JPH0792443B2 - Quantitative analysis method by X-ray spectroscopy - Google Patents

Quantitative analysis method by X-ray spectroscopy

Info

Publication number
JPH0792443B2
JPH0792443B2 JP1161745A JP16174589A JPH0792443B2 JP H0792443 B2 JPH0792443 B2 JP H0792443B2 JP 1161745 A JP1161745 A JP 1161745A JP 16174589 A JP16174589 A JP 16174589A JP H0792443 B2 JPH0792443 B2 JP H0792443B2
Authority
JP
Japan
Prior art keywords
sample
correction
electron beam
zaf
quantitative analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1161745A
Other languages
Japanese (ja)
Other versions
JPH0326947A (en
Inventor
秀人 古味
武 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1161745A priority Critical patent/JPH0792443B2/en
Publication of JPH0326947A publication Critical patent/JPH0326947A/en
Publication of JPH0792443B2 publication Critical patent/JPH0792443B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は試料を電子線で励起させて試料から放射される
X線を分光するX線分光分析における定量分析方法に関
する。
Description: TECHNICAL FIELD The present invention relates to a quantitative analysis method in X-ray spectroscopic analysis in which a sample is excited by an electron beam to disperse X-rays emitted from the sample.

(従来の技術) X線分光法による定量分析では、試料中の各成分元素の
X線強度は共存する他元素の影響を受けるので、共存す
る他元素の影響に対して補正しなければ正しい定量値が
得られない。この補正は通常三つの項目について行わ
れ、それらの項目は原子番号補正,吸収補正,蛍光補正
で総称してZAF補正と呼ばれている。
(Prior Art) In quantitative analysis by X-ray spectroscopy, the X-ray intensity of each component element in a sample is affected by other coexisting elements, so correct quantification is required without correction for the effect of other coexisting elements. I can't get the value. This correction is usually performed for three items, and these items are collectively called ZAF correction for atomic number correction, absorption correction, and fluorescence correction.

ZAF補正を行うためには共存元素の濃度が判明している
必要があるが、分析に際しては各成分元素の濃度は不明
である。従って最初は試料から放射されるX線スペクト
ルにおける成分元素の特性X線強度と各元素純品試料の
特徴X線強度との比等から単純計算で各元素の一次近似
濃度を求め、それを用いてZAF補正の計算を行って各元
素の二次近似濃度を求め、それを用いて再びZAF補正を
行うと云う逐次近似法により各元素濃度の収束値を以っ
て各成分の正しい濃度とする。
The concentrations of coexisting elements need to be known to perform ZAF correction, but the concentrations of each component element are unknown during analysis. Therefore, first, the primary approximate concentration of each element is obtained by simple calculation from the ratio of the characteristic X-ray intensity of the constituent element in the X-ray spectrum emitted from the sample and the characteristic X-ray intensity of the pure sample of each element, and used. ZAF correction is performed to calculate the second-order approximate concentration of each element, and the ZAF correction is performed again using it to obtain the correct concentration of each component by the convergent value of each element concentration by the successive approximation method. .

所で上述したZAF補正計算の精度および試料前処理法に
よる表面状態による誤差等の試料励起電子線加速電圧に
対する依存性が元素毎に異っており、分析に当っては元
素毎に最適加速電圧が異っている。しかし従来は一つの
試料につき、全ての元素に対して同じ電子線加速電圧を
用いて分析を行っていたため、分析精度が上げ難く、場
合によってはZAF補正が実際と異る値に収束することも
あって信頼性も充分でなく、この難点は試料中に含まれ
る成分元素間の原子番号差が大きい程大であった。
However, the accuracy of the above-mentioned ZAF correction calculation and the dependence of the error due to the surface condition due to the sample pretreatment method on the acceleration voltage of the sample-excited electron beam vary from element to element. Are different. However, in the past, since the same electron beam accelerating voltage was used for all elements for one sample, it was difficult to improve the accuracy of analysis, and in some cases ZAF correction may converge to a value different from the actual value. However, the reliability was not sufficient, and this difficulty was greater as the atomic number difference between the constituent elements contained in the sample was larger.

(発明が解決しよとする課題) 本発明はZAF補正を行うX線分光定量分析における信頼
性および分析精度を向上させようとするものである。
(Problems to be Solved by the Invention) The present invention is intended to improve reliability and analysis accuracy in X-ray spectroscopic quantitative analysis for ZAF correction.

(課題を解決するための手段) X線分光法による定量分析において、各成分元素毎に励
起用電子線の加速電圧を最適値に設定して、各成分元素
の第一次近似濃度を求め、上記加速電圧データを用いて
ZAF補正演算を行うようにした。
(Means for Solving the Problem) In the quantitative analysis by X-ray spectroscopy, the acceleration voltage of the electron beam for excitation is set to the optimum value for each component element, and the primary approximate concentration of each component element is determined, Using the above acceleration voltage data
Added ZAF correction calculation.

(作用) ZAF補正演算には、元素の最小励起電子線加速電圧Ec,実
際の励起電子線加速電圧Eoが演算要素として入ってい
る。従来は上記した実際の励起電子線加速電圧Eoが一つ
の試料につき各成分元素共通に一つの値であった。本発
明ではこのEoを各成分元素毎に最適値に設定する。最小
励起線加速電圧は元素により予め決まっている定数であ
る。各成分とも夫々の最適励起線加速電圧でX線強度が
測定されZAF補正計算にも用いられているので、ZAF補正
演算は必ず実際の濃度値に収束し、信頼性が高く、精度
の良い分析結果が得られる。
(Operation) In the ZAF correction calculation, the minimum excitation electron beam acceleration voltage Ec of the element and the actual excitation electron beam acceleration voltage Eo are included as calculation elements. Conventionally, the above-mentioned actual excited electron beam acceleration voltage Eo has a single value for each component element in common for one sample. In the present invention, this Eo is set to the optimum value for each component element. The minimum excitation line accelerating voltage is a constant that is predetermined by the element. The X-ray intensity is measured at each optimum excitation line acceleration voltage for each component and is also used in the ZAF correction calculation, so the ZAF correction calculation always converges to the actual concentration value, providing a highly reliable and accurate analysis. The result is obtained.

(実施例) 第1図は本発明による分析操作の手順を示すフローチャ
ートである。試料成分元素A,B,C…に対して、各励起電
子線最適加速電圧Eao,Ebo,…等および最小加速電圧Eac,
Ebc,…等を制御装置に入力(イ)する。EPMAを始動させ
ると、制御装置は上記設定データにより、電子線加速電
圧をEao,Ebo,…と順に切換えながら、加速電圧Eaoにお
いて元素Aの特性X線強度Ia,加速電圧Eboにおいて元素
Bの特性X線強度Ibと云うように夫々の元素につきその
最適加速電圧における特性X線強度Iを測定してその値
を取込む(ロ)。試料成分の全元素について上記測定を
終わった後各元素のEo,Ec,I(添次a,b,c…を省略)を用
いてZAF補正計算を開始する。まず各元素の純品試料に
よる特製X線強度と上記各Iとの比から各元素の一次近
似濃度Ca1,Cb1,…等を求め(ハ)、これと、上記各元素
のEo,Ec等を用いて各元素の一次ZAF補正係数Ca1,Cb1,…
等を算出(ニ)し、Ia×Ca1,Ib×Cb1,…等により二次近
似濃度Ca2,Cb2等を算出(ホ)し、この二次近似濃度を
用いて再度ZAF補正係数を算出(ヘ)、以下同様にし
て、前回計算濃度と今回計算濃度との差が所定値以下に
なった所で、ZAF補正が収束したものとして、各成分最
終計算濃度値を目的の定量値とする。
(Embodiment) FIG. 1 is a flow chart showing the procedure of an analysis operation according to the present invention. For the sample component elements A, B, C, etc., the optimum accelerating voltage Eao, Ebo, etc. for each excitation electron beam and the minimum accelerating voltage Eac,
Input Ebc, etc. to the control device. When the EPMA is started, the control device switches the electron beam accelerating voltage to Eao, Ebo, ... In order according to the above setting data, while at the accelerating voltage Eao, the characteristic X-ray intensity Ia of the element A and at the accelerating voltage Ebo, the characteristic of the element B. As with the X-ray intensity Ib, the characteristic X-ray intensity I at each optimum accelerating voltage is measured for each element and the value is taken in (b). After the above measurement is completed for all elements of the sample components, ZAF correction calculation is started using Eo, Ec, I (supplementary items a, b, c ...) of each element. First, the first-order approximate concentrations Ca1, Cb1, ... etc. of each element are obtained from the ratio of the special X-ray intensities of the pure samples of each element and each I (C), and this and Eo, Ec etc. of each element are obtained. Using the primary ZAF correction factors Ca1, Cb1,… of each element
Etc. are calculated (d), the second-order approximation concentrations Ca2, Cb2, etc. are calculated from Ia × Ca1, Ib × Cb1, ... (e), and the ZAF correction coefficient is calculated again using this second-order approximation concentration ( ) Then, similarly, when the difference between the previously calculated concentration and the currently calculated concentration falls below the predetermined value, the final calculated concentration value of each component is set as the target quantitative value, assuming that the ZAF correction has converged.

ZAF補正演算では、例えば吸収補正において、 原子番号補正で 等の形で、各元素毎にEo,Ecの値が入って来る。各成分
元素のZAF補正係数には全成分元素の上述したσ,Sのよ
うなデータが算入されており、それらの元素データ毎に
前述したEac,Ebo等…を用いるのである。
In ZAF correction calculation, for example, in absorption correction, With atomic number correction The values of Eo and Ec come in for each element in the form of etc. Data such as σ and S described above for all component elements are included in the ZAF correction coefficient of each component element, and Eac, Ebo, etc. described above are used for each element data.

(効果) 本発明によれば元素毎に励起電子線の最適加速電圧を用
いて特性X線強度を測定し、その加速電圧を用いてZAF
補正計算を行うので、補正計算の信頼性が高く、精度の
良い分析結果を得ることができる。
(Effect) According to the present invention, the characteristic X-ray intensity is measured for each element by using the optimum accelerating voltage of the excited electron beam, and ZAF is measured by using the accelerating voltage.
Since the correction calculation is performed, the correction calculation is highly reliable and accurate analysis results can be obtained.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明の一実施例の操作手順を示すフローチャー
トである。
The drawing is a flow chart showing the operation procedure of an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】試料を電子線によって励起し、試料から放
射されるX線を分光し、ZAF補正演算を行って成分元素
の定量を行う場合において、各成分元素毎にその元素に
対する最適励起電子線加速電圧を用いて、その元素の特
性X線強度を測定し、ZAF補正演算において、各元素毎
の電子線加速電圧データとして上記した最適加速電圧を
用いることを特徴とするX線分光法による定量分析方
法。
1. When a sample is excited by an electron beam, X-rays emitted from the sample are dispersed, and a ZAF correction operation is performed to quantify the constituent element, the optimum excited electron for that element is calculated for each constituent element. According to the X-ray spectroscopy, the characteristic X-ray intensity of the element is measured using the linear acceleration voltage, and the optimum acceleration voltage described above is used as electron beam acceleration voltage data for each element in the ZAF correction calculation. Quantitative analysis method.
JP1161745A 1989-06-24 1989-06-24 Quantitative analysis method by X-ray spectroscopy Expired - Lifetime JPH0792443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1161745A JPH0792443B2 (en) 1989-06-24 1989-06-24 Quantitative analysis method by X-ray spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1161745A JPH0792443B2 (en) 1989-06-24 1989-06-24 Quantitative analysis method by X-ray spectroscopy

Publications (2)

Publication Number Publication Date
JPH0326947A JPH0326947A (en) 1991-02-05
JPH0792443B2 true JPH0792443B2 (en) 1995-10-09

Family

ID=15741082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1161745A Expired - Lifetime JPH0792443B2 (en) 1989-06-24 1989-06-24 Quantitative analysis method by X-ray spectroscopy

Country Status (1)

Country Link
JP (1) JPH0792443B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326206A (en) * 2004-05-13 2005-11-24 Jeol Ltd Analyzing condition sheet, analyzing condition recording medium and sample analyzer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170444A (en) * 1984-09-13 1986-04-11 Jeol Ltd Concentration analyzing method in electron ray micro-analysis instrument

Also Published As

Publication number Publication date
JPH0326947A (en) 1991-02-05

Similar Documents

Publication Publication Date Title
CN110312928B (en) Fluorescent X-ray analysis method and fluorescent X-ray analysis device
US7579591B2 (en) Method and apparatus for analyzing sample
JPH05240808A (en) Method for determining fluorescent x rays
JP2000329712A (en) Data processor for x-ray fluorescence analysis
JPH0792443B2 (en) Quantitative analysis method by X-ray spectroscopy
JPH06123717A (en) Fluorescent x-ray qualitative analytical method under plurality of conditions
JP3003175B2 (en) Quantitative analysis method by X-ray spectroscopy
JP3377328B2 (en) X-ray fluorescence analysis method
JP3132678B2 (en) Thin film sample thickness measurement and elemental quantitative analysis method
JP3569734B2 (en) X-ray fluorescence analyzer
JP2004163135A (en) X-ray analysis apparatus
JP2000074857A (en) Fluorescence x-ray analyzer
JP7233756B2 (en) X-ray fluorescence analyzer
JP2725417B2 (en) X-ray quantitative analysis method
JP2645226B2 (en) X-ray fluorescence analysis method
JPH0752163B2 (en) Simplified quantitative analysis method using wavelength dispersive X-ray spectrometer
Fournier et al. An expert system for EPMA
JP2645227B2 (en) X-ray fluorescence analysis method
JP2730227B2 (en) X-ray depth analysis method
JP4560503B2 (en) Measuring time setting method and fluorescent X-ray analyzer in multi-condition fluorescent X-ray analysis
JPH09269305A (en) Method and apparatus for fluorescent x-ray analysis
JPH07260690A (en) Emission spectral analysis method and device
JP2000310602A (en) Fluorescent x-ray analyzer and recording medium used therein
JPH0495760A (en) Fluorescence x-ray analysis
JPH11316202A (en) Method and apparatus for auger electron spectroscopy measurement