, the dielectric line section 10
In the input / output of No. 3, the next 90 ° split small bend (bend-shaped dielectric line portion 101) enters in a state in which both the mode and the phase are almost conserved, so almost the same input / output terminal condition as the 180 ° bend is applied. "S-shape" with almost no loss
The circuit can be configured.

【0021】なお,図3は,180°ベンドで設計した
ベンドを90°分割し,該分割部分に直線部を挿入して
「S字」状に接続した場合における反射特性(b),通
過特性(c),およびその回路図(a)を示す説明図で
ある。
FIG. 3 shows a reflection characteristic (b) and a transmission characteristic when a bend designed by 180 ° bend is divided into 90 ° and a straight line portion is inserted into the divided portion to connect in an “S” shape. It is explanatory drawing which shows (c) and its circuit diagram (a).

【0022】図4は,この発明に係る他のNRDガイド
曲線回路の主要構成を示す説明図である。図4(a)
は,270°無損失ベンドで設計した曲率半径R270
ベンド,図4(b)は,図3(a)の270°ベンドを
90°ずつ3分割して再構成した例を示し,上記実施例
と同様に,ほぼ無損失な「S字」状回路を構成してい
る。
FIG. 4 is an explanatory diagram showing the main structure of another NRD guide curve circuit according to the present invention. Figure 4 (a)
Is a bend with a radius of curvature R 270 designed with a 270 ° lossless bend, and FIG. 4B shows an example in which the 270 ° bend of FIG. Similar to the example, it forms an almost S-shaped circuit with no loss.

【0023】したがって,以上の実施例を一般化する
と,ベンド角nθ(nは整数)で設計した曲率半径Rn
θのベンドでは,該ベンドを角度nで等分割し,n個の
小ベンド(ベンド状誘電体線路部101)を全て使用
し,一筆書状に一本の曲線回路を構成することができ
る。
Therefore, generalizing the above embodiment, the radius of curvature Rn designed by the bend angle nθ (n is an integer)
In the bend of θ, the bend is equally divided at an angle n, and all the n small bends (bend-shaped dielectric line portion 101) are used, so that one curved circuit can be formed in one stroke.

【0024】ここで,上記において,角度分配が等分配
である理由について詳細に説明する。NRDガイドにお
いて,一定曲率半径Rで一定角度θでの入出力点におけ
る線路のモードが一致する条件は,上記したように連続
的にR,θを任意に選択することができない。したがっ
て,例えば,180°ベンドで入出力モードを,主要モ
ードLSM01にするためには,一定半径R180 で離散化
される。 例えば, R180-1 (Rの大きさ小) R180-2 (Rの大きさ中) R180-3 (Rの大きさ大)となり,一般に,108°ベ
ンドにおける無損失ベンドの条件式は次式で表される。 R180-n =2/Δβ・(n2 −x2 1/2 (Δβ,xは一定関数)
Now, the reason why the angle distribution is equal distribution will be described in detail. In the NRD guide, under the condition that the modes of the lines at the input and output points at the constant curvature radius R and the constant angle θ match, R and θ cannot be arbitrarily selected continuously as described above. Therefore, for example, in order to set the input / output mode at 180 ° bend to the main mode LSM 01 , the input / output mode is discretized at a constant radius R 180 . For example, R 180-1 (small size of R) R 180-2 (medium size of R) R 180-3 (large size of R). Generally, the conditional expression of lossless bend at 108 ° bend is It is expressed by the following equation. R 180-n = 2 / Δβ · (n 2 −x 2 ) 1/2 (Δβ and x are constant functions)

【0025】また,上記R180-3 (Rの大きさ大)を例
にとって説明する。なお,表1からわかるように〔R
180-4 〕のベンドは〔R45-1〕のベンド4個分に相当す
るが,R180-3 を4等分割しても,入出力でLSHモー
ドは保存されない。
Further, the above R 180-3 (large size of R) will be described as an example. As can be seen from Table 1, [R
The 180-4 ] bend corresponds to four [R 45-1 ] bends, but even if the R 180-3 is divided into four equal parts, the LSH mode is not preserved at the input / output.

【0026】図5は,モード状態の変化を示す説明図で
ある。この図5に示すように,inとoutおけるモー
ド状態がA(LSM01を想定)となるには,45°で分
配した場合, 0°→45°におけるモード状態は,A→B 45°→90°におけるモード状態は,B→C 90°→135°におけるモード状態は,C→B 135°→180°におけるモード状態は,B→A となり,連続的にモード状態が変化する。なお,無損失
ベンドとは,inとoutにおいてLSMモードにな
り,かつ,理論的にはベンド部の形状による損失が無い
ベンドを意味する(ただし,線路としての損失は当然存
在する)。
FIG. 5 is an explanatory diagram showing a change in mode state. As shown in FIG. 5, in order to make the mode state in and out be A (assuming LSM 01 ), when distributed at 45 °, the mode state at 0 ° → 45 ° is A → B 45 ° → 90 ° The mode state in B → C 90 ° → 135 ° is the mode state in C → B 135 ° → 180 °, and the mode state changes continuously. The lossless bend means a bend that is in LSM mode in and out, and theoretically has no loss due to the shape of the bend portion (however, the loss as a line naturally exists).

【0027】上記の如く,モード状態が連続的に全体と
して作用することにより,180°曲線において,A→
Aが実現する。なお,Aは純LSM01のみ,B,CはL
SM01以外の不要な雑多モードが一定比率で混在する,
ある状態を示している。
As described above, since the mode states continuously operate as a whole, in the 180 ° curve, A →
A is realized. A is pure LSM 01 only, B and C are L
Unnecessary miscellaneous modes other than SM 01 are mixed at a fixed ratio,
It shows a certain state.

【0028】なお,特定周波数で曲線路設計をする場合
には,ベンド断面での混成した幾つかのモード状態の中
の比率の大きいものを,線路伝送主モードであると考え
ると, P・λg’/2(Pは整数,λg’は線路内主モード波
長)の長さ毎に,その入出力部におけるモード状態およ
び位相が保存されるため,その部分での線路の主モード
の特定位相状態を保持した状態で連結することができ
る。すなわち,図6に示すように, 180°=45°×4 より, R45-1×4=R’180 =R180-4 であり,その各45°分ピースは,入出力がそれぞれL
SM01が主モード状態であるため,LSM01の線路内波
長λgに対し,P・λg/2により表される線路により
接続することができる。この場合,設計の容易さから,
ベンド断面での主モードが,LSMとなるように設計さ
れた最も考え易い例となる。
In the case of designing a curved path at a specific frequency, if one of the mixed mode states in the bend cross section having a large ratio is considered to be the line transmission main mode, P.λg Since the mode state and phase at the input / output section are saved for each length of '/ 2 (P is an integer, λg' is the main mode wavelength in the line), the specific phase state of the main mode of the line at that portion is preserved. Can be connected while holding. That is, as shown in FIG. 6, since 180 ° = 45 ° × 4, R 45-1 × 4 = R ′ 180 = R 180-4 , and each 45 ° piece has an input / output of L
Since SM 01 is in the main mode, it can be connected to the in-line wavelength λg of LSM 01 by the line represented by P · λg / 2. In this case, because of the ease of design,
The main mode at the bend cross section is the most conceivable example designed to be LSM.

【0029】しかしながら,R180-3 のように不適当な
Rを選択して等分すると,図5に示すように,A→B→
C→B→Aにモード状態が変化するため,B状態(LS
01のみが主ではない状態)で,LSMモードの波長を
λgとしてP・λg/2直線路を挿入すると,LSM01
モードの位相を保存しても,他モードは補償されないた
め,モード相互の干渉により著しく,その伝達特性が損
失することになる。この場合には,B,Cの位置では,
それぞれの主モードに相当するλgB,λgCを求め,
それらに対応したP・λg/2の直線を挿入する必要が
ある。したがって,つなぎ線路として直線線路を用いる
場合には,Rnθでn等分することが最も容易な方法で
あることがわかる。
However, if an unsuitable R such as R 180-3 is selected and divided into equal parts, as shown in FIG. 5, A → B →
Since the mode state changes from C to B to A, the B state (LS
In the case where only M 01 is not the main) and the wavelength of the LSM mode is set to λg and a P · λg / 2 straight path is inserted, LSM 01
Even if the phase of the mode is preserved, other modes are not compensated, and the transfer characteristics are significantly lost due to the mutual interference of the modes. In this case, at positions B and C,
Obtain λgB and λgC corresponding to each main mode,
It is necessary to insert a straight line of P · λg / 2 corresponding to them. Therefore, when a straight line is used as the connecting line, it is understood that dividing n by Rnθ is the easiest method.

【0030】また,同様に,直線線路を使用せずに接続
する方法として,図7,図8に示すような方法がある。
すなわち,図7に示す180°のベンドを10°,30
°,80°,60°に分割し,該任意分割したm個のピ
ースを分割した順に,図8に示す如く,連続的に,10
°→30°→80°→60°の順に接続することもでき
る。
Similarly, as a method of connecting without using a straight line, there is a method as shown in FIGS. 7 and 8.
That is, the 180 ° bend shown in FIG.
It is divided into °, 80 ° and 60 °, and the arbitrarily divided m pieces are sequentially divided into 10 pieces as shown in FIG.
It is also possible to connect in the order of ° → 30 ° → 80 ° → 60 °.

【0031】したがって,以上のNRDガイド曲線回路
において,ベンド角nθ(nは正整数,θは単位角度)
で無損失ベンドで設計された曲率半径Rnθのベンドを
角度でn等分割し,これらn個の小ベンドを全て使用
し,一筆書状に一本の曲線回路を構成する回路配線構造
としたため,従来における定曲率半径ベンドを各ベンド
角毎に設計して回路を配線接続する場合と比較して,極
めて小型に,しかも,使用するベンド角を指定すること
により配線の入出力位置を規定することができるので,
配線ルールを固定やデジタル化が実現し,複雑な複合N
RDガイドに対しても,全体の回路における各回路コン
ポーネント位置の規定がスムースとなり,配線設計効率
が向上する。
Therefore, in the above NRD guide curve circuit, the bend angle nθ (n is a positive integer, θ is a unit angle)
Since a bend with a radius of curvature Rnθ designed with a lossless bend is divided into n equal parts at an angle, and all of these n small bends are used, a circuit wiring structure that forms a single curved circuit in a single stroke is used. Compared to the case of designing a constant radius of curvature bend for each bend angle and connecting the circuit by wiring, it is extremely small and the input / output position of the wiring can be specified by designating the bend angle to be used. Because you can
Wiring rules can be fixed or digitized, and complex compound N
Also for the RD guide, the definition of the position of each circuit component in the entire circuit becomes smooth, and the wiring design efficiency is improved.

【0032】[0032]

【発明の効果】以上説明したように,この発明によるN
RDガイド曲線回路によれば,NRDガイドを用いた任
意のベンド角度で設計された一定曲率半径のベンドを,
n分割し,そのn個の分割された小ベンド全部を使用し
て一筆書の連続した1本の曲線線路配線を行うことによ
り,配線の設計の自由度を拡張することできる。この自
由度の向上によって,従来における定曲率半径ベンドを
各ベンド角毎に設計して回路を配線接続する場合と比較
して,極めて小型にでき,また,スペースを効率良く使
用できる。さらに,使用するベンド角を指定することに
より配線の入出力位置を規定することができるので,配
線ルールの固定やデジタル化が実現し,複雑な複合NR
Dガイドに対しても,全体の回路における各回路コンポ
ーネント位置の規定がスムースとなり,配線設計効率が
向上するという効果がある。
As described above, according to the present invention, N
According to the RD guide curve circuit, a bend with a constant radius of curvature designed with an arbitrary bend angle using an NRD guide is
It is possible to extend the degree of freedom in wiring design by dividing into n pieces and using all of the n divided small bends to form one continuous curved line wiring of one stroke. Due to this improvement in the degree of freedom, it is possible to make the size extremely small and use the space efficiently as compared with the conventional case where the constant radius of curvature bend is designed for each bend angle and the circuit is connected by wiring. Furthermore, by specifying the bend angle to be used, the input / output position of the wiring can be defined, so that the wiring rule can be fixed and digitized, and the complex composite NR
Also for the D guide, the definition of the position of each circuit component in the entire circuit is smooth, and the wiring design efficiency is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係るNRDガイド曲線回路の主要構
成を示す説明図である。
FIG. 1 is an explanatory diagram showing a main configuration of an NRD guide curve circuit according to the present invention.

【図2】この発明に係る180°ベンドで設計したベン
ドを90°分割した場合における反射特性(b),通過
特性(c),およびその回路図(a)を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a reflection characteristic (b), a passage characteristic (c), and a circuit diagram (a) thereof when a bend designed by a 180 ° bend according to the present invention is divided into 90 °.

【図3】この発明に係る180°ベンドで設計したベン
ドを90°分割し,該分割部分に直線部を挿入して「S
字」状接続した場合における反射特性(b),通過特性
(c),およびその回路図(a)を示す説明図である。
FIG. 3 is a sectional view of a bend designed by a 180 ° bend according to the present invention, which is divided into 90 ° and a straight line portion is inserted into the divided portion.
It is explanatory drawing which shows the reflection characteristic (b), the passage characteristic (c), and its circuit diagram (a) at the time of a "shaped" connection.

【図4】この発明に係るNRDガイド曲線回路の他の主
要構成を示す説明図である。
FIG. 4 is an explanatory diagram showing another main configuration of the NRD guide curve circuit according to the present invention.

【図5】この発明に係るモード状態の変化を示す説明図
である。
FIG. 5 is an explanatory diagram showing a change in mode state according to the present invention.

【図6】この発明に係る180°ベンドを4分割(45
°)して直線線路と再接続した例を示す説明図である。
FIG. 6 shows a 180 ° bend according to the present invention divided into four (45
FIG. 4 is an explanatory view showing an example in which a straight line is re-connected after being rotated.

【図7】この発明に係る180°ベンドを示す説明図で
ある。
FIG. 7 is an explanatory view showing a 180 ° bend according to the present invention.

【図8】図7に示した180°ベンドを任意に分割して
再接続した例を示す説明図である。
FIG. 8 is an explanatory view showing an example in which the 180 ° bend shown in FIG. 7 is arbitrarily divided and reconnected.

【図9】この発明に係るNRDガイドの原理を示す説明
図である。
FIG. 9 is an explanatory diagram showing the principle of the NRD guide according to the present invention.

【図10】従来におけるNRDガイド曲線回路の主要構
成を示す説明図である。
FIG. 10 is an explanatory diagram showing a main configuration of a conventional NRD guide curve circuit.

【図11】従来におけるNRDガイド曲線回路の主要構
成を示す説明図である。
FIG. 11 is an explanatory diagram showing a main configuration of a conventional NRD guide curve circuit.

【符号の説明】[Explanation of symbols]

101 ベンド状誘電体線路部(分割小ベンド部) 103 直線誘電体線路部 901 上導体板 902 下導体板 903 誘電体線路 101 Bend-shaped Dielectric Line Section (Divided Small Bend Section) 103 Linear Dielectric Line Section 901 Upper Conductor Plate 902 Lower Conductor Plate 903 Dielectric Line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 上下導体板の間に信号伝送用の誘電体線
路材を配置してNRDガイドを形成し,かつ,前記上下
導体板の間隔を前記誘電体線路材外の上下導体板間部分
での使用周波数の半波長以下に設定したNRDガイド曲
線回路において,前記NRDガイドは,曲げ角度nθ
(nは正整数,θは角度)のベンドを構成する誘電体線
路材の曲率半径をRnθとし,1つのRnθの曲率のベ
ンドをn個の角度θの分割小ベンド部に分割し,前記n
個に分割された分割小ベンド部を任意に連続的に接続し
たことを特徴するNRDガイド曲線回路。
1. An NRD guide is formed by arranging a dielectric line material for signal transmission between the upper and lower conductor plates, and an interval between the upper and lower conductor plates is set at a portion between the upper and lower conductor plates outside the dielectric line material. In the NRD guide curve circuit set to a half wavelength or less of the operating frequency, the NRD guide has a bending angle nθ.
(N is a positive integer, θ is an angle) The radius of curvature of the dielectric line material that constitutes the bend is Rnθ, and one bend of curvature of Rnθ is divided into n divided small bend portions of the angle θ.
An NRD guide curve circuit in which divided small bend portions divided into individual pieces are continuously connected arbitrarily.
【請求項2】 前記NRDガイドは,前記分割小ベンド
部と分割小ベンド部との間に,前記分割小ベンド部と同
一線路断面形状を有する長さP・λg/2(λgは線路
内波長,Pは正整数)の直線の誘電体線路材を挿入して
直線部分を構成することを特徴する請求項1記載のNR
Dガイド曲線回路。
2. The NRD guide has a length P · λg / 2 (where λg is an in-line wavelength) between the divided small bend portions and the divided small bend portions and having the same line sectional shape as the divided small bend portions. , P are positive integers) to form a linear portion by inserting a linear dielectric line member.
D guide curve circuit.
JP5254711A 1993-09-17 1993-09-17 Nrd guide curve circuit Pending JPH0794903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5254711A JPH0794903A (en) 1993-09-17 1993-09-17 Nrd guide curve circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5254711A JPH0794903A (en) 1993-09-17 1993-09-17 Nrd guide curve circuit

Publications (1)

Publication Number Publication Date
JPH0794903A true JPH0794903A (en) 1995-04-07

Family

ID=17268792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5254711A Pending JPH0794903A (en) 1993-09-17 1993-09-17 Nrd guide curve circuit

Country Status (1)

Country Link
JP (1) JPH0794903A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3482296A (en) * 1966-09-19 1969-12-09 Gen Motors Corp Method for the integrated welding and heat treating of hardenable parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3482296A (en) * 1966-09-19 1969-12-09 Gen Motors Corp Method for the integrated welding and heat treating of hardenable parts

Similar Documents

Publication Publication Date Title
EP0430516B1 (en) A periodic array with a nearly ideal element pattern
US6472961B1 (en) Non-radiative dielectric line including convex or concave portion, and integrated circuit comprising the non-radiative dielectric line
US2751556A (en) Variable transfer directional coupler for microwave energy
US5222167A (en) Optical coupler and method of manufacturing
US20090243766A1 (en) Corner waveguide
JPH0794903A (en) Nrd guide curve circuit
JPH11191706A (en) Non-radioactive dielectric line component and its integrated circuit
JPH088621A (en) Directional coupler for nrd guide
KR100852377B1 (en) Nrd guide mode suppressor
US4922215A (en) Power divider in waveguide form
JP2021111938A (en) Antenna device and search device
US3315187A (en) Microwave transmission line
US5270671A (en) Negative slope phase skewer
KR101995356B1 (en) Dual polarization waveguide antenna
US2973487A (en) Waveguide hybrid structure
Li et al. Polynomial systems: a lower bound for the weakened 16th Hilbert problem.
Idemen et al. Diffraction of the creeping waves generated on a perfectly conducting spherical scatterer by a ring source
JP2508400B2 (en) Waveguide directional coupler
US2709241A (en) Hybrid directional coupler
US20020018017A1 (en) Non-radiative hybrid dielectric line transition and apparatus incorporating the same
US4303900A (en) Wide band waveguide with double polarization and ultra-high frequency circuit incorporating such a waveguide
KR920009224B1 (en) Improved feed waveguide for an array antenna
Westcott et al. Geometric-optic synthesis of dual-reflector antennas with distributed sources
Rosa A Mode-Matching-Based Formulation for the Analysis of Curved Rectangular Waveguides
US3189850A (en) Rectangular waveguide bend