JPH07925Y2 - Device for measuring physical properties of liquid developer for electrostatic photography - Google Patents

Device for measuring physical properties of liquid developer for electrostatic photography

Info

Publication number
JPH07925Y2
JPH07925Y2 JP8229388U JP8229388U JPH07925Y2 JP H07925 Y2 JPH07925 Y2 JP H07925Y2 JP 8229388 U JP8229388 U JP 8229388U JP 8229388 U JP8229388 U JP 8229388U JP H07925 Y2 JPH07925 Y2 JP H07925Y2
Authority
JP
Japan
Prior art keywords
counter electrode
toner
liquid developer
measuring
physical properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8229388U
Other languages
Japanese (ja)
Other versions
JPH025755U (en
Inventor
信一 倉本
元 高梨
一男 津布子
和彦 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP8229388U priority Critical patent/JPH07925Y2/en
Publication of JPH025755U publication Critical patent/JPH025755U/ja
Application granted granted Critical
Publication of JPH07925Y2 publication Critical patent/JPH07925Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Liquid Developers In Electrophotography (AREA)
  • Wet Developing In Electrophotography (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、複写機等に用いられる液体現像剤の物性測定
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to an apparatus for measuring physical properties of a liquid developer used in a copying machine or the like.

(従来の技術) 液体現像剤の物性を測定する装置としては、従来から種
々のものが提案されている。
(Prior Art) Various devices have been conventionally proposed as a device for measuring the physical properties of a liquid developer.

例えば、第3図ないし第7図は移動度(易動度ともい
う)及びζ(ジッタ)電位測定の各例を示すものであ
り、第3図は顕微鏡法による移動度測定の一例で、ポリ
カーボネート製セル1の白金電極(電圧印加と電圧測定
と兼用)2を有し、三方コック3より試料(薄い溶液)
が供給され、顕微鏡4により、非水系電気泳動を測定す
るものであるが、薄い溶液でないと顕微鏡により観察で
きず、また、粒径の小さいトナー粒子では不可能であっ
た。
For example, FIGS. 3 to 7 show examples of mobility (also referred to as mobility) and ζ (jitter) potential measurement, and FIG. 3 shows an example of mobility measurement by a microscopic method, and polycarbonate. The cell 1 has a platinum electrode (also used for voltage application and voltage measurement) 2 and is a sample (thin solution) from the three-way cock 3.
Was supplied and non-aqueous electrophoresis was measured by the microscope 4, but it could not be observed by the microscope unless it was a thin solution, and it was not possible with toner particles having a small particle size.

第4図は一般の境界移動法による移動度測定の一例で、
U字管6内に白金電極5を備え、コック3で試料だめよ
り試料をU字管7を通して白金電極5まで浸漬し、一
方、定電圧電源8から電極9へ直流高電圧(200〜1200
V)を加えて、電極調節ネジ10で電極9を上,下し白金
電極5で電位測定をする。
Fig. 4 shows an example of mobility measurement by the general boundary movement method.
The platinum electrode 5 is provided in the U-shaped tube 6, and the cock 3 is used to immerse the sample through the U-shaped tube 7 to the platinum electrode 5 by the cock 3, while the constant voltage power source 8 transfers the DC high voltage (200 to 1200) to the electrode 9.
V) is added, and the electrode 9 is moved up and down with the electrode adjusting screw 10 and the potential is measured with the platinum electrode 5.

第5図はレーザ光の干渉を用いた移動度測定の一例で、
スペーサ11と電極(+)12、透明電極(−)13に囲まれ
た部分に顔料分散域(試料)14があり、両電極間に直流
高圧を印加すると無粒子域15が形成される。そしてガラ
スプリズム16を介してレーザービーム17を前記顔料分散
域14と無粒子域15との境界18に照射することによって、
境界18で照射したレーザービームの干渉ビーム19から試
料の移動度を測定する。
FIG. 5 shows an example of mobility measurement using laser light interference.
There is a pigment dispersion region (sample) 14 in a portion surrounded by the spacer 11, the electrode (+) 12 and the transparent electrode (-) 13, and a particle-free region 15 is formed when a high DC voltage is applied between both electrodes. Then, by irradiating the boundary 18 between the pigment dispersion region 14 and the particle-free region 15 with the laser beam 17 through the glass prism 16,
The mobility of the sample is measured from the interference beam 19 of the laser beam irradiated at the boundary 18.

上記第4図,第5図の測定方法は試料となるトナー粒子
の存在する層と、存在しない層の境界が明確にできない
と測定できない、即ち第4図の例では白金電極5とU字
管6内の試料レベル、第5図の例では境界18の位置であ
る。
The measurement method shown in FIGS. 4 and 5 cannot be measured unless the boundary between the layer in which the toner particles as the sample are present and the layer in which the toner particles are not present cannot be clarified, that is, in the example of FIG. 6 is the sample level, which is the position of the boundary 18 in the example of FIG.

第6図は電気泳動輸送法による移動度測定の一例で、試
料槽20内に更に小室21を備え、直流電源22から電極23,2
4に高電圧の直流電圧を加え、移動度を測定する。
FIG. 6 shows an example of mobility measurement by the electrophoretic transport method, which further comprises a small chamber 21 in the sample tank 20 and a DC power source 22 to electrodes 23, 2.
Apply high DC voltage to 4 and measure the mobility.

これは、この構造上、電極23,24間が広くなり十分な電
界強度が得られない。
This is because, due to this structure, the space between the electrodes 23 and 24 is widened and sufficient electric field strength cannot be obtained.

このような各種測定法に対し、従来から用いられている
もので電着法による移動度測定として第7図に示す測定
装置がある。これは真鍮製シリンダ25内に現像電極26を
配置し、このシリンダ内にトナー分散層27を有し、高電
圧の直流電源28の(−)側をシリンダ25に、(+)側を
アースとして電界を加える。一方、はかり29は前記現像
電極26と接続された電極線30の一端をKCL液31内に浸
し、KCL液31内に同じく浸した他方の電極線32に電流計3
3を接続して測定する。
For such various measuring methods, there is a measuring apparatus shown in FIG. 7 which has been used conventionally as a mobility measurement by the electrodeposition method. This has a developing electrode 26 arranged in a brass cylinder 25, and has a toner dispersion layer 27 in this cylinder. The (−) side of a high-voltage DC power supply 28 is used as the cylinder 25, and the (+) side is used as ground. Apply an electric field. On the other hand, in the balance 29, one end of the electrode wire 30 connected to the developing electrode 26 is immersed in the KCL solution 31, and the other electrode wire 32 also immersed in the KCL solution 31 has an ammeter 3
Connect 3 and measure.

これは、シリンダ25内のトナー分散層27の上,下(27A
−27B)間に電圧が印加される回路構成となるので、接
触によるリークの防止の必要から制限されて電極用(27
A−27B)の距離が広く、高電圧が印加されにくいので、
十分な電界強度が得られない。
This is above and below the toner dispersion layer 27 in the cylinder 25 (27A
-27B) voltage is applied between the electrodes, so it is limited for electrodes (27
A-27B) is wide and it is difficult to apply high voltage.
Sufficient electric field strength cannot be obtained.

なお、このほかレーザードップラー法によるものがある
が、これはレーザードップラー効果を用い各トナー粒子
の運動を測定するものである。しかし、これは希薄溶液
内で行なうことと、非水溶液中では高電圧での測定が不
可能であるなど、いくつかの制約があり、簡便な方法で
はなかった。
In addition, there is a laser Doppler method, which measures the movement of each toner particle using the laser Doppler effect. However, this was not a simple method due to some restrictions such as being performed in a dilute solution and being impossible to measure at a high voltage in a non-aqueous solution.

次にQ/m測定法がある。これは、直流電圧を試料(トナ
ー)に印加し、その時流れた電流の積算値を電着トナー
重量で除算して求める方法である。しかし、これはトナ
ー粒子以外の電荷(カウンターイオン,溶解した同極性
イオン)による電流の分離ができない欠点があった。
Next is the Q / m measurement method. This is a method in which a DC voltage is applied to a sample (toner) and the integrated value of the current flowing at that time is divided by the weight of the electrodeposited toner to obtain the value. However, this has a drawback that the electric current cannot be separated by charges other than the toner particles (counter ions, dissolved same-polarity ions).

(考案が解決しようとする課題) 上述したように静電写真用液体現像剤(トナー)の物性
測定について、夫々一長一短があり、複写機と同等の現
像液濃度で、かつ同等の電界強度のもとで、液体現像剤
の物性、即ち移動度,ζ電位,Q/m等を正確に測定する装
置が望まれていた。
(Problems to be Solved by the Invention) As described above, each of the physical properties of the liquid developer (toner) for electrostatic photography has its merits and demerits, and it has the same developer concentration and the same electric field strength as those of the copying machine. Therefore, an apparatus for accurately measuring the physical properties of the liquid developer, that is, the mobility, ζ potential, Q / m and the like has been desired.

本考案は、上記要望を満足する物性測定装置を提供する
ことを目的とするものである。
An object of the present invention is to provide a physical property measuring device that satisfies the above demands.

(構成および作用) 本考案は上記目的を達成するため、既知重量の現像用対
向電極が取外し可能に載置され、かつ定速で移動可能な
ステージと、該対向電極に対し一定の間隙をもって位置
せしめられる高電圧印加の一方の現像用対向電極と、両
対向電極の間隙に液体現像剤を供給するタンクと、両対
向電極によって現像後のトナー層の電位を測定するプロ
ーブを有する測定器から構成され、前記トナー層の電位
測定の後,前記取外し可能な現像用対向電極を取外し、
トナー層重量を測定することを特徴とする。
(Structure and Operation) In order to achieve the above object, the present invention has a stage on which a counter electrode for development having a known weight is removably mounted and which can be moved at a constant speed, and is positioned with a constant gap with respect to the counter electrode. Consists of a developing counter electrode for applying a high voltage, a tank for supplying liquid developer to the gap between the two counter electrodes, and a measuring instrument having a probe for measuring the potential of the toner layer after development by both counter electrodes. After the potential of the toner layer is measured, the removable developing counter electrode is removed,
It is characterized in that the weight of the toner layer is measured.

本考案による測定原理をのべると、電着速度は dm/dt=aμE ……(1) で表わされる。ここで、aはトナー濃度,μは移動度
(易動度ともいう),Eは電界強度である。
When the measurement principle according to the present invention is applied, the electrodeposition rate is expressed by dm / dt = aμE (1). Here, a is toner concentration, μ is mobility (also referred to as mobility), and E is electric field strength.

電着層の電荷量は、トナー層のQ/mが一定ならば、電着
トナー層に比例し、また静電容量に反比例する。ここで
Q/mはトナーの単位質量当りの電荷量を示す。
If the Q / m of the toner layer is constant, the charge amount of the electrodeposition layer is proportional to the electrodeposition toner layer and inversely proportional to the electrostatic capacity. here
Q / m represents the amount of charge per unit mass of toner.

その結果、後述するQ/mの誘導と同様に、有効電界強度
Eは電着層の二乗に比例して減少すると仮定できる。
As a result, it can be assumed that the effective electric field strength E decreases in proportion to the square of the electrodeposition layer, as in the case of Q / m induction described later.

E=Eo−Km2 ……(2) ここでEoは電圧印加により与えられた電解強度、Kはブ
ロキング係数である。
E = Eo−Km 2 (2) Here, Eo is the electrolytic strength given by voltage application, and K is the blocking coefficient.

仮に、現像中に実効トナー濃度aが変化しないと仮定す
ると、(1),(2)式から dm/dt=aμ(Eo−Km2) ……(3) この(3)式を解くと、 ここで、t,a,Eoは設定値で、mは実験より得られる値
(g/cm2)なので、数例のデータがあれば移動度μとブ
ロッキング係数Kを決定することができる。いま、移動
度がわかれば非水溶液中での泳動式(5)よりζ電位を
求めることができる。
Assuming that the effective toner concentration a does not change during development, dm / dt = aμ (Eo−Km 2 ) (3) From equations (1) and ( 2 ) ... Here, t, a, and Eo are set values, and m is a value (g / cm 2 ) obtained from an experiment, so that the mobility μ and the blocking coefficient K can be determined if there are several examples of data. Now, if the mobility is known, the ζ potential can be obtained from the migration equation (5) in a non-aqueous solution.

ζ=1.5ημ/ε ……(5) ここで、ηは現像剤の粘度、εは現像液の誘電率であ
る。
ζ = 1.5 ημ / ε l (5) where η is the viscosity of the developer and ε 1 is the dielectric constant of the developer.

次にQ/mの測定原理をのべる。Next, the principle of Q / m measurement is explained.

電着層の表面電位Vtは積分式(6)であらわされる。The surface potential Vt of the electrodeposition layer is expressed by the integral formula (6).

Vt=∫0 dσx/εdx =σd2/2ε ……(6) ここで、σは電着層の体積電荷密度、ρは電着層の誘電
率、dは電着層の厚さで(7)式で示される。
Vt = ∫ 0 d σx / ε d dx = σ d 2 / 2ε d (6) where σ is the volume charge density of the electrodeposition layer, ρ is the dielectric constant of the electrodeposition layer, and d is the thickness of the electrodeposition layer. Then, it is shown by the equation (7).

d=m/aρ ……(7) また、体積電荷密度σは(8)式で示される。d = m / ad ρ d (7) Further, the volume charge density σ is expressed by the equation (8).

σ=(Q/m)aρ ……(8) いま、(7)式と(8)式を(6)式に代入すると、
(9)式が得られ、これから電着層の二乗と電着層の電
位のグラフの傾きからQ/mを求めることができる。
σ = (Q / m) ad ρ d (8) Now, substituting equations (7) and (8) into equation (6),
Equation (9) is obtained, and from this, Q / m can be obtained from the slope of the graph of the square of the electrodeposition layer and the potential of the electrodeposition layer.

(実施例) 第1図は本考案の一実施例の構成を示し、34は一定速度
で矢印方向へ移動可能な移動ステージ、この移動ステー
ジ上に既知重量の取外し可能な移動対向電極35を有す
る。36は現像剤タンクで測定したい現像剤を入れ、移動
ステージをスタートさせ電磁バルブ37を開き現像剤が供
給される。38は高電圧電源で現像用対向電極39と、これ
と一定の間隙をもって対向する移動対向電極35との間に
高電圧を加え、現像を行なう。40は表面電位計で、トナ
ー層42の電位を測定するプローブ41を有する。
(Embodiment) FIG. 1 shows the structure of an embodiment of the present invention, in which a moving stage 34 is movable at a constant speed in the direction of the arrow, and a movable counter electrode 35 of known weight is detachable on this moving stage . In the developer tank 36, the developer to be measured is put, the moving stage is started, the electromagnetic valve 37 is opened, and the developer is supplied. A high voltage power source 38 applies a high voltage between the developing counter electrode 39 and the moving counter electrode 35 which faces the developing counter electrode 39 with a constant gap therebetween for developing. A surface electrometer 40 has a probe 41 for measuring the electric potential of the toner layer 42.

このような装置の動作をのべると、移動ステージ34を一
定速度で現像剤タンク36の下に移動する。電磁バルブ37
は移動ステージの移動速度に合せて移動対向電極35が直
下に来たとき、その上面に現像剤を一様に散布する。
When the operation of such a device is described, the moving stage 34 is moved below the developer tank 36 at a constant speed. Solenoid valve 37
Spreads the developer evenly on the upper surface of the moving counter electrode 35 when the moving counter electrode 35 comes directly under the moving speed of the moving stage.

次に高電圧電源38がスイッチオンし、現像用対向電極39
と移動対向電極35の間隙にある現像剤(トナー層42)に
高電圧(直流電圧)を印加し、現像する。現像されたト
ナー層42(トナー粒子)は表面電位計40のプローブ41に
よって、トナー層の電位が測定される。
Next, the high-voltage power supply 38 is switched on, and the developing counter electrode 39
A high voltage (DC voltage) is applied to the developer (toner layer 42) in the gap between the moving counter electrode 35 and the developing electrode 35 for development. The potential of the developed toner layer 42 (toner particles) is measured by the probe 41 of the surface electrometer 40.

次にトナー層の重量測定は、既知重量の移動対向電極35
とともに行なう。この場合、乾燥後行なっても良く、溶
剤中に浸して行なってもよい。
Next, the weight of the toner layer is measured by measuring the moving counter electrode 35 having a known weight.
With. In this case, it may be carried out after drying or may be carried out by immersing it in a solvent.

第2図は、リコー社製CT5085トナーを用い上記測定装置
で得られたトナー層の電着重量の二乗と、トナー層電位
の実測結果のグラフを示す。このグラフの傾きと264Vcm
4/mg2とトナー層の誘電率ρ2.65から前記(9)式に基
づきQ/mを算出し、測定数値例として本トナーの場合、2
4.5μc/gを得た。
FIG. 2 shows a graph of the square of the electrodeposition weight of the toner layer obtained by the above-mentioned measuring apparatus using CT5085 toner manufactured by Ricoh Co., Ltd., and the measurement result of the toner layer potential. The slope of this graph and 264 Vcm
Q / m was calculated from 4 / mg 2 and the dielectric constant ρ2.65 of the toner layer based on the equation (9) above.
4.5 μc / g was obtained.

(考案の効果) 本考案は上述したような構成により、実際の複写機が動
作している電界強度の状態で、トナー層の移動度,ζ電
位,現像量,Q/m等が測定できる他、トナー層の電位減衰
速度を測定することにより、C,Rの測定もできる効果が
ある。
(Advantages of the Invention) With the configuration described above, the present invention can measure the mobility of the toner layer, the ζ potential, the development amount, Q / m, etc. under the condition of the electric field strength in which the actual copying machine is operating. By measuring the potential decay rate of the toner layer, C and R can be measured.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例による物性測定装置の構成
図、第2図は第1図によるトナー層の測定結果を示すグ
ラフ、第3図ないし第7図は従来の各種の移動度及びζ
電位測定を示す図である。 34……移動ステージ、35……移動対向電極、36……現像
剤タンク、37……電磁バルブ、38……高電圧電源、39…
…現像用対向電極、40……表面電位計、41……プロー
ブ、42……トナー層。
FIG. 1 is a block diagram of a physical property measuring apparatus according to an embodiment of the present invention, FIG. 2 is a graph showing a measurement result of a toner layer according to FIG. 1, and FIGS. ζ
It is a figure which shows electric potential measurement. 34 ... moving stage, 35 ... moving counter electrode, 36 ... developer tank, 37 ... electromagnetic valve, 38 ... high-voltage power supply, 39 ...
… Counter electrode for development, 40 …… Surface potential meter, 41 …… Probe, 42 …… Toner layer.

───────────────────────────────────────────────────── フロントページの続き (72)考案者 梅村 和彦 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (56)参考文献 特公 平5−52901(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Kazuhiko Umemura 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Co., Ltd. (56) References Japanese Patent Publication 5-52901 (JP, B2)

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】既知重量の現像用対向電極が取外し可能に
載置され、かつ定速で移動可能なステージと、該対向電
極に対し一定の間隙をもって位置せしめられる高電圧印
加の一方の現像用対向電極と、両対向電極の間隙に液体
現像剤を供給するタンクと、両対向電極によって現像後
のトナー層の電位を測定するプローブを有する測定器か
ら構成され、前記トナー層の電位測定の後,前記取外し
可能な現像用対向電極を取外し、トナー層重量を測定す
ることを特徴とする静電写真用液体現像剤の物性測定装
置。
1. A stage, on which a counter electrode for development having a known weight is removably mounted, and which is movable at a constant speed, and one for high voltage application, which is positioned with a constant gap with respect to the counter electrode. A counter electrode, a tank for supplying a liquid developer to the gap between the two counter electrodes, and a measuring instrument having a probe for measuring the potential of the toner layer after development by the two counter electrodes. A device for measuring physical properties of a liquid developer for electrostatic photography, characterized in that the removable counter electrode for development is removed and the weight of the toner layer is measured.
JP8229388U 1988-06-23 1988-06-23 Device for measuring physical properties of liquid developer for electrostatic photography Expired - Lifetime JPH07925Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8229388U JPH07925Y2 (en) 1988-06-23 1988-06-23 Device for measuring physical properties of liquid developer for electrostatic photography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8229388U JPH07925Y2 (en) 1988-06-23 1988-06-23 Device for measuring physical properties of liquid developer for electrostatic photography

Publications (2)

Publication Number Publication Date
JPH025755U JPH025755U (en) 1990-01-16
JPH07925Y2 true JPH07925Y2 (en) 1995-01-11

Family

ID=31307052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8229388U Expired - Lifetime JPH07925Y2 (en) 1988-06-23 1988-06-23 Device for measuring physical properties of liquid developer for electrostatic photography

Country Status (1)

Country Link
JP (1) JPH07925Y2 (en)

Also Published As

Publication number Publication date
JPH025755U (en) 1990-01-16

Similar Documents

Publication Publication Date Title
Cevc Electrostatic characterization of liposomes
JP2002005888A (en) Mobility and effect caused by surface charge
White et al. Application of capillary electrophoresis to predict crossover frequency of polystyrene particles in dielectrophoresis
US4928065A (en) Voltammetry in low-permitivity suspensions
JP5124639B2 (en) Determination of liquid properties
JPH11258209A (en) Device for measuring density of electric charge and mobility in liquid solution
Omasu et al. Measurement of the electrophoretic mobility of sheep erythrocytes using microcapillary chips
JPH07925Y2 (en) Device for measuring physical properties of liquid developer for electrostatic photography
US3496762A (en) Flow-type viscosimeter
Novotny et al. Simple electrical plateout method for measuring charge/mass of nonaqueous suspensions
KR100561427B1 (en) Apparatus and method measuring conductivity and charge/mass of liquid toner
US3975681A (en) Electrode for measuring thickness of dielectric layers on conductive substrates
Chao et al. The use of optics for understanding the electrochemical interface
JP4165674B2 (en) Electrophoretic analysis method and apparatus for fine particles in liquid
Lyklema et al. Dynamic properties of the AgI-solution interface: Implications for colloid stability
Iiguni et al. Simultaneous measurement of the migration velocity and adsorption force of micro-particles using an electromagnetophoretic force under a high magnetic field
Wada et al. Electric charge measurement on a single microparticle using thermodynamic analysis of electrostatic forces
SU868526A1 (en) Method of determining electrophoretic parameters of liquid electrographic developer
Goetz System 3000 automated electrokinetics analyzer for biomedical applications
US3869910A (en) Diagnostic test device for developer materials
Bartscher et al. New aspects for the description of liquid immersion development
Miomandre et al. Reversible charge transfer with unknown mass transfer. Characterization and modelling by using a mass-transfer operator determined from experimental data
Horobin et al. Agar gel electrophoresis: an advantageous technique for the investigation of certain biological stains
JPH09292358A (en) Zeta-potential measuring method using optical-scanning type two-dimensional concentration-distribution measuring device
Hsu Electrophoretic Mobility Measurement in Low Dielectric Constant Medium