JPH0792570B2 - Liquid crystal display device and manufacturing method thereof - Google Patents

Liquid crystal display device and manufacturing method thereof

Info

Publication number
JPH0792570B2
JPH0792570B2 JP63069276A JP6927688A JPH0792570B2 JP H0792570 B2 JPH0792570 B2 JP H0792570B2 JP 63069276 A JP63069276 A JP 63069276A JP 6927688 A JP6927688 A JP 6927688A JP H0792570 B2 JPH0792570 B2 JP H0792570B2
Authority
JP
Japan
Prior art keywords
liquid crystal
film
crystal display
alignment film
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63069276A
Other languages
Japanese (ja)
Other versions
JPH01243023A (en
Inventor
久男 横倉
忠夫 中田
輝夫 北村
昭夫 向尾
保彦 神藤
五十治 酒井
保夫 藤村
昇 増谷
恒隆 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nitto Denko Corp
Original Assignee
Hitachi Ltd
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nitto Denko Corp filed Critical Hitachi Ltd
Priority to JP63069276A priority Critical patent/JPH0792570B2/en
Priority to US07/326,557 priority patent/US5067797A/en
Priority to DE3909704A priority patent/DE3909704A1/en
Priority to KR1019890003779A priority patent/KR0122079B1/en
Publication of JPH01243023A publication Critical patent/JPH01243023A/en
Publication of JPH0792570B2 publication Critical patent/JPH0792570B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶表示素子に用いる配向膜に係り、特に、
ネマチツク液晶表示素子、強誘電性液晶表示素子に好適
な水面展開製膜法により形成した配向膜に関する。
TECHNICAL FIELD The present invention relates to an alignment film used for a liquid crystal display element, and in particular,
The present invention relates to an alignment film formed by a water surface development film forming method suitable for a nematic liquid crystal display device and a ferroelectric liquid crystal display device.

〔従来の技術〕[Conventional technology]

液晶表示素子が各種のデイスプレイに実用されている。
良好な表示品質を得るためには、液晶分子を均一に配向
させる必要がある。その役割を担うのが、液晶の配向膜
である。そのため、配向膜に関し多くの開発研究がなさ
れ、これまでSiO等の無機化合物を斜方蒸着した無機配
向膜、ポリイミド等の有機高分子膜を形成して布等でこ
すつた有機配向膜(特開昭50−83051号、同51−65960
号)等が液晶表示素子に実用されてきた。また、最近で
は、ラングミユア・プロジエツト法(以下LB法)によつ
てポリイミド等の単分子層又は単分子層を多数累積した
膜を液晶表示素子の配向膜(特開昭62−209415号、同62
−211617号、同62−215928号)に用いることが提案され
ている。
Liquid crystal display devices have been put to practical use in various displays.
In order to obtain good display quality, it is necessary to orient the liquid crystal molecules uniformly. The liquid crystal alignment film plays the role. Therefore, a lot of research and development have been conducted on the alignment film, and until now, an inorganic alignment film in which an inorganic compound such as SiO was obliquely vapor-deposited, an organic polymer film such as polyimide, and an organic alignment film rubbed with a cloth etc. 50-83051, 51-65960
No.) etc. have been put to practical use for liquid crystal display devices. In addition, recently, the alignment film of a liquid crystal display device is formed by a Langmuir-Proget method (hereinafter referred to as the LB method) to form a monomolecular layer of polyimide or the like or a film in which a large number of monomolecular layers are accumulated (Japanese Patent Laid-Open Nos. 62-209415 and 62-209415).
-211617 and 62-215928) are proposed.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、上述の配向膜にはそれぞれ重大な欠点が
あつた。斜方蒸着により形成した無機配向膜は、その配
向膜形成に蒸着装置などの真空装置を必要とし、量産性
の点で十分なものとは言えない。
However, each of the above alignment films has serious drawbacks. An inorganic alignment film formed by oblique vapor deposition requires a vacuum device such as a vapor deposition device to form the alignment film, and is not sufficient in terms of mass productivity.

一方、有機配向膜の場合、量産性の点で極めて優れてい
るが高分子膜を均一な膜厚で塗布できない。また、布な
どでこするラビング処理により静電気が発生する、配向
膜表面を汚染するなどの問題が生じている。例えば、ネ
マチツク液晶を用いたスーパーツイスト液晶素子(ST
N)〔SIDインターナシヨナルシンポジウム:p120〜123、
(1985)〕では、配向膜の膜厚に起因するしきい値電圧
(Vth)の不均一により表示むらが生じたり、静電気に
よるITO電極の破壊で非点灯部が発生する。また電極間
のシヨート等も発生し易い。更に、配向膜表面の汚染は
素子のしきい値電圧の周波数依存性の不均一化を招く。
これは表示むらにつながる。
On the other hand, in the case of an organic alignment film, it is extremely excellent in mass productivity, but a polymer film cannot be applied with a uniform film thickness. Further, there are problems such as static electricity being generated by rubbing with a cloth or the like and contamination of the surface of the alignment film. For example, a super twist liquid crystal element (ST
N) [SID International Symposium: p120-123,
(1985)], display unevenness occurs due to non-uniformity of the threshold voltage (Vth) due to the thickness of the alignment film, or non-lighted portions occur due to destruction of the ITO electrode due to static electricity. In addition, shorts between electrodes are likely to occur. Further, contamination of the surface of the alignment film causes non-uniformity of the frequency dependence of the threshold voltage of the device.
This leads to uneven display.

アクテイブマトリツクス液晶素子では、薄膜トランジス
タ(TFT)あるいはダイオードなどのスイツチング素子
の損傷、あるいはスイツチング特性の変化による点灯不
良などを引起す。また、ラビング時の荷重を基板全体で
コントロールする困難さも有り、特に大型の液晶素子に
おいてラビングによるキズを生じさせてしまうなどの問
題もある。
In an active matrix liquid crystal element, a switching element such as a thin film transistor (TFT) or a diode is damaged, or a lighting failure occurs due to a change in switching characteristic. Further, it is difficult to control the load during rubbing on the entire substrate, and there is a problem that scratches are caused by rubbing particularly in a large liquid crystal element.

LB法によつて形成した配向膜では、上述のような静電気
による問題は生じないが、LB法は量産性の点で問題があ
つた。すなわち、LB法により形成される高分子膜は、一
層が約4Åレベルの単分子膜であり、超薄膜すぎてITO
電極が見えるなど表示品質の点から好ましくない。現
在、実用されている有機配向膜は、表示品質の点から約
500Å以上の膜厚が必要である。しかしLB法では、この
ような配向膜を作製するには、例えば一層が約4ÅのLB
膜で500Åとするには、125回の累積操作が必要となる。
このようにLB法による配向膜の形成は作業性が極めて悪
く実際の生産にはあまり適さない。
The alignment film formed by the LB method does not have the above-mentioned problem due to static electricity, but the LB method has a problem in terms of mass productivity. That is, the polymer film formed by the LB method is a monomolecular film with a level of about 4Å, and it is too thin to be ITO.
It is not preferable from the viewpoint of display quality such as visible electrodes. Currently, the organic alignment film currently in practical use is about
A film thickness of 500Å or more is required. However, with the LB method, in order to form such an alignment film, for example, one layer of LB is about 4Å
To make the membrane 500 Å, 125 cumulative operations are required.
As described above, the workability of forming an alignment film by the LB method is extremely poor and is not suitable for actual production.

本発明の目的は上記のような事情にかんがみ、ラビング
処理が不要で、且つ量産性に優れた配向膜を提供するこ
とにある。
In view of the above circumstances, an object of the present invention is to provide an alignment film which does not require rubbing treatment and is excellent in mass productivity.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明を概説すれば、本発明の第1の発明は液晶表示素
子に関する発明であつて、少なくとも一方が透光性の一
対の電極基板間に少なくとも液晶層及び該液晶分子配向
膜を挟持してなる液晶表示素子において、前記配向膜の
膜厚が0.1μm以下で、該配向膜の少なくとも一方は、
単層の膜厚が0.003μm以上の有機高分子の水面展開膜
から成ることを特徴とする。
Briefly describing the present invention, the first invention of the present invention relates to a liquid crystal display element, in which at least one liquid crystal layer and the liquid crystal molecule alignment film are sandwiched between a pair of translucent electrode substrates. In the liquid crystal display element, the thickness of the alignment film is 0.1 μm or less, and at least one of the alignment films is
It is characterized in that it is composed of a water-spreading film of an organic polymer having a thickness of 0.003 μm or more.

また本発明の第2の発明は、上記第1の発明の液晶表示
素子の製造方法に関する発明であつて、液晶表示素子を
製造する方法において、有機高分子溶液を水面上に供給
し、該溶液を一方向に引いて製膜し、得られた水面展開
膜を電極基板上の所定の部位に密着形成し、該電極基板
を用いて作成した液晶セルに液晶を封入する工程を含む
ことを特徴とする。
A second invention of the present invention is the invention relating to the method for producing a liquid crystal display element of the first invention, wherein in the method for producing a liquid crystal display element, an organic polymer solution is supplied onto the water surface, Is formed in one direction to form a film, and the resulting water surface development film is formed in close contact with a predetermined site on the electrode substrate, and liquid crystal is sealed in a liquid crystal cell created using the electrode substrate. And

本発明者らは、ラビング等の処理が不要で、液晶分子に
対する配向機能を示すLB膜に関する研究を進め、後に詳
述する水面展開製膜法によつて有機高分子の分子鎖を配
列させた膜をガラス基板の上に形成させることに成功
し、その膜によつて液晶分子を配向させることを見出し
て本発明を達成した。
The present inventors proceeded with research on an LB film that does not require treatment such as rubbing and has an alignment function for liquid crystal molecules, and arranged the molecular chains of an organic polymer by a water surface development film forming method described in detail later. The present invention was accomplished by succeeding in forming a film on a glass substrate and finding that the film aligns liquid crystal molecules.

すなわち、水面展開製膜法により形成した高分子膜は一
回処理で極めて短時間で膜厚が30Å〜1000Åの高分子膜
をガラス基板上に形成でき、且つ水面上に展開される膜
を一定方向に引取る操作によつて高分子の分子配列が一
定方向にそろつた膜を作ることができることを見出し
た。また、このように形成した膜が液晶分子に対して配
向作用を示すことを見出した。
That is, the polymer film formed by the water surface development film forming method can form a polymer film having a film thickness of 30Å to 1000Å on a glass substrate in a very short time by a single treatment, and the film developed on the water surface is constant. It was found that a film in which the molecular arrangement of macromolecules is aligned in a certain direction can be prepared by the operation of pulling in the direction. It was also found that the film thus formed has an alignment effect on liquid crystal molecules.

水面展開製膜法により形成した配向膜は、ラビング処理
が不要なため静電気などの発生がなく、電極やTFTなど
を破壊することが全くなく、配向膜界面を汚染すること
なく、膜厚も均一にすることができるため表示むらなど
を生じさせることがない。更に、一回の処理で30Å以上
の厚い高分子を形成できるので表示品質を低下させるこ
となく量産性も優れたものにできる。
The alignment film formed by the water surface development film formation method does not require rubbing treatment, does not generate static electricity, does not destroy electrodes or TFTs, does not contaminate the alignment film interface, and has a uniform film thickness. Since it can be set, display unevenness does not occur. Furthermore, since a thick polymer having a thickness of 30 liters or more can be formed in a single treatment, it is possible to achieve excellent mass productivity without deteriorating the display quality.

水面展開製膜法とは、例えば模式的に第1図に示すよう
な装置を用いて製膜する方法である。
The water surface development film forming method is a method of forming a film using, for example, a device schematically shown in FIG.

すなわち、第1図は本発明素子で使用する配向膜を製造
するための水面展開連続製膜装置の1例の概要図であ
る。第1図において、符号1はノズル、2は水槽、3は
水面、4は生成した膜、5〜7はロール、8はフイルム
状基材を意味する。
That is, FIG. 1 is a schematic view of an example of a water surface development continuous film forming apparatus for manufacturing an alignment film used in the element of the present invention. In FIG. 1, reference numeral 1 is a nozzle, 2 is a water tank, 3 is a water surface, 4 is a film formed, 5 to 7 are rolls, and 8 is a film-shaped substrate.

第1図に示すように、定量ポンプでノズル1から有機高
分子溶液を水槽2内の水面3上に放出すると、該溶液が
水面上に自発的に展開して、第2図に示すように膜4が
生成する。すなわち、第2図は、水面上での有機高分子
溶液の展開模式図であり、第2−1図はその平面図、第
2−2図は拡大側面図である。第2図において、aは溶
液部、bはゲル状部、cは固体膜部を意味する。
As shown in FIG. 1, when the metering pump discharges the organic polymer solution from the nozzle 1 onto the water surface 3 in the water tank 2, the solution spontaneously develops on the water surface, and as shown in FIG. A film 4 is produced. That is, FIG. 2 is a development schematic view of an organic polymer solution on the water surface, FIG. 2-1 is a plan view thereof, and FIG. 2-2 is an enlarged side view. In FIG. 2, a means a solution part, b a gel part, and c a solid film part.

こうして生成した膜4を、ロール5〜7により移動する
フイルム状基材8に接触させるか、フイルム状基材の表
面又は液晶表示素子の基板上の所定の部位に膜を付着移
行させ引取る。この際、有機高分子溶液の水面上での自
発的展開速度より速い速度で引取ることによつて、分子
配向性を付与することができる。このようにして得られ
た配向膜は、一定方向に配向する効果を有し、分子配向
に基因する赤外二色比が1.05以上の値を示す。
The film 4 thus generated is brought into contact with the film-shaped substrate 8 which is moved by the rolls 5 to 7, or the film is attached and transferred to the surface of the film-shaped substrate or a predetermined site on the substrate of the liquid crystal display element and taken out. At this time, the molecular orientation can be imparted by collecting the organic polymer solution at a speed higher than the spontaneous development speed on the water surface. The orientation film thus obtained has the effect of orienting in a fixed direction, and exhibits an infrared dichroic ratio of 1.05 or more due to molecular orientation.

本発明の効果を発現できる系は、水面展開製膜法にて膜
を形成できるすべての系である。有機高分子物質として
は、各種ポリイミド及びその前駆体のポリアミド酸、ポ
リパラキシリレン、ポリエステル、ポリカーボネート、
ポリアミド、メラミン、ユリア樹脂、更にポリブテン、
ポリメチルベンテン等のオレフイン系ポリマー、酢酸セ
ルロース等のセルロース誘導体、ポリフツ化ビニル、ポ
リフツ化ビニリデン等の含フツ素ポリマー、ポリメチル
メタクリレート等のアクリル系ポリマー等が利用でき
る。特に好適な配向膜の形成に用いられるポリアミド酸
及びポリイミドは、ジアミン化合物又は二塩基酸ヒドラ
ジド化合物とテトラカルボン酸二向水物とを共重合させ
ることにより得ることができる。
Systems capable of exhibiting the effects of the present invention are all systems capable of forming a film by the water surface development film forming method. As the organic polymer substance, various polyimides and polyamic acids of their precursors, polyparaxylylene, polyester, polycarbonate,
Polyamide, melamine, urea resin, polybutene,
Olefin-based polymers such as polymethyl bentene, cellulose derivatives such as cellulose acetate, fluorine-containing polymers such as polyvinyl fluoride and vinylidene polyfluoride, acrylic polymers such as polymethyl methacrylate and the like can be used. The polyamic acid and polyimide used for forming a particularly suitable alignment film can be obtained by copolymerizing a diamine compound or a dibasic acid hydrazide compound with a tetracarboxylic acid dihydrate.

上記のテトラカルボン酸二無水物としては、ピロメリツ
ト酸二無水物、3,3′,4,4′−ベンゾフエノンテトラカ
ルボン酸二無水物、3,3′,4,4′−ビフエニルテトラカ
ルボン酸二無水物、シクロペンタンテトラカルボン酸二
無水物、シクロブタンテトラカルボン酸二無水物、ナフ
タレンテトラカルボン酸二無水物、ピリジンテトラカル
ボン酸二無水物、ペリレンテトラカルボン酸二無水物、
4,4′−ジスルホニルジフタル酸二無水物、ビス〔ジカ
ルボキシフエノキシ)フエニル〕プロパンテトラカルボ
ン酸二無水物、ビス〔ジカルボキシフエノキシ)ジフエ
ニルエーテルテトラカルボン酸二無水物、ビス〔ジカル
ボキシフエノキシ)フエニル〕ヘキサフルオロプロパン
テトラカルボン酸二無水物、ブタンテトラカルボン酸二
無水物等が挙げられ、単独若しくは2種以上を混合して
用いることができる。
Examples of the tetracarboxylic acid dianhydride include pyromellitic acid dianhydride, 3,3 ', 4,4'-benzophenone tetracarboxylic acid dianhydride and 3,3', 4,4'-biphenyl tetraanhydride. Carboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, cyclobutanetetracarboxylic dianhydride, naphthalenetetracarboxylic dianhydride, pyridinetetracarboxylic dianhydride, perylenetetracarboxylic dianhydride,
4,4′-disulfonyldiphthalic acid dianhydride, bis [dicarboxyphenoxy) phenyl] propanetetracarboxylic dianhydride, bis [dicarboxyphenoxy) diphenylethertetracarboxylic dianhydride, Examples thereof include bis [dicarboxyphenoxy) phenyl] hexafluoropropanetetracarboxylic acid dianhydride and butanetetracarboxylic acid dianhydride. These can be used alone or in combination of two or more.

上記のテトラカルボン酸二無水物と共重合させるジアミ
ン、二塩基酸ヒドラジドとしては、フエニレンジアミ
ン、ジフエニレンジアミン、トリフエニレンジアミン、
式: (式中Xは直接結合、−O−、−CH2−、−SO2−、−CO
−、 を示す)で表される化合物、若しくくは、下記一般式I: で表される構造をもつ化合物、例えば、式: (式中各Xは前記と同義である)で表されるビス(アミ
ノフエノキシ)ジフエニル化合物等が用いられる。具体
的には、p−フエニレンジアミン、m−フエニレンジア
ミン、4,4″−ジアミノターフエニル、4,4′−ジアミノ
ジフエニルスルホン、3,3′−ジアミノジフエニルスル
ホン、4,4′−ジアミノジフエニルエーテル、4,4′−ジ
アミノフエニルベンゾエート、4,4′−ジアミノジフエ
ニルメタン、2,2−(4,4′−ジアミノジフエニル)プロ
パン、4,4′−ビス(p−アミノフエノキシ)ジフエニ
ルスルホン、4,4′−ビス(m−アミノフエノキシ)ジ
フエニルスルホン、4,4′−ビス(p−アミノフエノキ
シ)ジフエニルエーテル、4,4′−ビス(p−アミノフ
エノキシ)ジフエニルケトン、4,4′−ビス(p−アミ
ノフエノキシ)ジフエニルメタン、2,2−〔4,4′−ビス
(p−アミノフエノキシ)ジフエニル〕プロパン、2,2
−〔4,4′−ビス(p−アミノフエノキシ)ジフエニ
ル〕ヘキサフルオロプロパン、また、式: で表される4,4′−ジアミノ−3−カルバモイルジフエ
ニルエーテル、また、下記のジアミノシロキサン化合物
がある。
Diamine to be copolymerized with the above tetracarboxylic acid dianhydride, as the dibasic acid hydrazide, phenylenediamine, diphenylenediamine, triphenylenediamine,
formula: (Wherein X is a direct bond, -O -, - CH 2 - , - SO 2 -, - CO
-, A compound represented by the following general formula I: A compound having a structure represented by, for example, the formula: A bis (aminophenoxy) diphenyl compound represented by the formula (wherein each X has the same meaning as defined above) is used. Specifically, p-phenylenediamine, m-phenylenediamine, 4,4 ″ -diaminoterphenyl, 4,4′-diaminodiphenyl sulfone, 3,3′-diaminodiphenyl sulfone, 4,4 ′ -Diaminodiphenyl ether, 4,4'-diaminophenyl benzoate, 4,4'-diaminodiphenyl methane, 2,2- (4,4'-diaminodiphenyl) propane, 4,4'-bis (p -Aminophenyloxy) diphenyl sulfone, 4,4'-bis (m-aminophenyloxy) diphenyl sulfone, 4,4'-bis (p-aminophenoxy) diphenyl ether, 4,4'-bis (p-aminophenyloxy) diphenyl ketone, 4,4'-bis (p-aminophenyloxy) diphenylmethane, 2,2- [4,4'-bis (p-aminophenyloxy) diphenyl] propane, 2,2
-[4,4'-bis (p-aminophenoxy) diphenyl] hexafluoropropane, also of the formula: 4,4'-diamino-3-carbamoyldiphenyl ether represented by the following formula and the following diaminosiloxane compound.

また、二塩基酸ヒドラジド化合物としては、例えばイソ
フタル酸ジヒドラジド、テレフタル酸ジヒドラジド、4,
4′−ジヒドラジドジフエニルエーテル、4,4′−ジヒド
ラジドジフエニルスルホン、4,4′−ジヒドラジドジフ
エニル、4,4′−ジヒドラジドジフエニルメタン、4,4′
−ジヒドラジドフエニルベンゾエート、4,4′−ジヒド
ラジドジフエニルスルフイド、3,3′−ジヒドラジドジ
フエニルスルホン、4,4′−ビス(p−ヒドラジドフエ
ノキシ)ジフエニルスルホン、4,4′−ビス(m−ヒド
ラジドフエノキシ)ジフエニルスルホン、4,4′−ビス
(p−ヒドラジドフエノキシ)ジフエニルエーテル、2,
2−〔4,4′−ビス(p−ヒドラジドフエノキシ)ジフエ
ニル〕プロパン、2,2−〔4,4′−ビス(p−ヒドラジド
フエノキシ)ジフエニル〕ヘキサフルオロプロパン、シ
ユウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸
ジヒドラジド、グルタル酸ジヒドラジド、アジピン酸ジ
ヒドラジド、ピメリン酸ジヒドラジド、スベリン酸ジヒ
ドラジド、アゼライン酸ジヒドラジド、セバシン酸ジヒ
ドラジド等が挙げられる。これらも単独で又は2種以上
を混合して使用することができる。
Examples of the dibasic acid hydrazide compound include isophthalic acid dihydrazide, terephthalic acid dihydrazide, 4,
4'-dihydrazide diphenyl ether, 4,4'-dihydrazide diphenyl sulfone, 4,4'-dihydrazide diphenyl, 4,4'-dihydrazide diphenyl methane, 4,4 '
-Dihydrazide phenyl benzoate, 4,4'-dihydrazide diphenyl sulfide, 3,3'-dihydrazide diphenyl sulfone, 4,4'-bis (p-hydrazide phenoxy) diphenyl sulfone, 4,4 ' -Bis (m-hydrazidophenoxy) diphenyl sulfone, 4,4'-bis (p-hydrazidophenoxy) diphenyl ether, 2,
2- [4,4'-bis (p-hydrazidophenoxy) diphenyl] propane, 2,2- [4,4'-bis (p-hydrazidophenoxy) diphenyl] hexafluoropropane, oxalic acid dihydrazide, Malonic acid dihydrazide, succinic acid dihydrazide, glutaric acid dihydrazide, adipic acid dihydrazide, pimelic acid dihydrazide, suberic acid dihydrazide, azelaic acid dihydrazide, sebacic acid dihydrazide and the like can be mentioned. These may be used alone or in combination of two or more.

更に、上記のジアミン化合物及び二塩基酸ヒドラジド化
合物は、シリル化を行いN−シリル化ジアミン化合物及
びN−シリル化二塩基酸ヒドラジド化合物としても適用
できる。
Furthermore, the above-mentioned diamine compound and dibasic acid hydrazide compound can be applied as an N-silylated diamine compound and an N-silylated dibasic acid hydrazide compound by silylation.

また重合溶媒としては、ポリアミド酸、ポリイミドを溶
解するものであれば特に問わないが、例えばN−メチル
ピロリドン、ジメチルアセトアミド、ジメチルホルムア
ミド、ジメチルスルホキシド、クレゾール及びフエノー
ル等の単独若しくは2種以上混合して使用することがで
きる。また、一種類の溶剤で十分な水面展開製膜性が得
られない場合には、展開助剤として第二の有機溶剤を添
加することも有効である。このよう展開助剤としては、
脂肪族、脂環族又は芳香族のケトン、エステル、アルコ
ール、アミン、アルデヒド、パーオキシド及びこれらの
混合物が挙げられる。
The polymerization solvent is not particularly limited as long as it can dissolve polyamic acid and polyimide. For example, N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethylsulfoxide, cresol, phenol, etc. may be used alone or in combination of two or more. Can be used. Further, when one type of solvent does not provide sufficient film development on the water surface, it is also effective to add a second organic solvent as a developing aid. As such a deployment aid,
Mention may be made of aliphatic, cycloaliphatic or aromatic ketones, esters, alcohols, amines, aldehydes, peroxides and mixtures thereof.

本発明の配向膜は、電極を設けた基板上に直接形成する
ことができるが、電極の下層又は上層に無機絶縁膜とし
てSiO2、Al2O3並びにTiO2などの膜を設けたものも用い
ることができる。
The alignment film of the present invention can be directly formed on a substrate provided with an electrode, but may also be provided with a film such as SiO 2 , Al 2 O 3 and TiO 2 as an inorganic insulating film in the lower layer or the upper layer of the electrode. Can be used.

また、一層強固な配向膜を得るために、エポキシ系及び
アミノ系シランカツプリング剤の1種以上を併用するこ
とができる。
Further, in order to obtain a stronger alignment film, one or more kinds of epoxy-based and amino-based silane coupling agents can be used in combination.

また、本発明に用いるアミド酸系ポリマー及びイミド系
ポリマーは、どのようなものでも良いが特に固有粘度
(濃度0.5g/100ml,30℃で測定)が0.3〜5.0の範囲内に
あることが好ましい。この固有粘度が低すぎると、得ら
れるポリイミド配向膜の強度が低くなる。一方、固有粘
度が高すぎると、上記ポリマー溶液の流れが悪くなつて
薄膜形成が困難となつてしまう。
The amic acid-based polymer and imide-based polymer used in the present invention may be of any type, but the intrinsic viscosity (concentration 0.5 g / 100 ml, measured at 30 ° C.) is preferably within the range of 0.3 to 5.0. . If the intrinsic viscosity is too low, the strength of the resulting polyimide alignment film will be low. On the other hand, if the intrinsic viscosity is too high, the flow of the polymer solution becomes poor and it becomes difficult to form a thin film.

更に、基材上への配向膜の積層は、水面上の膜を直接積
層してもよいし、あらかじめセパレーターのようなフイ
ルム上に積層したものを透明電極付ガラス板に転写する
方式を用いても良い。この基材上への配向膜の付設は、
単層、複層のいずれであつてもよく、複層の場合は付設
した配向薄膜に付着している水分を完全に乾燥させてか
ら次を積層するのが好ましい。得られた配向膜は、ポリ
アミド酸系のものは、必要に応じて加熱又は化学処理に
よりイミド化しても良い。
Further, for the lamination of the alignment film on the substrate, the film on the water surface may be directly laminated, or a method of previously laminating the film on a film such as a separator onto a glass plate with a transparent electrode is used. Is also good. Attaching an alignment film on this substrate is
It may be either a single layer or a multi-layer. In the case of a multi-layer, it is preferable to completely dry the moisture adhering to the attached orientation thin film and then laminate the next layer. The polyamic acid-based alignment film obtained may be imidized by heating or chemical treatment, if necessary.

また、液晶分子配向膜の赤外二色比は、第3図及び第4
図に示すように、引取速度により影響を受ける。すなわ
ち第3図は、引取速度を変えて作製した配向膜の赤外二
色比を、引取速度(m/分、横軸)と赤外二色比(Abs/
Abs⊥、縦軸)との関係で示すグラフ、第4図はFT−IR
で測定した配向膜の赤外二色性の測定スペクトルを、波
数(cm-1、横軸)と吸光度(縦軸)との関係で示すグラ
フである。
In addition, the infrared dichroic ratio of the liquid crystal molecular alignment film is shown in FIGS.
As shown, it is affected by the take-off speed. That is, Fig. 3 shows the infrared dichroic ratio of the alignment films prepared by changing the take-up speed, the take-off speed (m / min, horizontal axis) and the infrared dichroic ratio (Abs /
Abs ⊥, vertical axis) graph, Fig. 4 shows FT-IR
3 is a graph showing the infrared dichroism measurement spectrum of the alignment film measured in 1. with the relationship between wave number (cm −1 , horizontal axis) and absorbance (vertical axis).

液晶分子配向膜の赤外二色比は、次のようにして求めら
れる。すなわち、配向薄膜単独か、あるいは赤外的に透
明な基材、例えばシリコンウエハー上に配向薄膜を積層
した試料を用い、この試料と赤外線ビームとの間に偏光
子を設け透過法により赤外線吸収スペクトルを測定す
る。そして、赤外の直線偏光軸が薄膜の製膜方向と平行
の場合の吸光度(Abs)及び垂直な場合の吸光度(Abs
⊥)を各々測定し、特定波長におけるAbs/Abs⊥の比
を赤外二色比とすることにより求められる。
The infrared dichroic ratio of the liquid crystal molecular alignment film is obtained as follows. That is, an alignment thin film is used alone, or an infrared transparent substrate is used, for example, a sample in which an alignment thin film is laminated on a silicon wafer, and a polarizer is provided between this sample and an infrared beam to form an infrared absorption spectrum by a transmission method. To measure. Then, the absorbance (Abs) when the linear polarization axis of infrared rays is parallel to the film forming direction of the thin film and the absorbance (Abs) when it is vertical
⊥) is measured and the Abs / Abs⊥ ratio at a specific wavelength is determined as the infrared dichroic ratio.

また、用いる液晶は例えば下記の式に示すマネチツク液
晶(4)〜(10)強誘電性液晶(11)〜(15)等及び各
々混合物として適用される。
The liquid crystals to be used are, for example, the liquid crystals (4) to (10) and the ferroelectric liquid crystals (11) to (15) represented by the following formulas, and the like, and a mixture thereof.

(式中、A、Bはアルキル基、アルコキシ基、シアノ
基、フツ素などである) 本発明の液晶表示素子における液晶層は、ネマチツク液
晶物質を1種以上含有していてよい。その際、素子は、
両基板間の配向方向が80〜280度ねじれた構造を有して
いてよい。また、一方の基板に薄膜トランジスター又は
ダイオード等のスイツチング素子を設けてよい。
(In the formula, A and B are alkyl groups, alkoxy groups, cyano groups, fluorine, etc.) The liquid crystal layer in the liquid crystal display device of the present invention may contain one or more nematic liquid crystal substances. At that time, the element is
It may have a structure in which the orientation direction between both substrates is twisted by 80 to 280 degrees. In addition, a switching element such as a thin film transistor or a diode may be provided on one substrate.

また、液晶層は、強誘電性液晶物質〔前記(11)〜(1
5)のような〕を1種以上含有していてもよい。
Further, the liquid crystal layer is made of a ferroelectric liquid crystal substance [(11) to (1
5), etc.] may be contained.

〔実施例〕〔Example〕

以下、本発明を実施例により更に具体的に説明するが、
本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be described in more detail with reference to Examples.
The present invention is not limited to these examples.

実施例1 3,3′,4,4′−ビフエニルテトラカルボン酸二無水物0.1
モルと2,2−〔4,4′−ビス(p−アミノフエノキシ)ジ
フエニル〕ヘキサフルオロプロパン0.1モルをジメチル
アセトアミド溶液中で、室温で4時間かくはんし固有粘
度3.5のポリアミド酸溶液を合成した。得られたポリア
ミド酸を、ジメチルアセトアミド/アセトフエノン(等
重量比)で5%になるように希釈してポリアミド酸ワニ
スを調製した。この調製溶液を製膜速度15m/分で水面展
開連続製膜を行い、膜厚が1000Å、赤外二色比が1.35 のポリアミド酸配向膜を得た。該薄膜をストライプ状の
透明電極基板(電極幅200μm、間隔50μm)に付設し
得られた基板を製膜方向が直交するように6μmのスペ
ーサを介して、フエニルシクロヘキサン系のネマチツク
液晶組成物を注入し外周部をエポキシ樹脂でシール後、
偏光軸が配向膜の製膜方向と同方向に偏光板を貼り付け
液晶表示素子を得た。このようにして得られた液晶表示
素子は、配向のムラは見られず均一配向性を示す。ま
た、周波数32Hz、印加電圧5Vで応答速度を測定した結
果、立上り(Tr)が5ms、立下り(Td)が20msであつ
た。更に、電気光学特性の第5図に示す電圧透過率特性
(γ=V90/V10)は1.50であつた。なお、第5図は、し
きい値特性を電圧(V、横軸)と透過率(%、縦軸)と
の関係で示すグラフである。
Example 1 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride 0.1
Mol and 2,2- [4,4'-bis (p-aminophenoxy) diphenyl] hexafluoropropane (0.1 mol) were stirred in a dimethylacetamide solution at room temperature for 4 hours to synthesize a polyamic acid solution having an intrinsic viscosity of 3.5. The obtained polyamic acid was diluted with dimethylacetamide / acetophenone (equal weight ratio) to 5% to prepare a polyamic acid varnish. This prepared solution was subjected to continuous film formation on the water surface at a film forming speed of 15 m / min, and the film thickness was 1000Å and the infrared dichroic ratio was 1.35. A polyamic acid alignment film of was obtained. The thin film was attached to a striped transparent electrode substrate (electrode width 200 μm, interval 50 μm), and the obtained substrate was coated with a phenylcyclohexane nematic liquid crystal composition through a spacer of 6 μm so that the film forming directions were orthogonal to each other. After injecting and sealing the outer periphery with epoxy resin,
A polarizing plate was attached to the liquid crystal display device so that the polarization axis was in the same direction as the film forming direction of the alignment film. The liquid crystal display device thus obtained shows uniform alignment without any unevenness in alignment. Moreover, as a result of measuring the response speed at a frequency of 32 Hz and an applied voltage of 5 V, the rise (Tr) was 5 ms and the fall (Td) was 20 ms. Furthermore, the voltage transmittance characteristic (γ = V 90 / V 10 ) shown in FIG. 5 of the electro-optical characteristic was 1.50. Note that FIG. 5 is a graph showing the threshold characteristic as a relationship between voltage (V, horizontal axis) and transmittance (%, vertical axis).

また、本液晶表示素子は静電気の発生がなく、電極間の
シヨート、電極破壊が一切見られなかつた。更に、目視
で観察した結果、ネサ見えた発生していない。
Further, the liquid crystal display device of the present invention did not generate static electricity, and neither short between electrodes nor electrode breakage was observed. Further, as a result of visual observation, it was found that there was no mess.

実施例2 実施例1で得た水面展開製膜のポリアミド酸配向膜を温
度250℃で1時間熱処理してイミド化した〔赤外二色比
1.30(波長1500cm-1)〕、膜厚は600Åである。その
後、実施例1と同様にして液晶表示素子を得た。得られ
た液晶表示素子の配向性は良好で、電気光学特性は周波
数32Hz、印加電圧5Vで応答速度を測定した結果、Trは8m
s、Tdは30msであり、またγは1.60であつた。また、本
液晶表示素子も静電気の発生がなく、電極間のシヨー
ト、電極破壊が一切見られなかつた。更に、目視で観察
した結果、ネサ見えも発生していない。
Example 2 The polyamic acid alignment film of the water-spreading film obtained in Example 1 was heat-treated at a temperature of 250 ° C. for 1 hour to be imidized [infrared dichroic ratio
1.30 (wavelength 1500 cm -1 )], the film thickness is 600 Å. Then, a liquid crystal display device was obtained in the same manner as in Example 1. The orientation of the obtained liquid crystal display device was good, and the electro-optical characteristics were measured at a frequency of 32 Hz and an applied voltage of 5 V. As a result, Tr was 8 m.
s and Td were 30 ms, and γ was 1.60. Also, the liquid crystal display element of the present invention did not generate static electricity, and neither short between electrodes nor electrode destruction was observed. Furthermore, as a result of visual observation, no messy appearance was observed.

実施例3 3,3′,4,4′−ベンゾフエノンテトラカルボン酸二無水
物0.1モルと4,4′−ビス(m−アミノフエノキシ)ジフ
エニルスルホン0.1モルをクレゾールとトルエン混合溶
液中で、150℃で5時間かくはんし固有粘度5.0のポリイ
ミド溶液を合成した。得られたポリイミド溶液をアルコ
ール中で再沈させて、N−メチルピロリドンで3%に再
溶解し、更にアセトフエノンを20重量%混合した。この
調製溶液を製膜速度10m/分で水面展開連続製膜を行い、
膜厚が300Åで赤外二色比が1.10(波長1500cm-1)のポ
リイミド配向膜を得た。該薄膜をストライプ状の透明電
極基板(電極幅200μm、間隔50μm)に付設し得られ
た基板を製膜方向が直交するように7μmのスペーサを
介して、フエニルシクロヘキサン系及びエステル系の液
晶組成物を注入し外周部をエポキシ樹脂でシール後、偏
光軸が配向膜の製膜方向と同方向に偏光板を貼り付け液
晶表示素子を得た。このようにして得られた液晶表示素
子は、配向のムラは見られず均一配向性を示す。また、
周波数32Hz、印加電圧5Vで応答速度を測定した結果、Tr
は13ms、Tdが35msであり、またγは1.65であつた。ま
た、本液晶表示素子も静電気の発生がなく、電極間のシ
ヨート、電極破壊が一切見られなかつた。更に、目視で
観察した結果、ネサ見えも発生していない。
Example 3 0.1 mol of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride and 0.1 mol of 4,4′-bis (m-aminophenoxy) diphenylsulfone were mixed in a mixed solution of cresol and toluene. A polyimide solution having an intrinsic viscosity of 5.0 was synthesized by stirring at 150 ° C. for 5 hours. The obtained polyimide solution was reprecipitated in alcohol, redissolved in 3% with N-methylpyrrolidone, and further mixed with 20% by weight of acetophenone. This preparation solution was subjected to continuous film formation on the water surface at a film forming speed of 10 m / min,
A polyimide alignment film with a film thickness of 300Å and an infrared dichroic ratio of 1.10 (wavelength 1500 cm -1 ) was obtained. The thin film was attached to a stripe-shaped transparent electrode substrate (electrode width 200 μm, interval 50 μm), and the substrate was phenylcyclohexane-based and ester-based liquid crystal composition through a spacer of 7 μm so that the film forming directions were orthogonal to each other. After injecting the substance and sealing the outer peripheral portion with an epoxy resin, a polarizing plate was attached in the same direction as the film-forming direction of the alignment film so that a polarization axis was obtained to obtain a liquid crystal display element. The liquid crystal display device thus obtained shows uniform alignment without any unevenness in alignment. Also,
As a result of measuring the response speed at a frequency of 32 Hz and an applied voltage of 5 V, Tr
Was 13 ms, Td was 35 ms, and γ was 1.65. Also, the liquid crystal display element of the present invention did not generate static electricity, and neither short between electrodes nor electrode destruction was observed. Furthermore, as a result of visual observation, no messy appearance was observed.

実施例4 ピロメリツト酸二無水物0.05モル、3,3′,4,4′−ベン
ゾフエノンテトラカルボン酸二無水物0.05モルとイソフ
タル酸ジヒドラジド0.1モルをジメチルアセトアミド溶
液中で、室温で6時間かくはんし固有粘度2.4のポリヒ
ドラジド酸溶液を合成した。得られたポリヒドラジド酸
を2%に希釈し、以下の条件は実施例3と同様に行い、
膜厚が200Åで赤外二色比が1.20(波長1500cm-1)のポ
リヒドラジド酸配向膜を得た。得られた基板を製膜方向
が直交するように5μmのスペーサを介して、フエニル
シクロヘキサンエステル系の液晶組成物を注入し、エポ
キシ樹脂でシール後、偏光板を貼り付け液晶表示素子を
得た。このようにして得られた液晶表示素子は、配向の
ムラは見られず均一配向性を示す。また、周波数32Hz、
印加電圧5Vで応答速度を測定した結果、Trは10ms、Tdが
30msであり、またγは1.48であつた。また、本液晶表示
素子も静電気の発生がなく、電極間のシヨート、電極破
壊が一切見られなかつた。更に、目視で観察した結果、
ネサ見えも発生していない。
Example 4 0.05 mol of pyromellitic dianhydride, 0.05 mol of 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride and 0.1 mol of isophthalic acid dihydrazide were stirred in a dimethylacetamide solution at room temperature for 6 hours. A polyhydrazide acid solution with an intrinsic viscosity of 2.4 was synthesized. The obtained polyhydrazide acid was diluted to 2%, and the following conditions were the same as in Example 3,
A polyhydrazide acid alignment film with a film thickness of 200Å and an infrared dichroic ratio of 1.20 (wavelength 1500 cm -1 ) was obtained. A phenylcyclohexane ester-based liquid crystal composition was injected into the obtained substrate through a 5 μm spacer so that the film forming directions were orthogonal to each other, and after sealing with an epoxy resin, a polarizing plate was attached to obtain a liquid crystal display element. . The liquid crystal display device thus obtained shows uniform alignment without any unevenness in alignment. Also, the frequency 32Hz,
As a result of measuring the response speed with an applied voltage of 5 V, Tr is 10 ms and Td is
It was 30 ms and γ was 1.48. Also, the liquid crystal display element of the present invention did not generate static electricity, and neither short between electrodes nor electrode destruction was observed. Furthermore, as a result of visual observation,
There is no appearance of Nesa.

実施例5 3,3′,4,4′−ビフエニルテトラカルボン酸二無水物0.0
5モル、ピロメリツト酸二無水物0.05モルと、4,4′−ジ
アミノジフエニルエーテル0.05モル、2,2−〔4,4′−ビ
ス(p−ヒドラジドフエノキシ)ジフエニル〕ヘキサフ
ルオロプロパン0.05モルをN−メチルピロリドン溶液中
で、室温で8時間かくはし固有粘度1.5のポリアミド酸
−ヒドラジド酸溶液を合成した。得られたポリアミド酸
−ヒドラジド酸溶液を1%に希釈し、N−メチルピロリ
ドン/アセトフエノン(等重量比)になるように調整し
た。この調製溶液を製膜速度10m/分で水面展開連続製膜
を行い、膜厚が約30Å、赤外二色比が1.15(波長1500cm
-1)のポリアミド酸−ヒドラジド酸配向膜を得た。該薄
膜をストライプ状の透明電極基板(電極幅200μm、間
隔50μm)上に付設し得られた基板を製膜方向が直交す
るように4μmのスペーサを介して、下記に示すSc
を示す強誘電製液晶組成物 を注入し外周部をエポキシ樹脂でシール後、偏光軸が配
向膜の製膜方向と同方向に偏光板を貼り付け液晶表示素
子を得た。このようにして得られた液晶表示素子は、配
向のムラは見られず均一配向性を示す。また、電気光学
特性も測定した。第6図はこのメモリー性評価特性を、
時間と明るさ及び印加電圧の関係で示すグラフであり、
第6図に示すように電界印加時のコントラスト比CR=B4
/B1、メモリー2状態間のコントラスト比CR M=B3/B2
すると、両者の比はM=(CR M−1)/(CR−1)とな
る。すなわち、メモリー状態の安定性を表すパラメータ
として、メモリー2状態間のコントラスト比と電界印加
時のコントラスト比のメモリー性Mを測定した結果M=
1で、コントラスト比も15:1と良好な値を有していた。
また、本液晶表示素子は静電気の発生がなく、電極間の
シヨート、電極破壊が一切見られなかつた。
Example 5 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride 0.0
5 mol, 0.05 mol of pyromellitic dianhydride, 0.05 mol of 4,4'-diaminodiphenyl ether, 0.05 mol of 2,2- [4,4'-bis (p-hydrazidophenoxy) diphenyl] hexafluoropropane Was stirred in an N-methylpyrrolidone solution at room temperature for 8 hours to synthesize a polyamic acid-hydrazide acid solution having an intrinsic viscosity of 1.5. The obtained polyamic acid-hydrazide acid solution was diluted to 1% and adjusted to be N-methylpyrrolidone / acetophenone (equal weight ratio). The prepared solution was subjected to continuous film formation on the water surface at a film-forming speed of 10 m / min. The film thickness was about 30Å, the infrared dichroic ratio was 1.15 (wavelength 1500 cm.
-1 ) Polyamic acid-hydrazide acid alignment film was obtained. The thin film was attached on a stripe-shaped transparent electrode substrate (electrode width 200 μm, interval 50 μm), and the obtained substrate was strengthened to exhibit the Sc * phase shown below through a spacer of 4 μm so that the film forming directions were orthogonal to each other. Dielectric liquid crystal composition Was injected and the outer peripheral portion was sealed with an epoxy resin, and then a polarizing plate was attached so that the polarization axis was in the same direction as the film forming direction of the alignment film to obtain a liquid crystal display element. The liquid crystal display device thus obtained shows uniform alignment without any unevenness in alignment. The electro-optical characteristics were also measured. Figure 6 shows this memory evaluation characteristic
It is a graph showing the relationship between time and brightness and applied voltage,
As shown in Fig. 6, the contrast ratio C R = B 4 when an electric field is applied.
/ B 1, when the contrast ratio C R M = B 3 / B 2 between memory 2 states, their ratio is M = a (C R M -1) / ( C R -1). That is, as a parameter showing the stability of the memory state, the result of measuring the memory characteristic M of the contrast ratio between the two states of the memory and the contrast ratio when an electric field is applied is M =
1, the contrast ratio was 15: 1, which was a good value.
Further, the liquid crystal display device of the present invention did not generate static electricity, and neither short between electrodes nor electrode breakage was observed.

実施例6 3,3′,4,4′−ビンゾフエノンテトラカルボン酸二無水
物0.1モルと4,4′−ビス(m−アミノフエノキシ)ジフ
エニルスルホン0.09モル、4,4′−ジアミノジフエニル
エーテル−3−カルボンアミド0.01モルをジメチルアセ
トアミド溶液中で、室温で3時間かくはんし固有粘度0.
8のポリアミド酸溶液を合成した。得られたポリアミド
酸の溶液を2%に希釈し、その他は実施例5と同様に行
い膜厚が約100Å、赤外二色比が1.40(波長1500cm-1
のポリアミド酸水面展開製膜法の配向膜を得た。その
後、200℃1時間加熱しポリイミド膜とした。
Example 6 0.1 mol of 3,3 ', 4,4'-binzophenone tetracarboxylic acid dianhydride and 0.09 mol of 4,4'-bis (m-aminophenoxy) diphenyl sulfone, 4,4'-diaminodiphenyl Stirring 0.01 mol of ether-3-carbonamide in a dimethylacetamide solution at room temperature for 3 hours gives an intrinsic viscosity of 0.
A polyamic acid solution of 8 was synthesized. The obtained polyamic acid solution was diluted to 2%, and otherwise the same as in Example 5, and the film thickness was about 100Å and the infrared dichroic ratio was 1.40 (wavelength 1500 cm -1 ).
An alignment film obtained by the water-spreading method of polyamic acid in water was obtained. Then, it was heated at 200 ° C. for 1 hour to form a polyimide film.

その後、実施例5で用いた強誘電性液晶に二色性色素
(三菱化成社製LSB235)を3重量%混入し、配向製、メ
モリー及びコントラスト比を評価した。その結果、配向
のムラは見られず均一配向性を示し、且つメモリー性
(M)はM=1と良好な値を示し、コントラスト比も1
2:1を示した。また、本液晶表示素子は静電気の発生が
なく、電極間のシヨート、電極破壊が一切見られなかつ
た。
Then, 3% by weight of a dichroic dye (LSB235 manufactured by Mitsubishi Kasei Co.) was mixed in the ferroelectric liquid crystal used in Example 5, and the orientation, memory and contrast ratio were evaluated. As a result, there was no unevenness in alignment, uniform alignment was exhibited, and the memory property (M) showed a good value of M = 1 and the contrast ratio was 1 as well.
It showed 2: 1. Further, the liquid crystal display device of the present invention did not generate static electricity, and neither short between electrodes nor electrode breakage was observed.

実施例7 ピロメリツト酸二無水物0.1モル、2,2−〔4,4′−ビス
(p−アミノフエノキキ)ジフエニル〕プロパンのシリ
ル化合物0.08モル、セバシン酸ジヒドラジド0.02モルを
N−メチルピロリドン溶液中で、室温で5時間かくはん
し固有粘度3.5のポリアミド酸−ヒドラジド酸溶液を合
成した。得られたポリアミド酸−ヒドラジド酸溶液を6
%に希釈し、N−メチルピロリドンにアセトフエノンを
30重量混入した調製溶液をアモルフアスシリコン半導体
基板上(画素数20×20)に実施例5と同条件で水面展開
製膜法の約1000Å配向膜を形成し、更に180℃2時間加
熱後、下記に示すネマチツク液晶組成物 を注入し外周部をシール後、偏光軸が配向膜の製膜方向
と同方向に偏光板を貼り付けアクテイブマトリツクス液
晶表示素子を得た。このようにして得られた液晶表示素
子は、配向のムラは見られず均一配向性を示し、且つTF
T動作を行つた結果、全画素が正常に点灯することを確
認した。したがつて、本液晶表示素子は静電気の発生が
なく、TFTの損傷が一切見られなかつた。
Example 7 0.1 mol of pyromellitic dianhydride, 0.08 mol of a silyl compound of 2,2- [4,4'-bis (p-aminophenoxy) diphenyl] propane, and 0.02 mol of sebacic acid dihydrazide were dissolved in a N-methylpyrrolidone solution. After stirring for 5 hours at room temperature, a polyamic acid-hydrazide acid solution having an intrinsic viscosity of 3.5 was synthesized. The obtained polyamic acid-hydrazide acid solution was added to 6
% And add acetophenone to N-methylpyrrolidone
On the amorphous silicon semiconductor substrate (the number of pixels: 20 × 20) mixed with 30 weights, an approximately 1000Å orientation film of the water surface development film forming method was formed under the same conditions as in Example 5, and after heating at 180 ° C. for 2 hours, Nematic liquid crystal composition shown below Was injected and the outer peripheral portion was sealed, and then a polarizing plate was attached in the same direction as the film-forming direction of the alignment film to obtain an active matrix liquid crystal display device. The liquid crystal display device thus obtained shows uniform alignment with no unevenness of alignment, and
As a result of performing the T operation, it was confirmed that all pixels were normally lighted. Therefore, the liquid crystal display device did not generate static electricity, and no TFT damage was observed.

実施例8 3,3′,4,4′−ビフエニルテトラカルボン酸二無水物0.1
モルと2,2−〔4,4′−ビス(p−アミノフエノキシ)ジ
フエニル〕ヘキサフルオロプロパン0.09モル、ジアミノ
シロキサン0.01モルをジメチルアセトアミド溶液中で、
室温で10時間かくはんし固有粘度3.2のポリアミド酸シ
ロキサン溶液を合成した。得られたポリアミド酸シロキ
サン溶液を4%に希釈し、ジメチルアセトアミド/アセ
トフエノン(等重量比)になるよう調製した。この調製
溶液をストライプ状の透明電極基板(電極幅200μm、
間隔50μm)に実施例5と同条件で水面展開連続製膜を
行い、膜厚が約400Å、赤外二色比が1.45(波長1500cm
-1)のポリアミド酸シロキサン酸配向膜を得た。その
後、250℃1時間加熱しポリイミドシロキサンに閉環
後、液晶分子のねじれ角を220度になるよう基板と偏光
後の吸収軸を調製し6μmのスペーサを介して、下記に
示すネマチツク液晶組成物 を注入してシールした。その後、STN液晶素子のスキヤ
ツタリングドメイン(光を散乱するドメイン)を調べた
結果、ドメインの発生は見られず全画素の領域で安定な
点灯状態になることを確認した。また、本STN液晶表示
素子も静電気の発生がなく、電極間のシヨート、電極破
壊が一切見られなかつた。更に、目視で観察した結果、
ネサ見えも発生していない。
Example 8 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride 0.1
Mol and 2,2- [4,4'-bis (p-aminophenoxy) diphenyl] hexafluoropropane (0.09 mol) and diaminosiloxane (0.01 mol) in a dimethylacetamide solution.
A polyamic acid siloxane solution having an intrinsic viscosity of 3.2 was synthesized by stirring at room temperature for 10 hours. The obtained polyamic acid siloxane solution was diluted to 4% to prepare dimethylacetamide / acetophenone (equal weight ratio). This prepared solution was applied to a striped transparent electrode substrate (electrode width 200 μm,
Water-spreading continuous film formation was performed under the same conditions as in Example 5 at an interval of 50 μm, and the film thickness was about 400Å and the infrared dichroic ratio was 1.45 (wavelength 1500 cm).
-1 ) Polyamic acid siloxane acid alignment film was obtained. Then, after heating at 250 ° C. for 1 hour to close the ring to the polyimide siloxane, the substrate and the absorption axis after polarization are adjusted so that the twist angle of the liquid crystal molecule is 220 degrees, and the nematic liquid crystal composition shown below is provided through a 6 μm spacer. Was injected and sealed. After that, as a result of examining the scanning domain (domain that scatters light) of the STN liquid crystal element, it was confirmed that no domain was generated and a stable lighting state was obtained in all pixel regions. In addition, the STN liquid crystal display element also did not generate static electricity, and neither a short between electrodes nor electrode destruction was observed. Furthermore, as a result of visual observation,
There is no appearance of Nesa.

比較例1 ピロメリツト酸二無水物0.1モルと4,4′−ジアミノジフ
エニルエーテル0.1モルをジメチルアセトアミド溶液中
で、室温で5時間かくはんしポリアミド酸溶液を合成し
た。得られたポリアミド酸溶液を3%に希釈しストライ
プ状の透明電極基板(電極幅200μm、間隔50μm)に
スピン塗布(3000rpm、60秒)で約500Åの配向膜を形成
した。その後、250℃1時間加熱閉環させABレーベル布
を巻いたロータを回転(回転数600rpm、仕込み量0.4m
m)してラビングを行い液晶分子のねじれ角を220度にな
るよう基板と偏光板の吸収軸を調整し実施例8で用いた
ネマチツク液晶を注入し、エポキシ樹脂でシール後評価
した。その結果、静電気の発生が見られ、電極間のシヨ
ート、電極破壊が起り点灯不良が発生した。また、液晶
素子の各部でしきい値(Vth)特性の変化及び低下が見
られ、素子全体での安定性が劣る。
Comparative Example 1 0.1 mol of pyromellitic dianhydride and 0.1 mol of 4,4'-diaminodiphenyl ether were stirred in a dimethylacetamide solution at room temperature for 5 hours to synthesize a polyamic acid solution. The obtained polyamic acid solution was diluted to 3% and spin-coated (3000 rpm, 60 seconds) to form an alignment film of about 500 Å on a stripe-shaped transparent electrode substrate (electrode width 200 μm, interval 50 μm). After that, the rotor wrapped with AB label cloth was heated and closed at 250 ° C for 1 hour (rotation speed 600 rpm, loading amount 0.4 m).
m) was rubbed to adjust the absorption axes of the substrate and the polarizing plate so that the twist angle of the liquid crystal molecules would be 220 degrees, the nematic liquid crystal used in Example 8 was injected, and the liquid crystal was sealed with an epoxy resin and evaluated. As a result, the generation of static electricity was observed, and a short between the electrodes and electrode destruction occurred, causing a lighting failure. In addition, the threshold (V th ) characteristics are changed and lowered in each part of the liquid crystal element, and the stability of the entire element is poor.

比較例2 3,3′,4,4′−ベンゾフエノンテトラカルボン酸二無水
物0.1モルと2,2−〔4,4′−ビス(p−アミノフエノキ
シ)ジフエニル〕プロパン0.1モルをN−メチルピロリ
ドン溶液中で、室温で8時間かくはんしポリアミド酸溶
液を合成した。得られたポリアミド酸溶液を7%に希釈
し、アモルフアスシリコン半導体基板上(画素数20×2
0)に印刷機を用いて、約1000Åの配向膜を形成した。
その後、200℃2時間加熱閉環させABレーベル布を巻い
たロータを回転(回転数600rpm、切込み量0.25mm)して
ラビングを行い実施例7で用いたネマチツク液晶を注入
し、エポキシ樹脂でシール後電気光学特性を評価した。
その結果、本液晶表示素子にTFT動作を行つたところ静
電気の発生が見られ、画素数の数個で点灯不良が起り、
安定に表示ができなかつた。
Comparative Example 2 0.1 mol of 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride and 0.1 mol of 2,2- [4,4'-bis (p-aminophenoxy) diphenyl] propane were added to N-methyl. In a pyrrolidone solution, a stirred polyamic acid solution was synthesized at room temperature for 8 hours. The obtained polyamic acid solution was diluted to 7%, and the solution was placed on an amorphous silicon semiconductor substrate (pixel number 20 x 2
An alignment film having a thickness of about 1000Å was formed by using a printing machine at 0).
After that, the rotor was wrapped with AB label cloth heated at 200 ° C. for 2 hours and rotated (rotation speed 600 rpm, depth of cut 0.25 mm) for rubbing to inject nematic liquid crystal used in Example 7, and seal with epoxy resin. The electro-optical characteristics were evaluated.
As a result, when a TFT operation was performed on this liquid crystal display element, static electricity was found to occur, and lighting failure occurred at several pixels.
The display could not be stable.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明で使用する液晶分子配向膜
は、特にアミド酸ポリマー及びイミド系ポリマーが好適
であつて、1回処理で極めて短時間に30〜1000Åの膜厚
で形成され、分子配向に起因する赤外二色比が1.05以上
であるため、ラビング処理工程をすることなく、そのま
まで分子が良好に配向している。したがつて、そのまま
種々の液晶配向素子に用いることができる。また、効果
として、静電気の発生がなく、電極破壊及びトランジス
ターの損傷が見られず、連続的に配向膜を効率良く製造
できるため量産性にも適している。
As described above, the liquid crystal molecular alignment film used in the present invention is particularly preferably an amic acid polymer and an imide polymer, and is formed with a film thickness of 30 to 1000Å in a very short time by one treatment, Since the infrared dichroic ratio due to the orientation is 1.05 or more, the molecules are well oriented as they are without a rubbing treatment step. Therefore, it can be directly used for various liquid crystal alignment elements. Further, as an effect, static electricity is not generated, no electrode breakage or transistor damage is observed, and the alignment film can be efficiently manufactured continuously, which is suitable for mass production.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明素子で使用する配向膜を製造するための
水面展開連続製膜装置の1例の概要図、第2図は水面上
で有機高分子溶液が展開する状態を示す模式図であつ
て、第2−1図はその平面図であり、第2−2図は拡大
側面図、第3図は引取速度を変えて作製した配向膜の赤
外二色比を示すグラフ、第4図はFT−IRで測定した配向
膜の赤外二色性の測定スペクトルを示すグラフ、第5図
はしきい値特性を示すグラフ、第6図はメモリー性評価
特性を示すグラフである。 1:ノズル、2:水槽、3:水面、4:生成した膜、5〜7:ロー
ル、8:フイルム状基材
FIG. 1 is a schematic view of an example of a water surface continuous film forming apparatus for producing an alignment film used in the device of the present invention, and FIG. 2 is a schematic view showing a state in which an organic polymer solution is spread on the water surface. By the way, FIG. 2-1 is a plan view thereof, FIG. 2-2 is an enlarged side view, and FIG. 3 is a graph showing infrared dichroic ratios of alignment films produced by changing the take-up speed, and FIG. FIG. 5 is a graph showing the infrared dichroism measurement spectrum of the alignment film measured by FT-IR, FIG. 5 is a graph showing threshold characteristics, and FIG. 6 is a graph showing memory property evaluation characteristics. 1: Nozzle, 2: Water tank, 3: Water surface, 4: Formed film, 5-7: Roll, 8: Film-shaped substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北村 輝夫 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 向尾 昭夫 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 神藤 保彦 千葉県茂原市早野3300番地 株式会社日立 製作所茂原工場内 (72)発明者 酒井 五十治 大阪府茨木市下穂積1丁目1番2号 日東 電気工業株式会社中央研究所内 (72)発明者 藤村 保夫 大阪府茨木市下穂積1丁目1番2号 日東 電気工業株式会社中央研究所内 (72)発明者 増谷 昇 大阪府茨木市下穂積1丁目1番2号 日東 電気工業株式会社中央研究所内 (72)発明者 松本 恒隆 大阪府茨木市下穂積1丁目1番2号 日東 電気工業株式会社中央研究所内 (56)参考文献 特開 昭62−98325(JP,A) 特開 昭62−180777(JP,A) 特公 昭58−35722(JP,B1) ─────────────────────────────────────────────────── --- Continuation of the front page (72) Teruo Kitamura 4026 Kuji Town, Hitachi City, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Ltd. (72) Akio Mukai 4026 Kuji Town, Hitachi City, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. (72) Inventor Yasuhiko Kando 3300 Hayano, Mobara-shi, Chiba Hitachi Ltd. Mobara factory (72) Inventor, Saji Ii, 1-2, Shimohozumi, Ibaraki-shi, Osaka Nitto Denki Kogyo Co., Ltd. Company Central Research Institute (72) Inventor Yasuo Fujimura 1-2-2 Shimohozumi, Ibaraki-shi, Osaka Nitto Electric Industry Co., Ltd. Central Research Laboratory (72) Noboru Masutani 1-2-1, Shimohozumi, Ibaraki-shi, Osaka Nitto Electric Industry Co., Ltd. Central Research Laboratory (72) Inventor Tsunetaka Matsumoto 1-2 1-2 Shimohozumi, Ibaraki City, Osaka Prefecture Nitto Electric Works Co., Ltd. center within the Institute (56) Reference Patent Sho 62-98325 (JP, A) JP Akira 62-180777 (JP, A) Tokuoyake Akira 58-35722 (JP, B1)

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】少なくとも一方が透光性の一対の電極基板
間に少なくとも液晶層及び該液晶分子配向膜を挟持して
なる液晶表示素子において、前記配向膜の膜厚が0.1μ
m以下で、該配向膜の少なくとも一方は、単層の膜厚が
0.003μm以上の有機高分子の水面展開膜から成ること
を特徴とする液晶表示素子。
1. A liquid crystal display element comprising a pair of electrode substrates, at least one of which is translucent, sandwiching at least a liquid crystal layer and the alignment film of the liquid crystal molecules, wherein the thickness of the alignment film is 0.1 μm.
m or less, at least one of the alignment films has a single layer thickness.
A liquid crystal display device comprising a water surface spread film of an organic polymer having a thickness of 0.003 μm or more.
【請求項2】少なくとも一方が透光性の一対の電極基板
間に少なくとも液晶層及び該液晶分子配向膜を挟持して
なる液晶表示素子において、前記配向膜の膜厚が0.1μ
m以下で、該配向膜の少なくとも一方は、液晶と接触す
る膜面が有機高分子が配向し、単層の膜厚が0.003μm
以上の水面展開膜から成ることを特徴とする液晶表示素
子。
2. A liquid crystal display device comprising at least a liquid crystal layer and a liquid crystal molecule alignment film sandwiched between a pair of transparent electrode substrates, at least one of which has a thickness of 0.1 μm.
m or less, in at least one of the alignment films, the organic polymer is aligned on the film surface in contact with the liquid crystal, and the thickness of the single layer is 0.003 μm.
A liquid crystal display device comprising the above water surface development film.
【請求項3】前記液晶層がネマチック液晶層であり、上
下電極基板で挟持された液晶層の液晶分子の長軸方向
が、電界ゼロにおいて上下電極基板間で80〜280度ねじ
れた構造を有することを特徴とする請求項1又は請求項
2に記載の液晶表示素子。
3. The liquid crystal layer is a nematic liquid crystal layer, and the major axis direction of liquid crystal molecules of the liquid crystal layer sandwiched between the upper and lower electrode substrates is twisted by 80 to 280 degrees between the upper and lower electrode substrates when the electric field is zero. The liquid crystal display element according to claim 1 or 2, wherein
【請求項4】前記液晶層が強誘電性液晶組成物層である
ことを特徴とする請求項1又は請求項2に記載の液晶表
示素子。
4. The liquid crystal display device according to claim 1, wherein the liquid crystal layer is a ferroelectric liquid crystal composition layer.
【請求項5】前記有機高分子配向膜が、アミド酸系ポリ
マー又はイミド系ポリマー又はこれらの共重合体から成
る配向膜であることを特徴とする請求項1〜4のいずれ
か1項に記載の液晶表示素子。
5. The organic polymer alignment film is an alignment film made of an amic acid-based polymer, an imide-based polymer or a copolymer thereof, and the alignment film is any one of claims 1 to 4. Liquid crystal display element.
【請求項6】前記有機高分子配向膜が、絶縁層及び/又
はカップリング剤層の上に形成されていることを特徴と
する請求項1〜5のいずれか1項に記載の液晶表示素
子。
6. The liquid crystal display element according to claim 1, wherein the organic polymer alignment film is formed on an insulating layer and / or a coupling agent layer. .
【請求項7】前記有機高分子配向膜は、縦方向と横方向
との赤外二色比の値が1.05以上の膜であることを特徴と
する請求項1〜6のいずれか1項に記載の液晶表示素
子。
7. The organic polymer alignment film is a film having a value of infrared dichroic ratio in the vertical direction and the horizontal direction of 1.05 or more, in any one of claims 1 to 6. The liquid crystal display element described.
【請求項8】電極がマトリックス型電極である電極基板
を用いたことを特徴とする請求項1〜7のいずれか1項
に記載の液晶表示素子。
8. A liquid crystal display device according to claim 1, wherein the electrode substrate is an electrode substrate which is a matrix type electrode.
【請求項9】有機高分子溶液を水面上に供給し、該溶液
を一方向に引いて製膜し、得られた水面展開膜を電極基
板上の所定の部位に密着形成し、該電極基板を用いて作
成した液晶セルに液晶を封入する工程を含むことを特徴
とする液晶表示素子の製造方法。
9. An organic polymer solution is supplied on the surface of water, the solution is drawn in one direction to form a film, and the obtained water surface development film is formed in close contact with a predetermined site on the electrode substrate. A method for manufacturing a liquid crystal display element, which comprises the step of enclosing a liquid crystal in a liquid crystal cell created using.
【請求項10】前記有機高分子溶液の水面上の自発展開
速度より速い引取速度で引いて製膜することを特徴とす
る請求項9に記載の液晶表示素子の製造方法。
10. The method for producing a liquid crystal display device according to claim 9, wherein the organic polymer solution is drawn at a drawing speed higher than the spontaneous development speed on the water surface to form a film.
【請求項11】前記水面展開膜の引取速度と同じ速度で
移動する複数個の電極基板を、該膜に順次接触させる連
続操作により該電極基板上に前記膜を密着形成する工程
を含むことを特徴とする請求項9又は請求項10に記載の
液晶表示素子の製造方法。
11. A step of closely forming the film on the electrode substrate by a continuous operation in which a plurality of electrode substrates moving at the same speed as the take-up speed of the water surface development film are sequentially brought into contact with the film. 11. The method for manufacturing a liquid crystal display device according to claim 9, which is characterized in that.
JP63069276A 1988-03-25 1988-03-25 Liquid crystal display device and manufacturing method thereof Expired - Lifetime JPH0792570B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63069276A JPH0792570B2 (en) 1988-03-25 1988-03-25 Liquid crystal display device and manufacturing method thereof
US07/326,557 US5067797A (en) 1988-03-25 1989-03-21 Liquid crystal display cell and process for producing the same
DE3909704A DE3909704A1 (en) 1988-03-25 1989-03-23 LIQUID CRYSTAL DISPLAY CELL AND METHOD FOR THE PRODUCTION THEREOF
KR1019890003779A KR0122079B1 (en) 1988-03-25 1989-03-25 Liquid crystal display cell and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63069276A JPH0792570B2 (en) 1988-03-25 1988-03-25 Liquid crystal display device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01243023A JPH01243023A (en) 1989-09-27
JPH0792570B2 true JPH0792570B2 (en) 1995-10-09

Family

ID=13397968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63069276A Expired - Lifetime JPH0792570B2 (en) 1988-03-25 1988-03-25 Liquid crystal display device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0792570B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113569A (en) * 1991-10-22 1993-05-07 Canon Inc Liquid crystal element
JP2794358B2 (en) * 1992-02-05 1998-09-03 キヤノン株式会社 Liquid crystal element
JP2794359B2 (en) * 1992-02-05 1998-09-03 キヤノン株式会社 Liquid crystal element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835722A (en) * 1981-08-21 1983-03-02 Nec Corp Manufacture of magnetic head
JPS6298325A (en) * 1985-10-25 1987-05-07 Konishiroku Photo Ind Co Ltd Liquid crystal display device
JPS62180777A (en) * 1986-02-04 1987-08-08 Kanegafuchi Chem Ind Co Ltd Method for film formation

Also Published As

Publication number Publication date
JPH01243023A (en) 1989-09-27

Similar Documents

Publication Publication Date Title
KR0122079B1 (en) Liquid crystal display cell and process for producing the same
US6063829A (en) Method for liquid crystal alignment
JP3893659B2 (en) Liquid crystal alignment treatment method
TWI391758B (en) A liquid crystal alignment agent and a liquid crystal display device using the same
US5773559A (en) Polyimide block copolymer and liquid crystal alignment layer forming agent
KR100889710B1 (en) Aligning agent for liquid crystal for in-plane switching, liquid-crystal alignment film, and liquid-crystal display element
KR100236860B1 (en) Alignment treating agent for lcd cell
US5268780A (en) Liquid crystal device having a polyimide alignment film substituted with fluorine or a fluorine-containing group
US5437813A (en) Liquid crystal display device
JPH02287324A (en) Orientation treating agent for liquid crystal cell
US5510159A (en) Liquid crystal device
JP4171851B2 (en) Liquid crystal alignment treatment agent
JPH0792570B2 (en) Liquid crystal display device and manufacturing method thereof
JP2556590B2 (en) Liquid crystal element
JPH02310524A (en) Liquid crystal display device
JPS62209415A (en) Liquid crystal cell and its production
JPS61205924A (en) Liquid crystal display element
JP2636904B2 (en) Liquid crystal display device
JPH11249142A (en) Liquid crystal display device
JPH0752263B2 (en) Ferroelectric liquid crystal element
JPS62231937A (en) Liquid crystal element
JPH0259724A (en) Liquid crystal display element and its production
JPH0572537A (en) Liquid crystal display device
JP2556586B2 (en) Liquid crystal element
JPS63311231A (en) Liquid crystal element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 13