JPH0794693A - Semiconductor infrared image sensing element - Google Patents

Semiconductor infrared image sensing element

Info

Publication number
JPH0794693A
JPH0794693A JP5237060A JP23706093A JPH0794693A JP H0794693 A JPH0794693 A JP H0794693A JP 5237060 A JP5237060 A JP 5237060A JP 23706093 A JP23706093 A JP 23706093A JP H0794693 A JPH0794693 A JP H0794693A
Authority
JP
Japan
Prior art keywords
layer
charge transfer
infrared
type
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5237060A
Other languages
Japanese (ja)
Inventor
Keitaro Shigenaka
圭太郎 重中
Risa Sugiura
理砂 杉浦
Fumio Nakada
文夫 中田
Katsuyoshi Fukuda
勝義 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5237060A priority Critical patent/JPH0794693A/en
Publication of JPH0794693A publication Critical patent/JPH0794693A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To provide a structure of an infrared detection element which can detect a good image at a room temperature or thereabout by subjecting exter nally incoming infrared ray to optical modulation in order to separate the charges generated thereby from the charges generated based on the temperature of a semiconductor element and then picking up only the electrically modulated component. CONSTITUTION:An insulator 11 and a resistor 10 are formed between a diode having a light receiving layer comprising HgCdTe layers 5, 6 formed oppositely to a silicon charge transfer element 1 and the junction thereof, i.e., an indium bonded column 4. A part for optically modulating the incident infrared ray is also provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体赤外線撮像素子に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor infrared image pickup device.

【0002】[0002]

【従来の技術】赤外線検知器は原理的に半導体を用いた
量子型検知器と焦電効果を利用した焦電型検知器に分類
することができる。従来の量子型検知器は素子温度を室
温付近にすると、室温付近の輻射を検知する目的に用い
る場合、検知器材料のバンドギャップが約0.12eV
と小さいため、検知器自身の熱により生じた電荷が雑音
となって被写体からの赤外線を分離することができず炭
酸ガスレーザといった強度の強い赤外線に対する検出器
を除いて明瞭な画像が得られなかった。そのためほとん
どの量子型検知器は例えばジュールトムソン型やスター
リングサイクル型冷凍器等の冷却システムを装備し液体
窒素温度(絶対温度77度)に冷却しないと高感度に赤
外線を検知することができなかった。従って、撮像シス
テムが大がかりになり、赤外線の撮像カメラの用途は防
衛や宇宙機器に限られていた。
2. Description of the Related Art In principle, infrared detectors can be classified into quantum detectors using semiconductors and pyroelectric detectors utilizing the pyroelectric effect. When the conventional quantum detector is used for the purpose of detecting radiation near room temperature when the element temperature is around room temperature, the band gap of the detector material is about 0.12 eV.
Since it is small, the electric charge generated by the heat of the detector itself becomes noise and it is not possible to separate the infrared rays from the subject, so a clear image could not be obtained except for the detectors for strong infrared rays such as carbon dioxide gas laser. . Therefore, most quantum detectors cannot detect infrared rays with high sensitivity unless they are equipped with a cooling system such as a Joule-Thomson type or a Stirling cycle type refrigerator and cooled to liquid nitrogen temperature (absolute temperature 77 degrees). . Therefore, the imaging system has become large-scale, and the application of the infrared imaging camera has been limited to defense and space equipment.

【0003】一方、焦電型検知器は室温で赤外線に感知
するものの、原理的に素子の温度上昇を検知するもので
あるため、半導体を用いた量子型検知器よりも感度が悪
く、応答速度が遅いため撮像素子として用いられていな
い。
On the other hand, although the pyroelectric detector detects infrared rays at room temperature, it is in principle a detector for detecting the temperature rise of the element, and therefore has a lower sensitivity and a faster response speed than the quantum detector using a semiconductor. It is not used as an image sensor because it is slow.

【0004】従来の赤外線検知器として、J.M.Arias ら
(Appl. Phys. Lett. 62(1993)976)によって提案された
図5に示す構造のものを挙げることができる。この赤外
線検知器は電荷注入電極12を表面に形成したSiの電
荷転送素子ウエハ1とCdZnTe基板3にn型HgC
dTe層5、HgCdTe層7、CdTe層8を順次形
成すると共にHgCdTe層7にp型HgCdTe層6
を形成した赤外線受光部とを金電極9とIn金属柱4で
接続して形成されていた。これによってp型HgCdT
e層6のp+ 層のバンドギャップが広くほぼ300Kで
もp型層として存在することができることから室温付近
で動作する赤外線検知器として期待された。
As a conventional infrared detector, JMArias et al.
(Appl. Phys. Lett. 62 (1993) 976) suggested by the structure shown in FIG. This infrared detector is composed of a Si charge transfer device wafer 1 having a charge injection electrode 12 formed on the surface thereof and an n-type HgC film on a CdZnTe substrate 3.
The dTe layer 5, the HgCdTe layer 7, and the CdTe layer 8 are sequentially formed, and the p-type HgCdTe layer 6 is formed on the HgCdTe layer 7.
It was formed by connecting the infrared light receiving portion formed with the gold electrode 9 and the In metal pillar 4. This allows p-type HgCdT
Since the p + layer of the e layer 6 has a wide bandgap and can exist as a p-type layer even at about 300 K, it was expected as an infrared detector operating near room temperature.

【0005】しかし、p−n接合は存在するものの検知
器自身の熱により生じた電荷が多いため図中1の電荷転
送素子の電荷容量を越えてしまい、赤外線画像を得るこ
とのできる温度はやはり熱雑音の生じることのない液体
窒素温度と変わらなかった。
However, although the pn junction is present, the charge generated by the heat of the detector itself is large, so that it exceeds the charge capacity of the charge transfer element 1 in the figure, and the temperature at which an infrared image can be obtained is still high. It was the same as liquid nitrogen temperature without thermal noise.

【0006】[0006]

【発明が解決しようとする課題】従来の赤外線撮像素子
は、ペルチェ効果を用いた電子冷却器で冷却できる温度
で感度のよい赤外線画像を得ることはできなかった。本
発明は、低温のみならず室温付近でも感度の良い半導体
赤外線撮像素子を提供するものである。
The conventional infrared image pickup device cannot obtain an infrared image having high sensitivity at a temperature that can be cooled by an electronic cooler using the Peltier effect. The present invention provides a semiconductor infrared imaging device which has high sensitivity not only at low temperatures but also near room temperature.

【0007】[0007]

【課題を解決するための手段】本発明は、赤外線を受光
して電荷に変換する受光部と、この電荷を画像信号とし
て出力する電荷転送部とを有する半導体赤外線撮像素子
において、前記赤外線を変調入射して生じた電荷による
交流成分をコンデンサを通して前記電荷転送部に注入す
ると共に、前記受光部で熱雑音として生じた電荷による
直流成分を前記電荷転送部に注入する前に低電位に放出
除去することを特徴とする半導体赤外線撮像素子を提供
するものである。
SUMMARY OF THE INVENTION The present invention is a semiconductor infrared imaging device having a light receiving section for receiving infrared rays and converting them into electric charges, and a charge transfer section for outputting the electric charges as an image signal. The AC component due to the incident electric charge is injected into the charge transfer unit through a capacitor, and the DC component due to the electric charge generated as thermal noise in the light receiving unit is discharged to a low potential before being injected into the charge transfer unit. The present invention provides a semiconductor infrared imaging device.

【0008】特に、電荷転送部の電荷の蓄積時間と比べ
て1/2以下、好ましくは1/10以下の時間で光学的
な変調を加えた入射光を光電変換した電荷を、受光部自
身の熱により生じた電荷と分離して電荷転送部に注入す
ることが好ましい。
In particular, the charge obtained by photoelectrically converting the incident light, which has been optically modulated, within a time of 1/2 or less, preferably 1/10 or less of the charge accumulation time of the charge transfer portion is stored in the light receiving portion itself. It is preferable to separate the charge generated by heat and inject it into the charge transfer portion.

【0009】また、前記受光部の光電変換部をHgCd
Teにすると共に、直流成分を接地除去する抵抗体と前
記コンデンサの絶縁体材料としてCdTeを用いること
が好ましい。
Further, the photoelectric conversion portion of the light receiving portion is set to HgCd.
In addition to Te, it is preferable to use CdTe as an insulator material for the resistor and the capacitor that removes the DC component from the ground.

【0010】[0010]

【作用】本発明によれば、受光部が電荷転送部に送る信
号を画像信号と成る交流成分と熱雑音である直流成分を
分離すると共にこの直流成分を接地除去しているため、
室温付近でも感度を向上することができる。
According to the present invention, the signal sent from the light receiving section to the charge transfer section is separated into an AC component which is an image signal and a DC component which is thermal noise, and the DC component is grounded.
The sensitivity can be improved even near room temperature.

【0011】[0011]

【実施例】以下、本発明の詳細を実施例によって説明す
る。本発明の第1の実施例を図1に示した。先ず、Cd
ZnTe基板3上に金属水銀(Hg)、ジメチルカドミウム
(DMCd)、ジイソプロピルテルル(DIPTe) を原料として用
いた有機金属化学気相成長でn型Hg0.62Cd0.16Te
層5を約10μm、砒素添加p型Hg0.66Cd0.34Te
層6を1μmを連続して成長した。砒素原料はトリメチ
ル砒素を用い供給量は5×10-5mol/min 。この成長層を
写真食刻技術を用いて接合面積30×30μm2 、素子
間隔50μmの64×64のメサ型ダイオードアレイを
作製した。このダイオードアレイ上に有機金属化学気相
成長法で高抵抗i型CdTe層8を0.3μm、砒素添
加p型CdTe層10を0.2μmそれぞれ連続して成
長した。砒素添加はトリメチル砒素を用い供給量は2.5
×10-5mol/min 。成長温度はHgCdTe層成長時は3
80℃、CdTe成長時は320℃である。
EXAMPLES The details of the present invention will be described below with reference to examples. The first embodiment of the present invention is shown in FIG. First, Cd
Metallic mercury (Hg), dimethyl cadmium on ZnTe substrate 3
N-type Hg 0.62 Cd 0.16 Te by metalorganic chemical vapor deposition using (DMCd) and diisopropyl tellurium (DIPTe) as raw materials.
Layer 5 is about 10 μm, arsenic added p-type Hg 0.66 Cd 0.34 Te
Layer 6 was grown continuously to 1 μm. Trimethylarsenic was used as the arsenic raw material and the supply rate was 5 × 10 -5 mol / min. A 64 × 64 mesa type diode array having a junction area of 30 × 30 μm 2 and an element interval of 50 μm was produced from this growth layer by using a photolithography technique. A high resistance i-type CdTe layer 8 and an arsenic-added p-type CdTe layer 10 were successively grown on the diode array by metal organic chemical vapor deposition in a thickness of 0.3 μm and 0.2 μm, respectively. Trimethylarsenic was used for arsenic addition and the supply amount was 2.5.
× 10 -5 mol / min. The growth temperature is 3 when the HgCdTe layer is grown.
80 ° C., 320 ° C. during CdTe growth.

【0012】さらに、写真食刻技術により接合電極部を
覆っているCdTe層8,10を直径15μm除去した
後、その除去した部分に金電極91 を0.4μm蒸着
し、さらに表面全体にわたり厚さ0.1μmのアンドー
プ高抵抗i型CdTe層11を絶縁体として積層し、最
後に直径30μm厚さ0.5μmの金電極92 を積層し
て光電変換部100を完成させた。
Furthermore, after the CdTe layers 8 and 10 to diameter 15μm removed covering the bonding electrode part by the photolithography technique, and 0.4μm depositing gold electrodes 9 1 to moieties its removal, the thickness for a further entire surface The undoped high resistance i-type CdTe layer 11 having a thickness of 0.1 μm was laminated as an insulator, and finally the gold electrode 9 2 having a diameter of 30 μm and a thickness of 0.5 μm was laminated to complete the photoelectric conversion section 100.

【0013】その後、従来より赤外線検知器用に用いら
れていたSiのMOSスイッチアレイ(この後にCCD
が接続されている)1の電荷転送部200の電極12上
に太さ20μm高さ20μmのインジウムの柱4を立て
た後、この光電変換部100を圧接して2次元赤外線撮
像素子を完成させた。インジウムの柱4の代わりにGa
柱や金電極を使用しても良い。14は、MOSスイッチ
アレイの表面に形成された接地電極であり、この電極に
インジウムの柱4を介してp型CdTe層10を接続し
た。ここでは接地電極に接続したが、熱雑音となる直流
成分よりも低電位、好ましくは一定電位であればさらに
良く、例えばMOSスイッチアレイに供給される負の電
源電位であっても良い。
After that, a Si MOS switch array (which was used for infrared detectors in the past)
1), the indium pillar 4 having a thickness of 20 μm and a height of 20 μm is erected on the electrode 12 of the charge transfer unit 200, and the photoelectric conversion unit 100 is pressed to complete the two-dimensional infrared imaging device. It was Ga instead of indium pillar 4
Pillars or gold electrodes may be used. Reference numeral 14 is a ground electrode formed on the surface of the MOS switch array, and the p-type CdTe layer 10 was connected to this electrode through the column 4 of indium. Although it is connected to the ground electrode here, it is more preferable that the potential is lower than the direct current component that causes thermal noise, preferably a constant potential, for example, a negative power supply potential supplied to the MOS switch array.

【0014】光電変換部100と電荷転送部200の接
続状況を等価回路で示したものが図2である。金電極9
1 ,92 の間には、コンデンサーの絶縁膜となるアンド
ープ高抵抗i型CdTe層11が配置されこのコンデン
サーを介して電荷を交流成分として電荷転送部200に
注入される。22は注入された電荷を示し、21は電荷
転送部200の出力端子を示す。ここでは、注入された
電荷22がオーバーフローする前に出力できるように入
射光の変調時間と電荷転送部200の電荷22の蓄積時
間の関係を定めている。そのために、電荷転送部200
の電荷22の蓄積時間と比べて1/2以下、好ましくは
1/10以下の時間で光学的な変調を加えた入射光を光
電変換した電荷を、受光部自身の熱により生じた電荷と
分離して電荷転送部に注入する。第1の実施例では1/
10とした。また、p型CdTe層10が高抵抗体とし
て働き、直流分をMOSスイッチアレイ付きのCCDの
接地電極を通して放出除去すようにしている。これによ
って、熱雑音を確実に除去することができる。
FIG. 2 shows the connection state of the photoelectric conversion unit 100 and the charge transfer unit 200 by an equivalent circuit. Gold electrode 9
An undoped high resistance i-type CdTe layer 11 serving as an insulating film of a capacitor is arranged between 1 and 9 2 , and charges are injected into the charge transfer unit 200 via this capacitor as an AC component. Reference numeral 22 denotes injected charges, and 21 denotes an output terminal of the charge transfer unit 200. Here, the relationship between the modulation time of the incident light and the accumulation time of the charge 22 of the charge transfer unit 200 is determined so that the injected charge 22 can be output before it overflows. Therefore, the charge transfer unit 200
The charge obtained by photoelectrically converting the incident light, which is optically modulated in a time of 1/2 or less, preferably 1/10 or less, is separated from the charge generated by the heat of the light receiving portion itself. Then, it is injected into the charge transfer section. 1 / in the first embodiment
It was set to 10. Further, the p-type CdTe layer 10 functions as a high resistance element, and the direct current component is discharged and removed through the ground electrode of the CCD with the MOS switch array. As a result, thermal noise can be reliably removed.

【0015】この赤外線撮像素子16を図3に示すよう
に基体19上に接地すると共に、ペルチェ効果を用いた
電子冷却器19で冷却ながら、光学レンズ15の外側に
設けた300Hzのチョッパー14を通した赤外光の画
像13を撮影した。20は電子冷却制御装置である。赤
外線撮像素子16から得た画像信号を画像処理装置17
及び表示装置18によって結像した。この様にして赤外
線撮像素子16を使用した赤外線撮像システムを構成し
た。
As shown in FIG. 3, the infrared imaging element 16 is grounded on the base body 19 and is cooled by the electronic cooler 19 using the Peltier effect while passing through the 300 Hz chopper 14 provided outside the optical lens 15. The infrared light image 13 was taken. Reference numeral 20 is an electronic cooling control device. The image signal obtained from the infrared imaging device 16 is used as the image processing device 17.
And imaged by the display device 18. In this way, an infrared imaging system using the infrared imaging element 16 was constructed.

【0016】室温ではややコントラストの欠ける画像で
あったが素子16の温度が0℃を下回ると良好な画像が
得られ、感度(NETD: 雑音等価温度差)も0.1K
と従来の液体窒素温度冷却型HgCdTe赤外線検知器
と同等のものが得られた。
Although the image was slightly lacking in contrast at room temperature, a good image was obtained when the temperature of the element 16 fell below 0 ° C., and the sensitivity (NETD: noise equivalent temperature difference) was 0.1 K.
And, the same thing as the conventional liquid nitrogen temperature cooling type HgCdTe infrared detector was obtained.

【0017】次に第2の実施例を図4に沿って説明す
る。図4に示すようにこの実施例では第1の実施例と同
様にCdZnTe基板3上に金属水銀、ジメチルカドミ
ウム、ジイソプロピルテルル、トリメチル砒素を原料と
して用いた有機金属化学気相成長でHg0.62Cd0.16
e層5を約10μm、アンドープn型Hg0.66Cd0.34
Te層7を1μm、CdTe層8を0.3μm、砒素添
加CdTe層10を0.2μmを連続して成長し、写真
食刻技術を用いて直径20μmの領域に亘り砒素添加C
dTe層とCdTe層の2層を除去し、その除去した領
域を含む直径30μmの領域に砒素を350keV、ド
ーズ量1×1014cm-2でイオン注入してp型領域6を形
成することによって、p−n接合を形成した。成長条件
は第1の実施例と同じ。
Next, a second embodiment will be described with reference to FIG. As shown in FIG. 4, in this embodiment, as in the first embodiment, Hg 0.62 Cd 0.16 was formed on the CdZnTe substrate 3 by metal organic chemical vapor deposition using metallic mercury, dimethylcadmium, diisopropyl tellurium and trimethylarsenic as raw materials. T
e layer 5 of about 10 μm, undoped n-type Hg 0.66 Cd 0.34
The Te layer 7 was continuously grown to 1 μm, the CdTe layer 8 was grown to 0.3 μm, and the arsenic-added CdTe layer 10 was grown to 0.2 μm.
By removing the two layers of the dTe layer and the CdTe layer, arsenic is ion-implanted into the region having a diameter of 30 μm including the removed region with 350 keV and a dose amount of 1 × 10 14 cm -2 to form the p-type region 6. , P-n junction was formed. The growth conditions are the same as in the first embodiment.

【0018】その後、除去した部分に金電極を0.4μ
m蒸着し、その上にウエハ全体に渡り、厚さ0.1μm
の絶縁体を積層し、最後に直径30μm厚さ0.5μm
の金電極を積層した。
Then, a gold electrode of 0.4 μm is formed on the removed portion.
m vapor-deposited over the entire wafer, thickness of 0.1 μm
Layered insulators, and finally diameter 30μm thickness 0.5μm
Of gold electrodes were laminated.

【0019】さらに、赤外線検知器用に用いられていた
SiのMOSスイッチアレイ(後段CCD付き)の電荷
注入部の電極12上に太さ20μm高さ20μmのイン
ジウムの柱4を立てた後、このダイオードアレイの電極
2 と圧接して2次元赤外線検知器を作製した。この検
出器を第1の実施例と同様、図3に示すように、ペルチ
ェ効果を用いた電子冷却器で冷却し、光学レンズの外側
に設けた300Hzのチョッパーを通した赤外光の画像
を撮影した。室温ではややコントラストの欠ける画像で
あったが素子の温度が0℃を下回ると良好な画像が得ら
れ、感度(NETD)も0.1Kと従来の液体窒素温度
冷却型HgCdTe赤外線検知器と同等のものが得られ
た。
Further, an indium pillar 4 having a thickness of 20 μm and a height of 20 μm is erected on the electrode 12 of the charge injection portion of the Si MOS switch array (with the latter stage CCD) used for the infrared detector, and then the diode is formed. and electrodes 9 2 and pressure of the array to produce a two-dimensional infrared detectors. Similar to the first embodiment, as shown in FIG. 3, the detector is cooled by an electronic cooler using the Peltier effect, and an image of infrared light is transmitted through a 300 Hz chopper provided outside the optical lens. I took a picture. Although the image was slightly lacking in contrast at room temperature, a good image was obtained when the element temperature fell below 0 ° C, and the sensitivity (NETD) was 0.1K, which is equivalent to that of the conventional liquid nitrogen temperature-cooled HgCdTe infrared detector. Things have been obtained.

【0020】コンデンサーの絶縁体層は、上記実施例で
はCdTe層を使用したが、これ以外のII−IV族化
合物半導体で高抵抗層となるもの例えばアンドープi型
ZnSを用いても同様に良好な画像が得られた。
As the insulator layer of the capacitor, the CdTe layer is used in the above-mentioned embodiment, but a II-IV group compound semiconductor other than this which becomes a high resistance layer, for example, undoped i-type ZnS is also similarly preferable. An image was obtained.

【0021】また、光学レンズ15の外側に設けた機械
式のチョッパーの代わりに、上記実施例のCdZnTe
基板裏面に新たにAgGaS2 またはAgGaSe2
積層し、この層に通電して電場を発生させ赤外線の透過
率を変化させることによっても良く、この場合には赤外
線撮像システム全体がコンパクトになる長所を有すると
共に、−5℃以下で良好な画像が得られ、感度(NET
D)も0.1Kと従来の液体窒素温度冷却型HgCdT
e赤外線検知器と同等のものが得られた。
Further, instead of the mechanical chopper provided outside the optical lens 15, the CdZnTe of the above embodiment is used.
It is also possible to newly stack AgGaS 2 or AgGaSe 2 on the back surface of the substrate and generate an electric field by energizing this layer to change the transmittance of infrared rays. In this case, there is an advantage that the entire infrared imaging system becomes compact. In addition to having a good image at -5 ℃ or less, sensitivity (NET
D) is 0.1K and is the conventional liquid nitrogen temperature cooling type HgCdT
e The same thing as the infrared detector was obtained.

【0022】電荷転送部は、SiのMOSスイッチアレ
イCCD付きである必要はなく、このスイッチのない単
なるCCD或いは、スタック型のCCD等であっても良
い。本発明は上記実施例に限定されるものではなく、そ
の趣旨を逸脱しない範囲で種々変形して実施することが
できる。
The charge transfer section need not be provided with a Si MOS switch array CCD, but may be a simple CCD without this switch or a stack type CCD. The present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention.

【0023】[0023]

【発明の効果】以上述べたように本発明により、従来の
技術では得られなかった室温付近で赤外線に感度のある
赤外線検知素子の作製が可能になる。
As described above, according to the present invention, it becomes possible to fabricate an infrared detecting element sensitive to infrared rays near room temperature, which has not been obtained by the prior art.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例により得られる半導体光
電変換素子を示す断面図
FIG. 1 is a sectional view showing a semiconductor photoelectric conversion element obtained according to a first embodiment of the present invention.

【図2】本発明の第1の実施例により得られる半導体光
電変換素子の等価回路図
FIG. 2 is an equivalent circuit diagram of a semiconductor photoelectric conversion device obtained according to the first embodiment of the present invention.

【図3】本発明の第1の実施例により得られる半導体光
電変換素子のシステム図
FIG. 3 is a system diagram of a semiconductor photoelectric conversion device obtained according to the first embodiment of the present invention.

【図4】本発明の第2の実施例により得られる半導体光
電変換素子を示す断面図
FIG. 4 is a sectional view showing a semiconductor photoelectric conversion device obtained according to a second embodiment of the present invention.

【図5】従来の赤外線受光素子を示す図FIG. 5 is a diagram showing a conventional infrared light receiving element.

【符号の説明】[Explanation of symbols]

1…シリコンの電荷転送部 2…p型HgCdTe層 3…CdZnTe基板 4…インジウム金属柱 5…n型Hg0.62Cd0.16Te層 6…砒素添加p型Hg0.66Cd0.34Te層 7…Hg0.66Cd0.34Te層 8…CdTe層 9…金電極 10…抵抗体層(砒素添加CdTe) 11…絶縁体層(CdTe) 12…電荷注入電極 13…被写体 14…光学チョッパ 15…光学系 16…赤外線検知器 17…駆動回路 18…TVモニタ 19…電子冷却器 20…電子冷却制御器1 ... Charge transfer part of silicon 2 ... P-type HgCdTe layer 3 ... CdZnTe substrate 4 ... Indium metal pillar 5 ... n-type Hg 0.62 Cd 0.16 Te layer 6 ... Arsenic-added p-type Hg 0.66 Cd 0.34 Te layer 7 ... Hg 0.66 Cd 0.34 Te layer 8 ... CdTe layer 9 ... Gold electrode 10 ... Resistor layer (arsenic-added CdTe) 11 ... Insulator layer (CdTe) 12 ... Charge injection electrode 13 ... Subject 14 ... Optical chopper 15 ... Optical system 16 ... Infrared detector 17 … Drive circuit 18… TV monitor 19… Electronic cooler 20… Electronic cooling controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福田 勝義 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Katsuyoshi Fukuda No. 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Incorporated Toshiba Research and Development Center

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 赤外線を受光して電荷に変換する受光部
と、この電荷を画像信号として出力する電荷転送部とを
有する半導体赤外線撮像素子において、前記赤外線を変
調入射して生じた電荷による交流成分をコンデンサを通
して前記電荷転送部に注入すると共に、前記受光部で熱
雑音として生じた電荷による直流成分を前記電荷転送部
に注入する前に低電位に放出除去することを特徴とする
半導体赤外線撮像素子。
1. A semiconductor infrared imaging device having a light receiving section for receiving infrared rays and converting the infrared rays into electric charges, and a charge transfer section for outputting the electric charges as an image signal. A semiconductor infrared imaging device characterized in that a component is injected into the charge transfer unit through a capacitor, and a direct current component due to a charge generated as thermal noise in the light receiving unit is released and removed to a low potential before being injected into the charge transfer unit. element.
JP5237060A 1993-09-24 1993-09-24 Semiconductor infrared image sensing element Pending JPH0794693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5237060A JPH0794693A (en) 1993-09-24 1993-09-24 Semiconductor infrared image sensing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5237060A JPH0794693A (en) 1993-09-24 1993-09-24 Semiconductor infrared image sensing element

Publications (1)

Publication Number Publication Date
JPH0794693A true JPH0794693A (en) 1995-04-07

Family

ID=17009829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5237060A Pending JPH0794693A (en) 1993-09-24 1993-09-24 Semiconductor infrared image sensing element

Country Status (1)

Country Link
JP (1) JPH0794693A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340068B1 (en) * 1999-06-28 2002-06-12 박종섭 Image sensor having optical designed layer to improve optical transmittance
KR100497333B1 (en) * 2002-11-09 2005-06-28 한국전자통신연구원 Pixel array for Detector with thin film transistor and method for fabrication of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340068B1 (en) * 1999-06-28 2002-06-12 박종섭 Image sensor having optical designed layer to improve optical transmittance
KR100497333B1 (en) * 2002-11-09 2005-06-28 한국전자통신연구원 Pixel array for Detector with thin film transistor and method for fabrication of the same

Similar Documents

Publication Publication Date Title
Rogalski Optical detectors for focal plane arrays
US9541450B2 (en) Radiation detector having a bandgap engineered absorber
Rogalski Infrared detectors: status and trends
Hsieh et al. Focal-plane-arrays and CMOS readout techniques of infrared imaging systems
Rogalski Infrared detectors: an overview
Rogalski Infrared detectors
Rouvié et al. InGaAs focal plane array developments at III-V Lab
US9812604B2 (en) Photosensing device with graphene
Bailey et al. 256* 256 hybrid HgCdTe infrared focal plane arrays
JPH05206526A (en) Bolometer and its manufacture
JP2004172377A (en) Radiation detector and radiation image pickup device
US20140159188A1 (en) Application of Reduced Dark Current Photodetector
Rogalski 2D Materials for Infrared and Terahertz Detectors
US5892222A (en) Broadband multicolor photon counter for low light detection and imaging
Rogalski New trends in infrared detector technology
Kozlowski et al. Performance of HgCdTe, InGaAs and quantum well GaAs/AlGaAs staring infrared focal plane arrays
Andersson et al. 320 x 240 pixels quantum well infrared photodetector (QWIP) array for thermal imaging: fabrication and evaluation
JPH0794693A (en) Semiconductor infrared image sensing element
JP3311869B2 (en) Semiconductor photoelectric conversion element and imaging device using the same
JPH0356831A (en) Cooling type infrared detection device
Lucas Infrared detection, some recent developments and future trends
US6531700B1 (en) Integral charge well for QWIP FPA'S
Elliot Future infrared detector technologies
Capone et al. Evaluation of a Schottky infrared charge-coupled device (IRCCD) staring mosaic focal plane
Ballingall Review of infrared focal plane arrays