JPH0792214A - Electromagnetic wave generation equipment - Google Patents

Electromagnetic wave generation equipment

Info

Publication number
JPH0792214A
JPH0792214A JP5235259A JP23525993A JPH0792214A JP H0792214 A JPH0792214 A JP H0792214A JP 5235259 A JP5235259 A JP 5235259A JP 23525993 A JP23525993 A JP 23525993A JP H0792214 A JPH0792214 A JP H0792214A
Authority
JP
Japan
Prior art keywords
winding
metal cylinder
detonator
explosive
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5235259A
Other languages
Japanese (ja)
Inventor
Tatsuyuki Shikura
達之 四蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5235259A priority Critical patent/JPH0792214A/en
Publication of JPH0792214A publication Critical patent/JPH0792214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

PURPOSE:To make it possible to improve generated electric field component of an electromagnetic wave with a small-sized noise resistance test equipment, by connecting a conical antenna in parallel to the opposite ends of a fuse- element through a tuning coil. CONSTITUTION:An insulating tube 21 is disposed on the upper part of a metal cylinder 1, a tuning coil 20 is wound spirally on the insulating tube 21 and the opposite ends of the coil are connected conductively to the metal cylinder 1 and a conical antenna 27 disposed above. The conical antenna 27 has a specific frequency characteristic according to the shape and dimensions thereof and can output an electromagnetic wave of a frequency of a maximum gain by regulating it so that the coil 20 and the conical antenna 27 may resonate. Thereby, a high electric field can be generated around it. Moreover, the generated electric field can be increased further by interposing a distributed contact line between a fuse-element 15 and the conical antenna 27.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】この発明は、爆薬の爆発エネルギ
ーを大電流に変換し、この大電流から強い電磁波を発生
させ、電子機器などの耐電磁波ノイズ性を評価するため
の電磁波発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic wave generator for converting explosive energy of explosives into a large current, generating a strong electromagnetic wave from the large current, and evaluating resistance to electromagnetic noise of electronic devices and the like.

【従来の技術】図6は、爆薬による電磁波発生装置の動
作原理を示す斜視図であり、(A)は動作前、(B)は
動作中の状態を示す。図6は(A)は銅など良導体の金
属円筒1と、巻線3と、金属円筒1と巻線3とに初期電
流IO を流す電流源6と、右端に接続された短絡導体7
とにより構成されている。金属円筒1の内部には爆薬4
が充填され、この爆薬4と接触するように起爆装置5が
左端に嵌挿されている。巻線3は、金属円筒1の軸方向
へ空隙部2を介して巻回されている。初期電流IO を流
した状態で起爆装置5の点火によって爆薬4を起爆させ
ると、爆発は左端からはじまり、右側へ伝播して行く。
図6(B)は起爆後、爆薬4の爆発が伝播している途中
の状態を示し、爆轟波8によって金属円筒1が外側に膨
張し、起爆装置5側から空隙部2を潰しながら巻線3と
金属円筒1とが圧着(以後、爆着と称す)する。この爆
着面9は爆轟波8の進展とともに短絡導体7側の方へ進
み最終的には金属円筒1は巻線3と全面的に爆着する。
電磁波発生の原理を以下に説明する。図6(A)におい
て起爆装置5を点火する直前に電流源6より初期電流I
O を金属円筒1、短絡導体7、巻線3を介して流し、円
筒状の空隙部2内に磁界(全磁束量をΦとする)が形成
される。その状態で起爆装置5を点火させると、図6
(B)のように爆轟波8によって爆着面9は爆発の伝播
速度とほぼ同じ速度(約9km/s)で短絡導体7側へ
進展する。爆着面9の進展がこのように極端に速いの
で、空隙部2が圧潰しても空隙部2内部の磁束は外部に
漏れだすことができずに全磁束量Φの値はそのまま保存
される。すなわち、起爆前に金属円筒1と巻線3との往
復回路で作られるインダクタンスLO とすると、初期電
流IO によって形成さる全磁束量Φは、
2. Description of the Related Art FIGS. 6A and 6B are perspective views showing the operating principle of an electromagnetic wave generator using explosives. FIG. 6A shows a state before the operation, and FIG. 6A shows a metal cylinder 1 made of a good conductor such as copper, a winding 3, a current source 6 for supplying an initial current I O to the metal cylinder 1 and the winding 3, and a short-circuit conductor 7 connected to the right end.
It is composed of and. Explosive 4 inside the metal cylinder 1
The detonator 5 is inserted into the left end so as to come into contact with the explosive 4. The winding 3 is wound in the axial direction of the metal cylinder 1 via the gap 2. When the explosive 4 is detonated by the ignition of the detonator 5 with the initial current I O flowing, the explosion starts from the left end and propagates to the right.
FIG. 6 (B) shows a state in which the explosion of the explosive 4 is being propagated after the detonation, and the metal cylinder 1 is expanded outward by the detonation wave 8 and wound while crushing the void 2 from the detonator 5 side. The wire 3 and the metal cylinder 1 are pressure-bonded (hereinafter referred to as “explosion”). The blast surface 9 advances toward the short-circuit conductor 7 side as the detonation wave 8 progresses, and finally the metal cylinder 1 is entirely blast-bonded to the winding 3.
The principle of electromagnetic wave generation will be described below. Immediately before ignition of the detonator 5 in FIG.
O is flown through the metal cylinder 1, the short-circuit conductor 7, and the winding 3, and a magnetic field (total magnetic flux amount is Φ) is formed in the cylindrical void 2. When the detonator 5 is ignited in that state, the state shown in FIG.
As shown in (B), the detonation wave 8 causes the explosive surface 9 to propagate to the short-circuit conductor 7 side at a velocity (about 9 km / s) approximately the same as the propagation velocity of the explosion. Since the explosive surface 9 progresses extremely rapidly in this way, even if the void 2 is crushed, the magnetic flux inside the void 2 cannot leak to the outside, and the value of the total magnetic flux amount Φ is preserved as it is. . That is, assuming that the inductance L O is formed by the reciprocal circuit of the metal cylinder 1 and the winding 3 before the detonation, the total magnetic flux amount Φ formed by the initial current I O is

【数1】 Φ=LO ・IO ・・・(1) で表わすことができる。一方、起爆後において金属円筒
1と巻線3とで作られるインダクタンスをL、このとき
に短絡導体7を通して流れる出力電流をIとすると、や
はり
[Number 1] can be expressed by Φ = L O · I O ··· (1). On the other hand, if the inductance created by the metal cylinder 1 and the winding 3 after the detonation is L and the output current flowing through the short-circuit conductor 7 at this time is I,

【数2】 Φ=L・I ・・・(2) となる。(1)式と(2)式とを等しいと置くと、Φ = L · I (2) If equation (1) is equal to equation (2),

【数3】 1/IO =LO /L ・・・(3) となる。爆着面9が短絡導体7側へ進展するにつれて、
空隙部2が潰れ、残存する空隙部2の長さ方向の距離が
減少するのでインダクタンスLが減少し、空隙部2内の
磁界が強くなり、(3)式より出力電流Iが増大する。
この出力電流Iは、金属円筒1、短絡導体7、巻線3と
が爆着面9を介してできる閉ループを流れるもので、
(3)式における出力電流Iとの比I/IO が電流増幅
率に対応する。この出力電流Iが巻線3を流れることに
よって、周囲に電磁波が発生する。この装置は、短絡導
体7を負荷とする電流増幅器であり、爆薬発電機とも呼
ばれている。急峻にメガアンペアオーダにまで立ち上が
る電流を流し、周囲に強い電磁波を形成することができ
る。図7は従来の電磁波発生装置の構成例を示す断面図
であり、金属円筒1の両端に内部を塞ぐ栓14が配さ
れ、下方の栓14には起爆装置5が嵌挿されている。こ
の金属円筒1の外側に、巻線3と円筒状の支持絶縁体1
3とが配されている。支持絶縁体13の内壁にらせん状
の溝が設けられ、この溝に巻線3が収められているとと
もに、巻線3と金属円筒1との間に空隙部2が形成され
ている。巻線3の下端と金属円筒1との間には絶縁間隙
材12が介装されている。一方、巻線3の上端と金属円
筒1との間には、負荷と間隙材との双方の役目を担う短
絡導体70が介装されている。巻線3と金属円筒1とは
下端で電流源6に接続されている。図7において電流源
6によって巻線3、短絡導体70および金属円筒1に初
期電流を流した状態で、起爆装置5により爆薬4を爆発
させる。爆発は時間とともに上方へ伝播するとともに、
巻線3に流れる電流も増大し、周囲に強い電磁波を発生
させる。この装置から所定の寸法離れた位置に電子機器
などを配し、その電磁波による電界Eに対する耐ノイズ
性が調べられる。図7における巻線3の導体幅Wおよび
ターン間の絶縁間隙Dが上方へ行くに従って大きくなっ
ている。これは、上方に行くに従って、単位長あたりの
インダクタンスを小さくするためである。これにより、
(3)式に示したように電流増幅率が大きくなり、強い
電磁界が得られる。図8は従来の異なる電磁波発生装置
の構成を示す要部断面図である。可溶体15が巻線3の
上端部から半径方向内方に向けて装着され、金属円筒1
の外径面に直接導電接続されている。可溶体15は、巻
線3および金属円筒1の表面上を複数本、はんだ付けに
よって散在させてある。さらに、一対のコニカルアンテ
ナ27が巻線3と金属円筒1の端部にそれぞれ取り付け
られている。その他の構成は図7と同じである。ま
た、、図9は、図8のコニカルアンテナ27の片方だけ
を取り出して示した斜視図である。図8の構成は、図7
の場合と比べると発生電界Eが桁違いに高くなることの
特許願が同一出願人によって既に出願されている。発生
電界が高くなるのは、可溶体15およびコニカルアンテ
ナ27が備えられたことによる。すなわち、可溶体15
は、爆発によって増幅された出力電流Iによって一時的
に液化し、その後、プラズマ状態になる。一般に、金属
が液体状態に溶融したときの単位時間当たりの抵抗増加
分rは非常に大きい。そのために、巻線3に流れる電流
が増大し、可溶体15が溶融したときに可溶体15の両
端の電位差は瞬時に急激に高くなる。この電位差に比例
して発生電界Eが高くなる。一方、図7の装置の場合、
短絡導体70は溶融しないので単位時間当たりの抵抗増
加分rは零であり、爆発による出力電流Iの単位時間当
たりの増加分だけによって発生電界Eが決まる。可溶体
15を介在させることによって、発生電界Eを極端に高
めることができる。また、可溶体15の両端に一対のコ
ニカルアンテナ27を設けたことによって、アンテナ対
間に流れる変位電流分によっても電界が発生する。この
電界が前述の可溶体溶融による電界に加わるので、電磁
波の電界成分Eがさらに大きくなる。
## EQU3 ## 1 / I O = L O / L (3) As the explosive surface 9 progresses to the short-circuit conductor 7 side,
Since the void 2 is crushed and the lengthwise distance of the remaining void 2 is reduced, the inductance L is reduced, the magnetic field in the void 2 is strengthened, and the output current I is increased from the equation (3).
This output current I flows through a closed loop formed by the metal cylinder 1, the short-circuit conductor 7, and the winding 3 through the explosive surface 9,
The ratio I / IO to the output current I in the equation (3) corresponds to the current amplification factor. When this output current I flows through the winding 3, electromagnetic waves are generated in the surroundings. This device is a current amplifier that loads the short-circuit conductor 7, and is also called an explosive generator. A strong electric current can be generated by causing a current to rise rapidly to the megaampere order. FIG. 7 is a cross-sectional view showing a configuration example of a conventional electromagnetic wave generation device, in which stoppers 14 for closing the inside are arranged at both ends of the metal cylinder 1, and a detonator 5 is inserted in the lower stopper 14. Outside the metal cylinder 1, the winding 3 and the cylindrical support insulator 1 are provided.
3 and 3 are arranged. A spiral groove is provided on the inner wall of the support insulator 13, the winding 3 is housed in this groove, and a gap 2 is formed between the winding 3 and the metal cylinder 1. An insulating gap member 12 is interposed between the lower end of the winding wire 3 and the metal cylinder 1. On the other hand, between the upper end of the winding 3 and the metal cylinder 1, a short-circuit conductor 70 serving as both a load and a gap material is interposed. The winding 3 and the metal cylinder 1 are connected to the current source 6 at the lower ends. In FIG. 7, the detonator 5 detonates the explosive 4 while the initial current is applied to the winding 3, the short-circuit conductor 70 and the metal cylinder 1 by the current source 6. The explosion propagates upwards with time,
The current flowing through the winding 3 also increases, and a strong electromagnetic wave is generated in the surroundings. By placing an electronic device or the like at a position away from this device by a predetermined dimension, the noise resistance to the electric field E caused by the electromagnetic wave can be examined. The conductor width W of the winding wire 3 and the insulation gap D between the turns in FIG. 7 increase as they go upward. This is to reduce the inductance per unit length as going upward. This allows
As shown in the equation (3), the current amplification factor becomes large and a strong electromagnetic field can be obtained. FIG. 8 is a cross-sectional view of essential parts showing the configuration of a different conventional electromagnetic wave generator. The fusible body 15 is mounted from the upper end of the winding 3 toward the inner side in the radial direction, and
Is directly conductively connected to the outer diameter surface of. The fusible body 15 is scattered on the surfaces of the winding 3 and the metal cylinder 1 by soldering. Further, a pair of conical antennas 27 are attached to the winding 3 and the end of the metal cylinder 1, respectively. Other configurations are the same as those in FIG. 7. Further, FIG. 9 is a perspective view showing only one of the conical antennas 27 shown in FIG. The configuration of FIG. 8 is similar to that of FIG.
The same applicant has already filed a patent application that the generated electric field E will be orders of magnitude higher than in the above case. The generated electric field is increased because the fusible body 15 and the conical antenna 27 are provided. That is, the soluble body 15
Is temporarily liquefied by the output current I amplified by the explosion, and then becomes a plasma state. Generally, the resistance increase amount r per unit time when the metal is melted in a liquid state is very large. Therefore, the current flowing through the winding 3 increases, and when the fusible body 15 melts, the potential difference across the fusible body 15 suddenly increases rapidly. The generated electric field E increases in proportion to this potential difference. On the other hand, in the case of the device of FIG.
Since the short-circuit conductor 70 does not melt, the resistance increase r per unit time is zero, and the generated electric field E is determined only by the increase per unit time of the output current I due to the explosion. By interposing the fusible body 15, the generated electric field E can be extremely increased. Further, by providing the pair of conical antennas 27 at both ends of the fusible body 15, an electric field is also generated by the displacement current flowing between the pair of antennas. Since this electric field is added to the electric field due to the melting of the fusible body, the electric field component E of the electromagnetic wave is further increased.

【発明が解決しようとする課題】しかしながら、前述し
たような従来の装置は、発生する電磁波の電界成分がま
だ低いという問題があった。すなわち、従来の装置で
は、爆発によって巻線に出力電流Iを5000Aを流し
ても、コニカルアンテナから半径方向に50cm離れた
地点で発生する電界EH、せいぜい2kV/m程度であ
る。電子機器などの耐電磁波ノイズ性を評価するために
は、数10kV/mの発生電界が必要であり、従来は出
力電流Iをさらに増加させることによって対処してい
た。そのために、装置全体が大型になり試験設備が非常
に高価であった。この発明の目的は電磁波の発生電界成
分をより高めることにある。
However, the conventional device as described above has a problem that the electric field component of the generated electromagnetic wave is still low. That is, in the conventional device, the electric field EH generated at a point 50 cm away from the conical antenna in the radial direction is about 2 kV / m at most even when the output current I of 5000 A is caused to flow through the winding due to explosion. In order to evaluate the resistance to electromagnetic noise of electronic devices and the like, a generated electric field of several tens of kV / m is required, and conventionally, the output current I was increased to deal with the electric field. As a result, the entire apparatus becomes large and the test equipment is very expensive. An object of the present invention is to further increase the electric field component of electromagnetic waves.

【課題を解決するための手段】上記目的を達成するため
に、この発明によれば、内部に爆薬が装填された金属円
筒と、この金属円筒の外側に円筒状の空隙部を形成させ
ながら軸方向に巻回される巻線と、この巻線を外側より
補強する支持絶縁体と、金属円筒の一方端に嵌挿され前
記爆薬に接触するように配された起爆装置と、金属円筒
および巻線の起爆装置側の端部間に並列接続された電流
源と、金属円筒および巻線の反起爆装置側の端部間に並
列接続された可溶体と、巻線の反起爆装置側に設けられ
半径方向外方に円錐状に広がる一対のコニカルアンテナ
とにより構成され、巻線に電流源から初期電流を流した
状態で爆薬を起爆させ巻線に流れる電流を増幅させて周
囲に電磁波を発生させるものにおいて、コニカルアンテ
ナが同調コイルを介して可溶体の両端に並列接続された
ものとする。また、上記目的を達成するために、この発
明によれば、内部に爆薬が装填された金属円筒と、この
金属円筒の外側に円筒状の空隙部を形成させながら軸方
向に巻回される巻線と、この巻線を外側より補強する支
持絶縁体と、金属円筒の一方端に嵌挿され前記爆薬に接
触するように配された起爆装置と、金属円筒および巻線
の起爆装置側の端部間に並列接続された電流源と、金属
円筒および巻線の反起爆装置側の端部間に並列接続され
た可溶体と、巻線の反起爆装置側に設けられ半径方向外
方に円錐状に広がる一対のコニカルアンテナとにより構
成され、巻線に電流源から初期電流を流した状態で爆薬
を起爆させ巻線に流れる電流を増幅させて周囲に電磁波
を発生させるものにおいて、内部導体と外部導体との間
に絶縁体が充填された分布定数線路が巻線の反起爆装置
側に設けられ、分布定数線路の内部導体および外部導体
の一方端がそれぞれ可溶体の両端に接続され、内部導体
および外部導体の他方端がそれぞれコニカルアンテナに
並列接続されたものとするものと、また、かかる構成に
おいて、コニカルアンテナが同調コイルを介して分布定
数線路に並列接続されたものとする。また、さらに、上
記構成のいずれかにおいて、可溶体の周囲がもう一つの
起爆装置に接触する爆薬で覆われたものとする。
In order to achieve the above object, according to the present invention, a metal cylinder having an explosive charged therein and a shaft while forming a cylindrical void portion outside the metal cylinder are provided. Winding wound in a direction, a support insulator that reinforces the winding from the outside, a detonator fitted to one end of the metal cylinder so as to contact the explosive, the metal cylinder and the winding. A current source connected in parallel between the ends of the wire on the detonator side, a fusible body connected in parallel between the ends of the metal cylinder and the winding on the anti-detonator side, and provided on the anti-detonator side of the winding It is composed of a pair of conical antennas that spreads outward in the radial direction in a conical shape.The explosive is detonated when the initial current is applied to the winding, and the current flowing in the winding is amplified to generate electromagnetic waves in the surroundings. In what makes a conical antenna a tuning coil To be deemed to have been connected in parallel with both ends of the fusible element. Further, to achieve the above object, according to the present invention, a metal cylinder having an explosive charged therein and a winding wound in the axial direction while forming a cylindrical void portion outside the metal cylinder. A wire, a support insulator for reinforcing the winding from the outside, a detonator which is inserted into one end of the metal cylinder so as to come into contact with the explosive, and an end of the metal cylinder and the winding on the detonator side. Current source connected in parallel between the parts, a fusible body connected in parallel between the metal cylinder and the end of the winding on the side opposite to the detonator, and a conical radially outward provided on the side of the winding opposite the detonator. It consists of a pair of conical antennas that spread like a coil, and it explodes an explosive in the state where an initial current is applied to the winding to amplify the current flowing in the winding to generate electromagnetic waves in the surroundings. Distributed constant filled with an insulator between the outer conductor A path is provided on the anti-detonator side of the winding, one end of the inner and outer conductors of the distributed constant line are connected to both ends of the fusible body, and the other end of the inner and outer conductors are connected in parallel to the conical antenna. In addition, in this configuration, the conical antenna is connected in parallel to the distributed constant line via the tuning coil. Further, in any one of the above configurations, it is assumed that the periphery of the fusible body is covered with explosive that contacts another detonator.

【作用】この発明の構成によれば、コニカルアンテナが
同調コイルを介して可溶体の両端に並列接続されたこと
により、コニカルアンテナの周波数特性に共振するよう
に同調コイルを調整しておけば、コニカルアンテナがそ
の最大利得の周波数の電磁波を発振するので発生電界が
高くなる。また、この発明の構成によれば、コニカルア
ンテナと可溶体との間に分布定数線路が介装された。可
溶体の両端に発生した電圧は分布定数線路に入り、コニ
カルアンテナ側の端部で反射する。反射によって電圧振
幅が倍増するのでコニカルアンテナからの発生電磁波が
強くなり発生電界が高くなる。かかる構成において、コ
ニカルアンテナを同調コイルを介して分布定数線路に並
列接続する。コニカルアンテナに共振するように同調コ
イルを調整しておけば、反射によって振幅の倍増した電
圧が共振を起こし、コニカルアンテナからさらに高い電
界成分の電磁波が発生する。上記構成のいずれかにおい
て、可溶体の周囲がもう一つの起爆装置に接触する爆薬
で覆われる。可溶体が溶融しプラズマ化したときに爆薬
を点火すると、その爆轟力によってプラズマが瞬時に圧
縮される。その際、プラズマの単位時間当たりの抵抗増
加分rが非常に大きいので、プラズマの両端の電位差が
瞬時に高くなる。その結果、コニカルアンテナからの発
生電界がさらに高くなる。
According to the structure of the present invention, since the conical antenna is connected in parallel to both ends of the fusible body through the tuning coil, if the tuning coil is adjusted so as to resonate with the frequency characteristic of the conical antenna, Since the conical antenna oscillates the electromagnetic wave having the frequency of the maximum gain, the generated electric field becomes high. Further, according to the configuration of the present invention, the distributed constant line is interposed between the conical antenna and the fusible body. The voltage generated at both ends of the fusible body enters the distributed constant line and is reflected at the end on the conical antenna side. Since the voltage amplitude is doubled by the reflection, the electromagnetic wave generated from the conical antenna becomes stronger and the generated electric field becomes higher. In such a configuration, the conical antenna is connected in parallel to the distributed constant line via the tuning coil. If the tuning coil is adjusted so as to resonate with the conical antenna, a voltage whose amplitude is doubled causes resonance due to reflection, and an electromagnetic wave having a higher electric field component is generated from the conical antenna. In any of the above configurations, the perimeter of the fusible body is covered with an explosive that contacts another detonator. If the explosive is ignited when the fusible material melts and is turned into plasma, the detoning force instantly compresses the plasma. At this time, the resistance increase amount r of the plasma per unit time is very large, so that the potential difference between both ends of the plasma instantly increases. As a result, the electric field generated from the conical antenna becomes higher.

【実施例】以下、この発明を実施例に基づいて説明す
る。図1は、この発明の実施例にかかる電磁波発生装置
の構成を示す要部断面図である。金属円筒1の上部に絶
縁筒21を配し、この絶縁筒21に同調コイル20をら
せん状に巻回する。同調コイル20の両端は金属円筒1
および上部のコニカルアンテナ27に導電接続される。
その他の構成は、図8の従来の装置と同じである。同じ
部分には同一参照符号を用いることにより詳細な説明は
省略する。コニカルアンテナ27は、その形状、寸法に
より特定の周波数特性を備えており、同調コイル20を
コニカルアンテナ27に共振するように調整することに
よって最大利得の周波数の電磁波を出力することができ
る。それによって、高い電界を周囲に発生する。図2
は、この発明の異なる実施例にかかる電磁波発生装置の
構成を示す要部断面図であり、上部のコニカルアンテナ
27が導体円筒23を介して金属円筒1に取り付けら
れ、下部のコニカルアンテナ27が同調コイル22を介
して巻線3に導電接続されている。その他は図1の構成
と同じである。同調コイル22は、支持絶縁体13の内
面にらせん状に巻回され、コニカルアンテナ27と共振
するように調整されている。図2の構成は、可溶体15
の両端にコニカルアンテナ27と同調コイル22との直
列回路が並列接続されたもので、回路的には図1と全く
同様である。したがって、出力される電磁波の強度も、
図1と図2の実施例とではコニカルアンテナ27が同じ
形状寸法ならば同じである。図3は、この発明のさらに
異なる実施例にかかる電磁波発生装置の構成を示す要部
断面図である。可溶体15とコニカルアンテナ27との
間に分布定数線路28が介装されている。分布定数線路
28は中心に円筒状の内部導体24が配され、その外周
に絶縁体26を介して円筒状の外部導体25が配されて
いる。絶縁体26は水よりなり、上下の絶縁性の栓29
により封止されている。内部導体24の下端は金属円筒
1に接合され、上端は上部のコニカルアンテナ27に接
合されている。一方、外部導体25の下端は巻線3に接
合され、上端は下部のコニカルアンテナ27に接合され
ている。その他の構成は図1と同じである。図3におい
て、分布定数線路28は軸方向長Aの区間にわたってケ
ーブルのような分布定数線路を形成し、可溶体15の両
端に発生した電圧が分布定数線路28上を上方向に伝播
する。分布定数線路28の上端は、コニカルアンテナ2
7で終端しているので、終端開放と同じでありマッチン
グが取れていない。そのために、伝播して来た電圧は、
終端のコニカルアンテナ27で反射し、その電圧振幅が
2倍になる。倍増された電圧をコニカルアンテナが電磁
波として発振するので高い電界成分が周囲の空間に形成
される。図4は、この発明のさらに異なる実施例にかか
る電磁波発生装置の構成を示す要部断面図である。内部
導体24の上部に絶縁筒21が接合され、その絶縁筒2
1に同調コイル20が巻回されている。同調コイル20
の下端は内部導体24に接合され、上端は上部のコニカ
ルアンテナ27に接合されている。その他の構成は図4
と同じである。図4において、分布定数線路28の反射
波がコニカルアンテナ27と同調コイル20との直列回
路によって共振するので、図3の実施例の場合より発生
電界Eが高くなる。図5は、この発明のさらに異なる実
施例にかかる電磁波発生装置の構成を示す要部断面図で
ある。可溶体15を絶縁性の爆薬容器30内に配し、そ
の爆薬容器30内に爆薬32が装填されている。さら
に、爆薬32に接触するように起爆装置31が挿入され
ている。その他の構成は、図4と同じである。図5にお
いて、可溶体15が巻線3から流れて来る出力電流Iに
よって溶融しプラズマ化したときに起爆装置31を点火
して爆薬32を爆発させる。プラズマ化した可溶体15
は爆轟波によって瞬時に半径方向内方に圧縮される。そ
の際、プラズマの単位時間当たりの抵抗増加分rが非常
に大きくなる。この抵抗増加分rは、溶融状態の可溶体
の場合より数倍大きい。その結果、分布定数線路28に
非常に高い電圧成分が侵入し、コニカルアンテナ27か
らは図4の実施例の場合より数倍も強い電磁波が発生
し、その電界成分Eも高くなる。なお、可溶体15を爆
薬32で覆う図5のような構成は、図1ないし図3の実
施例に適用することもでき、それぞれの構成において発
生電界Eを数倍高めることができる。
EXAMPLES The present invention will be described below based on examples. FIG. 1 is a cross-sectional view of essential parts showing the configuration of an electromagnetic wave generator according to an embodiment of the present invention. An insulating cylinder 21 is arranged above the metal cylinder 1, and the tuning coil 20 is spirally wound around the insulating cylinder 21. Both ends of the tuning coil 20 are metal cylinders 1.
And conductively connected to the upper conical antenna 27.
Other configurations are the same as those of the conventional device shown in FIG. The same parts are designated by the same reference numerals, and detailed description thereof is omitted. The conical antenna 27 has specific frequency characteristics depending on its shape and size, and by adjusting the tuning coil 20 so as to resonate with the conical antenna 27, it is possible to output an electromagnetic wave having a maximum gain frequency. Thereby, a high electric field is generated in the surroundings. Figure 2
FIG. 4 is a sectional view of an essential part showing a configuration of an electromagnetic wave generator according to another embodiment of the present invention, in which an upper conical antenna 27 is attached to a metal cylinder 1 via a conductor cylinder 23, and a lower conical antenna 27 is tuned. It is conductively connected to the winding wire 3 via the coil 22. Others are the same as the configuration of FIG. The tuning coil 22 is spirally wound around the inner surface of the support insulator 13 and adjusted so as to resonate with the conical antenna 27. The configuration of FIG.
1. A series circuit of a conical antenna 27 and a tuning coil 22 is connected in parallel at both ends of, and the circuit is exactly the same as in FIG. Therefore, the strength of the output electromagnetic wave is also
1 and 2 are the same if the conical antenna 27 has the same shape and size. FIG. 3 is a cross-sectional view of essential parts showing the configuration of an electromagnetic wave generator according to a further different embodiment of the present invention. A distributed constant line 28 is interposed between the fusible body 15 and the conical antenna 27. In the distributed constant line 28, a cylindrical inner conductor 24 is arranged at the center, and a cylindrical outer conductor 25 is arranged on the outer periphery of the distributed constant line 28 via an insulator 26. The insulator 26 is made of water and has upper and lower insulating stoppers 29.
It is sealed by. The lower end of the inner conductor 24 is joined to the metal cylinder 1, and the upper end is joined to the upper conical antenna 27. On the other hand, the lower end of the outer conductor 25 is joined to the winding 3, and the upper end is joined to the lower conical antenna 27. Other configurations are the same as those in FIG. In FIG. 3, the distributed constant line 28 forms a distributed constant line such as a cable over the section of the axial length A, and the voltage generated at both ends of the fusible body 15 propagates upward on the distributed constant line 28. The upper end of the distributed constant line 28 has the conical antenna 2
Since it is terminated at 7, it is the same as when the termination is opened and no matching is obtained. Therefore, the transmitted voltage is
It is reflected by the conical antenna 27 at the end, and its voltage amplitude is doubled. Since the conical antenna oscillates the doubled voltage as an electromagnetic wave, a high electric field component is formed in the surrounding space. FIG. 4 is a cross-sectional view of essential parts showing the configuration of an electromagnetic wave generator according to a further different embodiment of the present invention. The insulating cylinder 21 is joined to the upper part of the internal conductor 24, and the insulating cylinder 2
The tuning coil 20 is wound around 1. Tuning coil 20
Has a lower end joined to the inner conductor 24 and an upper end joined to the upper conical antenna 27. Other configurations are shown in FIG.
Is the same as. In FIG. 4, the reflected wave of the distributed constant line 28 resonates due to the series circuit of the conical antenna 27 and the tuning coil 20, so that the generated electric field E becomes higher than in the case of the embodiment of FIG. FIG. 5 is a cross-sectional view of essential parts showing the configuration of an electromagnetic wave generator according to a further different embodiment of the present invention. The fusible body 15 is disposed in an insulative explosive container 30, and the explosive container 32 is loaded in the explosive container 30. Further, the detonator 31 is inserted so as to come into contact with the explosive 32. Other configurations are the same as those in FIG. In FIG. 5, when the fusible body 15 is melted by the output current I flowing from the winding 3 and turned into plasma, the detonator 31 is ignited to explode the explosive 32. Soluble body 15 made into plasma
Is instantly compressed radially inward by the detonation wave. At that time, the amount r of increase in resistance of plasma per unit time becomes very large. This increase in resistance r is several times larger than in the case of the melted melted body. As a result, a very high voltage component enters the distributed constant line 28, an electromagnetic wave several times stronger than in the case of the embodiment of FIG. 4 is generated from the conical antenna 27, and its electric field component E also becomes high. The configuration as shown in FIG. 5 in which the fusible body 15 is covered with the explosive 32 can also be applied to the embodiments of FIGS. 1 to 3, and the generated electric field E can be increased several times in each configuration.

【発明の効果】図1ないし図5の各構成をそれぞれ実施
例1ないし5とし、コニカルアンテナ27から半径方向
外方に50cm離れた地点での軸方向の電界Eを求めた
結果を従来例(図8)と比較して表1に示す。
The configurations of FIGS. 1 to 5 are referred to as Embodiments 1 to 5, respectively, and the result of obtaining the electric field E in the axial direction at a point 50 cm outward from the conical antenna 27 in the radial direction is shown in FIG. It is shown in Table 1 in comparison with FIG. 8).

【表1】 表1において、各実施例は、ともに出力電流Iを500
0Aとし、可溶体15は、直径0.16mm,長さ50
mmの銅線5本を1つに束ね、これが2束巻線3にはん
だ付けされた。また、コニカルアンテナ27は、図9に
おいてD1 ,D 2 を120mm,240mm、Lを12
0mm,Xを30度とし、コニカルアンテナ27間の離
隔距離B(図1)を100mmとした。さらに、実施例
1,2,4,5に設けられた同調コイル20,22のイ
ンダクタンスは、3μHとし、コニカルアンテナ27と
共振させて30MHz の周波数成分を主体とした電磁波を
発振させた。さらに、実施例3,4,5に設けられた分
布定数線路28(図3)は、内部導体24の外径Φ1
外部導体25の内径Φ2 をそれぞれ60mm,150m
mとし、軸方向長Aを200mmとした。絶縁体26を
水(誘電率が80)にしたので、この分布定数線路28
の軸方向単位当たりのキャパシタンスは、7,071p
F/mとなる。表1において、実施例1,2のように同
調コイルを介装することによって、発生電界Eが従来の
装置により1.5倍高くなっている。また、実施例3の
ように分布定数線路を介装することによって、発生電界
Eが1.75倍高くなっている。さらに、実施例4のよ
うに分布定数線路と同調コイルの双方を介装することに
よって重畳効果が認められ、発生電界Eが従来の装置よ
り6倍も高くなっている。また、さらに、実施例5のよ
うに、実施例4の構成に加えてプラズマ化した可溶体を
爆薬で圧縮させる装置を介装したことにより、発生電界
Eが実施例4の場合より3倍、従来の装置より18倍も
高くなり、数10kV/mの電界が容易に得られるよう
になった。これにより、電子機器の耐ノイズ性の試験設
備を小型化することができる。
[Table 1]In Table 1, in each of the examples, the output current I is 500
The fusible body 15 has a diameter of 0.16 mm and a length of 50.
5 mm copper wires are bundled into one, and this is 2 bundle winding 3
It was attached. The conical antenna 27 is shown in FIG.
D1, D 2120 mm, 240 mm, L is 12
0 mm, X is 30 degrees, and the distance between the conical antennas 27 is
The distance B (FIG. 1) was 100 mm. Further examples
Tuning coils 20 and 22 provided in 1, 2, 4 and 5
The conductance is 3 μH and the conical antenna 27 is
Electromagnetic waves mainly resonating with a frequency component of 30MHz
Oscillated. Furthermore, the components provided in Examples 3, 4 and 5
The cloth constant line 28 (FIG. 3) has an outer diameter Φ of the inner conductor 24.1
Inner diameter Φ of outer conductor 25260mm and 150m respectively
m, and the axial length A was 200 mm. Insulator 26
Since it is water (dielectric constant 80), this distributed constant line 28
The capacitance per unit of axial direction is 7,071p
F / m. In Table 1, the same as in Examples 1 and 2
The generated electric field E is
It is 1.5 times higher depending on the device. In addition, in the third embodiment
The electric field generated by the distributed constant line
E is 1.75 times higher. Furthermore, in Example 4.
In order to interpose both distributed constant line and tuning coil
Therefore, the superposition effect is recognized, and the generated electric field E is higher than that of the conventional device.
6 times higher. In addition, according to Example 5,
In addition to the structure of Example 4,
Electric field generated by the device that compresses with explosive
E is 3 times as much as that in the case of Example 4, and 18 times as much as that of the conventional apparatus.
Higher, so that an electric field of several tens of kV / m can be easily obtained
Became. This makes it possible to test the noise resistance of electronic equipment.
The equipment can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例にかかる電磁波発生装置の構
成を示す要部断面図
FIG. 1 is a sectional view of an essential part showing the configuration of an electromagnetic wave generator according to an embodiment of the present invention.

【図2】この発明の異なる実施例にかかる電磁波発生装
置の構成を示す要部断面図
FIG. 2 is a cross-sectional view of essential parts showing the configuration of an electromagnetic wave generator according to a different embodiment of the present invention.

【図3】この発明のさらに異なる実施例にかかる電磁波
発生装置の構成を示す要部断面図
FIG. 3 is a cross-sectional view of an essential part showing the configuration of an electromagnetic wave generator according to a further different embodiment of the present invention.

【図4】この発明のさらに異なる実施例にかかる電磁波
発生装置の構成を示す要部断面図
FIG. 4 is a cross-sectional view of an essential part showing the configuration of an electromagnetic wave generator according to a further different embodiment of the present invention.

【図5】この発明のさらに異なる実施例にかかる電磁波
発生装置の構成を示す要部断面図
FIG. 5 is a cross-sectional view of essential parts showing the configuration of an electromagnetic wave generator according to a further different embodiment of the present invention.

【図6】爆薬による電磁波発生装置の動作原理を示す斜
視図で、(A)は動作前、(B)は動作中の状態の図
FIG. 6 is a perspective view showing the operating principle of an electromagnetic wave generator using an explosive, in which (A) is a state before the operation and (B) is a state during the operation.

【図7】従来の電磁波発生装置の構成例を示す断面図FIG. 7 is a cross-sectional view showing a configuration example of a conventional electromagnetic wave generator.

【図8】従来の異なる電磁波発生装置の構成例を示す要
部断面図
FIG. 8 is a cross-sectional view of essential parts showing a configuration example of a different conventional electromagnetic wave generation device.

【図9】図8のコニカルアンテナの片方だけを取り出し
て示した斜視図
FIG. 9 is a perspective view showing only one of the conical antennas shown in FIG.

【符号の説明】[Explanation of symbols]

1:金属円筒、2:空隙部、3:巻線、4,32:爆
薬、13:支持絶縁体、39:絶縁体、21:絶縁筒、
14,29:栓、15:可溶体、23:導体円筒、3
1:起爆装置、27:コニカルアンテナ、20,22:
同調コイル、28:分布定数線路、24:内部導体、2
5:外部導体、26:絶縁体、30:爆薬容器
1: metal cylinder, 2: void, 3: winding, 4,32: explosive, 13: support insulator, 39: insulator, 21: insulating cylinder,
14, 29: stopper, 15: fusible body, 23: conductor cylinder, 3
1: Detonator, 27: Conical antenna, 20, 22:
Tuning coil, 28: distributed constant line, 24: inner conductor, 2
5: outer conductor, 26: insulator, 30: explosive container

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】内部に爆薬が装填された金属円筒と、この
金属円筒の外側に円筒状の空隙部を形成させながら軸方
向に巻回される巻線と、この巻線を外側より補強する支
持絶縁体と、金属円筒の一方端に嵌挿され前記爆薬に接
触するように配された起爆装置と、金属円筒および巻線
の起爆装置側の端部間に並列接続された電流源と、金属
円筒および巻線の反起爆装置側の端部間に並列接続され
た可溶体と、巻線の反起爆装置側に設けられ半径方向外
方に円錐状に広がる一対のコニカルアンテナとにより構
成され、巻線に電流源から初期電流を流した状態で爆薬
を起爆させ巻線に流れる電流を増幅させて周囲に電磁波
を発生させるものにおいて、コニカルアンテナが同調コ
イルを介して可溶体の両端に並列接続されたことを特徴
とする電磁波発生装置。
1. A metal cylinder having an explosive charged therein, a winding wound in the axial direction while forming a cylindrical void portion on the outside of the metal cylinder, and a reinforcement of the winding from the outside. A supporting insulator, a detonator which is inserted into one end of the metal cylinder so as to be in contact with the explosive, and a current source which is connected in parallel between the metal cylinder and the end of the winding on the detonator side, It is composed of a fusible body connected in parallel between the ends of the metal cylinder and the winding on the side of the anti-detonator, and a pair of conical antennas provided on the side of the winding on the side of the anti-detonator and conically spreading outward in the radial direction. , In the case where an explosive is detonated in a state where an initial current is applied to the winding to amplify the current flowing in the winding to generate electromagnetic waves in the surroundings, a conical antenna is parallel to both ends of the fusible body via a tuning coil. Electromagnetic wave generation characterized by being connected Location.
【請求項2】内部に爆薬が装填された金属円筒と、この
金属円筒の外側に円筒状の空隙部を形成させながら軸方
向に巻回される巻線と、この巻線を外側より補強する支
持絶縁体と、金属円筒の一方端に嵌挿され前記爆薬に接
触するように配された起爆装置と、金属円筒および巻線
の起爆装置側の端部間に並列接続された電流源と、金属
円筒および巻線の反起爆装置側の端部間に並列接続され
た可溶体と、巻線の反起爆装置側に設けられ半径方向外
方に円錐状に広がる一対のコニカルアンテナとにより構
成され、巻線に電流源から初期電流を流した状態で爆薬
を起爆させ巻線に流れる電流を増幅させて周囲に電磁波
を発生させるものにおいて、内部導体と外部導体との間
に絶縁体が充填された分布定数線路が巻線の反起爆装置
側に設けられ、分布定数線路の内部導体および外部導体
の一方端がそれぞれ可溶体の両端に接続され、内部導体
および外部導体の他方端がそれぞれコニカルアンテナに
並列接続されたことを特徴とする電磁波発生装置。
2. A metal cylinder having an explosive charged therein, a winding wound in the axial direction while forming a cylindrical void portion on the outside of the metal cylinder, and a reinforcement of the winding from the outside. A supporting insulator, a detonator which is inserted into one end of the metal cylinder so as to be in contact with the explosive, and a current source which is connected in parallel between the metal cylinder and the end of the winding on the detonator side, It is composed of a fusible body connected in parallel between the ends of the metal cylinder and the winding on the side of the anti-detonator, and a pair of conical antennas provided on the side of the winding on the side of the anti-detonator and conically spreading outward in the radial direction. In the case where an explosive is ignited in a state where an initial current is applied to the winding to amplify the current flowing in the winding to generate electromagnetic waves in the surroundings, an insulator is filled between the inner conductor and the outer conductor. A distributed constant line is installed on the anti-detonator side of the winding and One end of the inner conductor and the outer conductor of the transmission lines are connected to both ends of each fusible element, electromagnetic wave generator, wherein the other end of the inner conductor and the outer conductor are connected in parallel to the conical antenna, respectively.
【請求項3】請求項2記載のものにおいて、コニカルア
ンテナが同調コイルを介して分布定数線路に並列接続さ
れたことを特徴とする電磁波発生装置。
3. The electromagnetic wave generator according to claim 2, wherein the conical antenna is connected in parallel to the distributed constant line via a tuning coil.
【請求項4】請求項1ないし3のいずれかに記載のもの
において、可溶体の周囲がもう一つの起爆装置に接触す
る爆薬で覆われたことを特徴とする電磁波発生装置。
4. The electromagnetic wave generator according to any one of claims 1 to 3, wherein the fusible body is surrounded by an explosive which contacts another detonator.
JP5235259A 1993-09-22 1993-09-22 Electromagnetic wave generation equipment Pending JPH0792214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5235259A JPH0792214A (en) 1993-09-22 1993-09-22 Electromagnetic wave generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5235259A JPH0792214A (en) 1993-09-22 1993-09-22 Electromagnetic wave generation equipment

Publications (1)

Publication Number Publication Date
JPH0792214A true JPH0792214A (en) 1995-04-07

Family

ID=16983439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5235259A Pending JPH0792214A (en) 1993-09-22 1993-09-22 Electromagnetic wave generation equipment

Country Status (1)

Country Link
JP (1) JPH0792214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157959A (en) * 2014-08-08 2014-11-19 电子科技大学 Dual-band wideband electronic small antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157959A (en) * 2014-08-08 2014-11-19 电子科技大学 Dual-band wideband electronic small antenna

Similar Documents

Publication Publication Date Title
US4280129A (en) Variable mutual transductance tuned antenna
JP3054122B2 (en) Apparatus for fixing an excitation element to a metal waveguide of an antenna and electrically connecting the excitation element to a coaxial line disposed outside the waveguide.
US3227973A (en) Transformer
US5495259A (en) Compact parametric antenna
US20040232847A1 (en) Electromagnetic pulse device
US6081236A (en) Antenna apparatus with a coaxial cable used as a radiation element
US3219951A (en) Interference attenuating power conductor utilizing intensified skin effect to attenuate high frequencies
JPS59172802A (en) Coupler for cavity resonator
JPH0792214A (en) Electromagnetic wave generation equipment
JPS6157558B2 (en)
US5650670A (en) Induction charge microwave pulse generator having a split ground plane
US6791505B2 (en) Method for increasing effective height of a compact antenna assembly, method for ensuring directional effect of the compact antenna assembly and compact antenna assemblies for carrying out said methods
EP3381042B1 (en) Rf transmitter and method of manufacture thereof
JP3269172B2 (en) Electromagnetic wave generator
US5003884A (en) Hollow or projectile charge
JPH098550A (en) Electromagnetic wave generator
US2817739A (en) Microwave matching devices
JP3434219B2 (en) antenna
JP2004219286A (en) Electromagnetic wave generator
USH148H (en) Shock electromechanical energy converter with permanent magnet
US2672813A (en) Method of firing electric detonators and circuit therefor
US5260713A (en) Microwave signal receiving apparatus
US20020153895A1 (en) Resonance signal detector
US7724202B2 (en) Transition from a pulse generator to one or more helical antennae
RU2619038C1 (en) Method and device for excitation and reception of surface electromagnetic wave in the conducting line