JPH0792191B2 - Machine tool safety device - Google Patents

Machine tool safety device

Info

Publication number
JPH0792191B2
JPH0792191B2 JP28008786A JP28008786A JPH0792191B2 JP H0792191 B2 JPH0792191 B2 JP H0792191B2 JP 28008786 A JP28008786 A JP 28008786A JP 28008786 A JP28008786 A JP 28008786A JP H0792191 B2 JPH0792191 B2 JP H0792191B2
Authority
JP
Japan
Prior art keywords
light
optical axis
mirrors
laser
machine tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28008786A
Other languages
Japanese (ja)
Other versions
JPS63135695A (en
Inventor
洋治 岡部
Original Assignee
東洋電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋電子株式会社 filed Critical 東洋電子株式会社
Priority to JP28008786A priority Critical patent/JPH0792191B2/en
Publication of JPS63135695A publication Critical patent/JPS63135695A/en
Publication of JPH0792191B2 publication Critical patent/JPH0792191B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)
  • Presses And Accessory Devices Thereof (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、プレス機等の工作機に取付けられ、被監視範
囲内に異常物体が侵入し光線を遮光した際、工作機を停
止させる停止信号を発生する光線式の安全装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention is attached to a machine tool such as a press machine, and when an abnormal object enters the monitored area and blocks a light beam, the machine tool is stopped. The present invention relates to a light beam type safety device for generating a signal.

〈従来の技術〉 従来、工作機に設置される一般の光線式安全装置は、工
作機の前面の危険箇所つまり被監視範囲に複数の投光器
と受光器を対向して設置し、各投光器から投光された複
数の光軸のうち、少なくても1本の光軸が遮光されたと
き、被監視範囲内に作業者の体の一部などが入つたとし
て工作機を停止されるように構成されている。
<Prior Art> Conventional light beam safety devices installed in machine tools have a plurality of light emitters and light receivers facing each other in a dangerous area on the front surface of the machine tool, that is, a monitored area. When at least one optical axis is shielded from the plurality of illuminated optical axes, the machine tool is stopped as if a part of the operator's body has entered the monitored range. Has been done.

〈発明が解決しようとする問題点〉 このような従来の光線式安全装置は、光軸の数だけ投光
器と受光器を所定の間隔で並べて配置するため、被監視
範囲が広い場合、細い間隔で光軸を設定しようとする
と、多数の投光器、受光器を並べて使用する必要があ
る。
<Problems to be Solved by the Invention> In such a conventional light beam safety device, the light emitters and the light receivers are arranged side by side at a predetermined interval by the number of optical axes. When setting the optical axis, it is necessary to use a large number of light emitters and light receivers side by side.

また、投光器には、通常光を投光する発光ダイオードが
一般に用いられるため、被監視範囲の幅が広く光軸距離
が長くなる場合、光軸径が太く拡散し、光軸間隔つまり
投受光素子の設置間隔を細かく設定できない問題があつ
た。
In addition, since a light emitting diode that emits normal light is generally used for the light projector, when the width of the monitored range is wide and the optical axis distance is long, the optical axis diameter is widely diffused and the optical axis interval, that is, the light emitting / receiving element. There was a problem that the installation interval of could not be set finely.

また、工作機を使う現場では、プレス機やベンダーなど
を使用して加工を行なう際、加工材料の一部や治具が安
全装置の被監視範囲から突出した状態で加工を行なわな
ければならない場合がある。このように、被監視範囲か
ら加工材料40が突出すると、第9図に示すように投光部
41から投光された光軸が加工材料40により遮光され、受
光部42に入らず、安全装置が作動してプレス機等が使用
できなくなるため、どうしてもこのような加工を行なわ
なければならない場合、加工材料等により遮光される光
軸を無効状態として使用していた。このため、加工材料
40から受光部42までの領域43が光軸のない安全装置の死
角となる問題があつた。
In addition, in the field where a machine tool is used, when performing processing using a press machine or a bender, etc., it is necessary to perform processing with part of the processing material or jig protruding from the monitored range of the safety device. There is. In this way, when the processing material 40 protrudes from the monitored area, as shown in FIG.
When the optical axis projected from 41 is shielded by the processing material 40 and does not enter the light receiving section 42, the safety device is activated and the press machine etc. cannot be used, so if such processing is inevitable, The optical axis shielded by the processing material was used as an invalid state. Therefore, the processing material
There is a problem that the area 43 from 40 to the light receiving portion 42 becomes a blind spot of the safety device having no optical axis.

〈問題点を解決するための手段〉 本発明は、上記の問題点を解決するためになされたもの
で、従来のように多数の投光器、受光器を並べて設置す
る必要がなく、細い光軸により狭い間隔で多数の光軸を
発生することができ、被監視範囲から加工材料等を突出
させて加工を行なう際にも死角となる領域を作らず、安
全を確保することができる工作機の安全装置を提供する
ものであり、以下のように構成される。
<Means for Solving Problems> The present invention has been made to solve the above problems, and does not require a large number of light emitters and light receivers to be installed side by side as in the prior art, and has a thin optical axis. A large number of optical axes can be generated at narrow intervals, and even when processing is performed by projecting the processing material etc. from the monitored area, the area that becomes a blind spot is not created and safety can be ensured Machine tool safety A device is provided and is configured as follows.

すなわち、本発明の工作機の安全装置は、第1図の全体
構成図に示すように、 被監視領域の両側に2個のパラボラミラー3a,3bが光軸
をずらした位置に対向して配置されると共に2個のリフ
レクタ12a,12bが各々のパラボラミラー3a,3bに対向して
両側に配置され、各パラボラミラー3a,3bの略焦点付近
にそれぞれ回転ミラー2a,2bが配設され、2対のパラボ
ラミラー3a,3bとリフレクタ12a,12b間に多数の並行光軸
を発生させるようにレーザ光を各々の回転ミラー2a,2b
に向けて照射する2台のレーザ発振器1a,1bが配設さ
れ、リフレクタ12a,12bで反射された各光軸上をリター
ンしたレーザ光をハーフミラー4a,4bを介して受光する
ための2個の受光器5a,5bが設けられてなる検出部10
と、検出部10から送られる受光データを入力し、光軸に
遮光があるとき、工作機を停止させるための停止信号を
出力する制御部20と、から構成される。
That is, as shown in the overall configuration diagram of FIG. 1, the safety device for a machine tool according to the present invention has two parabolic mirrors 3a and 3b arranged on opposite sides of the monitored area so as to face each other at positions where the optical axes are shifted. In addition, the two reflectors 12a and 12b are arranged on both sides of the parabolic mirrors 3a and 3b so as to face the parabolic mirrors 3a and 3b. Each rotating mirror 2a, 2b is adapted to generate a plurality of parallel optical axes between a pair of parabolic mirrors 3a, 3b and reflectors 12a, 12b.
Two laser oscillators 1a, 1b for irradiating the laser beam are arranged, and two laser beams are reflected by the reflectors 12a, 12b and returned on each optical axis through the half mirrors 4a, 4b. The detector 10 including the light receivers 5a and 5b of
And a control unit 20 which receives the light reception data sent from the detection unit 10 and outputs a stop signal for stopping the machine tool when the optical axis is shielded.

そして、検出部10には、2台のレーザ発振器1a,1bを駆
動してレーザ光を投光すると共に、2個の回転ミラー2
a,2bをモータにより所定角度づつ回転駆動して光軸の走
査を行なう投光走査処理手段6と、受光器5a,5bから送
られる受光信号に基づき受光データ信号を出力する受光
処理手段7が設けられ、制御部20には、検出部10から送
られる受光データ信号に基づき全光軸受光か否かを判定
する光軸判定手段8と、全光軸受光ではない場合、停止
信号を出力して工作機の停止指令を行なう停止指令手段
9が設けられる。
Then, the detection unit 10 drives the two laser oscillators 1a and 1b to project the laser light, and the two rotating mirrors 2
A light-projection scanning processing unit 6 for scanning the optical axis by rotationally driving a and 2b at predetermined angles by a motor, and a light-receiving processing unit 7 for outputting a light-receiving data signal based on the light-receiving signals sent from the light receivers 5a and 5b. The control unit 20 is provided with an optical axis determination means 8 for determining whether or not the all-optical bearing light is based on the received light data signal sent from the detection unit 10, and outputs a stop signal when it is not the all-optical bearing light. Stop command means 9 for issuing a stop command for the machine tool is provided.

〈作用〉 したがつて、両側のレーザ発振器1a,1bからレーザ光を
投光しながら回転ミラー2a,2bを所定角度づつ同期して
回転させると、レーザ光は各回転ミラー2a,2bにより反
射されて各パラボラミラー3a,3bにその入射角度を徐々
に変えながら照射され、パラボラミラー3a,3bからはレ
ーザ光がそれぞれ並行に各回転ミラー2a,2bの回転角度
に応じた一定の間隔で対応したパラボラミラーに向けて
投光され、レーザ光スキヤニングにより多数の光軸が2
対のパラボラミラー3a,3bとリフレクタ12a,12b間に形成
される。
<Operation> Therefore, when the rotating mirrors 2a, 2b are synchronously rotated by a predetermined angle while projecting laser light from the laser oscillators 1a, 1b on both sides, the laser light is reflected by the respective rotating mirrors 2a, 2b. The parabolic mirrors 3a and 3b are irradiated while gradually changing the incident angle, and the laser beams from the parabolic mirrors 3a and 3b correspond in parallel to each other at fixed intervals according to the rotation angles of the rotating mirrors 2a and 2b. Light is projected toward the parabolic mirror, and a large number of optical axes are scanned by laser light scanning.
It is formed between a pair of parabolic mirrors 3a, 3b and reflectors 12a, 12b.

この時、各光軸のレーザ光はリフレクタ12a又は12bによ
り反射され、再びパラボラミラー3a又は3bと回転ミラー
2a,2bを通り、ハーフミラー4a,4bを介して反対側の受光
器5a又は5bに受光される。受光器5a,5bから出力される
受光信号は受光処理手段7に取り込まれ、各走査毎に受
光データがつくられ、この受光データ信号が制御部20に
送られ、光軸判定手段8で全光軸受光か否かが判断さ
れ、何れかの光軸に遮光があつて全光軸受光でない場
合、停止指令手段9が工作機に停止信号を出力する。
At this time, the laser light of each optical axis is reflected by the reflector 12a or 12b, and again the parabolic mirror 3a or 3b and the rotating mirror.
The light passes through 2a and 2b and is received by the light receiver 5a or 5b on the opposite side via the half mirrors 4a and 4b. The light reception signals output from the light receivers 5a and 5b are taken in by the light reception processing means 7, light reception data is created for each scan, the light reception data signal is sent to the control portion 20, and the optical axis determination means 8 outputs all light. It is determined whether the light is a bearing light or not, and if any of the optical axes is blocked and the light is not all-optical bearing light, the stop command means 9 outputs a stop signal to the machine tool.

〈実施例〉 以下、本発明の実施例を図面に基づいて説明する。<Example> Hereinafter, an example of the present invention is described based on a drawing.

安全装置の検出部の光学系は第2図、第3図に示すよう
に構成され、工作機の危険箇所の前面つまり被監視領或
の両側に2台のパラボラミラー3a,3bが、そこから反射
する光軸を前後に少しずらした位置になるように、対向
して配置される。そして、2個のリフレクタ12a,12bが
両側に各々のパラボラミラー3a,3bに対向して配置され
る。パラボラミラー3a,3bは球面の一部を縦に細く弓状
に形成したもので、略焦点位置から部分球面に向けて投
光された光を常に対向するリフレクタ12a,12bに向けて
並行に反射する構造であり、リフレクタ12a,12bは入射
された光を常に入射光と同じ光軸上に反射する構造であ
る。パラボラミラー3aと3bの略焦点付近に各々回転ミラ
ー2a,2b(例えばポリゴンミラー)が配設され、回転ミ
ラー2a,2bは4枚の反射面を周囲にもち、回転ミラー用
モータ11aと11b(例えばステツピングモータ)により一
定角度づつ正確に回転駆動される。1aと1bはHeNeガスレ
ーザ、半導体レーザ等を使用したレーザ発振器で、レー
ザ光を回転ミラー2a,2bの一部に向けてそれぞれ照射
し、回転ミラー2a,2bから反射されたレーザ光をパラボ
ラミラー3a,3bの内面に投光する位置に配設される。レ
ーザ発振器1a,1bと回転ミラー2a,2b間には集光用レンズ
と光軸に対し約45度傾斜したハーフミラー4a,4bが配設
される。ハーフミラー4a,4bの下方にはレンズを介して
受光器5a,5b(例えばホトダイオード、ホトトランジス
タ等)が反対側のレーザ発振器から照射されたレーザ光
をハーフミラー4a,4bを介して受光するように配設され
る。
The optical system of the detection part of the safety device is configured as shown in FIGS. 2 and 3, and two parabolic mirrors 3a and 3b are provided in front of the dangerous spot of the machine tool, that is, in the monitored area or on both sides. The reflecting optical axes are arranged so as to face each other so as to be slightly offset in the front-rear direction. Then, two reflectors 12a, 12b are arranged on both sides so as to face the respective parabolic mirrors 3a, 3b. The parabolic mirrors 3a and 3b are formed by forming a part of the spherical surface in a vertically elongated arcuate shape.The light projected from the approximate focus position toward the partial spherical surface is always reflected in parallel toward the opposing reflectors 12a and 12b. The reflectors 12a and 12b are structures that always reflect the incident light on the same optical axis as the incident light. Rotating mirrors 2a and 2b (for example, polygon mirrors) are arranged near the focal points of the parabolic mirrors 3a and 3b, respectively. The rotating mirrors 2a and 2b have four reflecting surfaces around them, and the rotating mirror motors 11a and 11b ( For example, a stepping motor) drives the motor to rotate accurately at a constant angle. 1a and 1b are laser oscillators using a HeNe gas laser, a semiconductor laser, etc., which irradiate laser light toward part of the rotating mirrors 2a, 2b, respectively, and the laser light reflected from the rotating mirrors 2a, 2b is parabolic mirror 3a. , 3b are arranged at positions where they are projected onto the inner surface. Between the laser oscillators 1a and 1b and the rotating mirrors 2a and 2b, a condenser lens and half mirrors 4a and 4b inclined by about 45 degrees with respect to the optical axis are arranged. Below the half mirrors 4a, 4b, light receivers 5a, 5b (for example, photodiodes, phototransistors, etc.) via a lens are configured to receive the laser light emitted from the laser oscillator on the opposite side via the half mirrors 4a, 4b. Is installed in.

安全装置は、第4図のブロツク図に示すように、レーザ
光を回転ミラー2a,2bの回転により走査させ、2つのパ
ラボラミラー3a,3bとリフレクタ12a,12b間で発生した光
軸上をリターンするレーザ光をハーフミラー4a,4bを介
してそれぞれ受光する2つの受光器5a,5bを有し、受光
データををつくる検出部10と、検出部10から受光データ
を入力し、走査により発生した多数の光軸の何れかに遮
光があるとき、工作機を停止させるための停止信号を出
力する制御部20から構成される。
As shown in the block diagram of FIG. 4, the safety device scans the laser light by rotating the rotating mirrors 2a and 2b, and returns on the optical axis generated between the two parabolic mirrors 3a and 3b and the reflectors 12a and 12b. Which has two light receivers 5a and 5b which respectively receive the laser light to be transmitted via the half mirrors 4a and 4b, and which generates the light reception data, and the light reception data is input from the detection unit 10 and generated by scanning. It is composed of a control unit 20 which outputs a stop signal for stopping the machine tool when there is a light shield on any of a large number of optical axes.

検出部10では、投光走査処理手段及び受光処理手段とし
て所謂ワンチツプCPUを使用したマイクロコンピユータ
が使用され、予め決められたプログラムに基づき投受光
処理などを実行するCPU15、プログラムデータ等の固定
情報を記憶するROM16、設定光軸数等のデータを読み出
し書き込み可能に記憶するRAM17、及び入出力回路18を
備え、各ユニツトはコモンバス19により相互に接続さ
れ、データや制御信号の伝達が行なわれる。入出力回路
18には、回転ミラー用モータ11a,11bを同期して回転駆
動するためのドライバ回路、受光器5a,5bから入力され
る受光信号を増幅しフイルタリングした後デジタル信号
に変換するための増幅器、フイルタ、A/D変換器が設け
られる。
In the detection unit 10, a microcomputer using a so-called one-chip CPU is used as the light emitting scanning processing means and the light receiving processing means, and the CPU 15 for executing the light emitting and receiving processing based on a predetermined program, and fixed information such as program data. It has a ROM 16 for storing, a RAM 17 for reading and writing data such as the number of set optical axes so as to be writable, and an input / output circuit 18, and each unit is connected to each other by a common bus 19 to transmit data and control signals. I / O circuit
18, a driver circuit for rotationally driving the rotary mirror motors 11a, 11b in synchronization, an amplifier for amplifying a received light signal input from the optical receivers 5a, 5b, and then filtering it to a digital signal, A filter and A / D converter are provided.

レーザ発振器1a,1bには駆動回路、変調器が内蔵され、
特定の周波数で変調をかけられたレーザ光が放出され
る。レーザ発振器1a,1bはマイクロコンピユータにより
起動、停止を制御されるが、安全装置作動中は連続動作
を行なう。回転ミラー用モータ11a,11bを駆動するドラ
イバはモータにステツピングモータが使用される場合、
各光軸を発生させる毎に特定数のパルスを出力して2台
のモータを一定角度づつ駆動する。光軸数設定器13は、
走査により発生させる光軸数を予め設定するもので、例
えばデジタルスイツチやテンキーにより構成され、例え
ば、被監視範囲の高さが1mのとき1cm間隔で光軸を発生
させる場合、光軸数は100本に設定する。
The laser oscillator 1a, 1b has a built-in drive circuit and modulator,
Laser light modulated at a specific frequency is emitted. The laser oscillators 1a and 1b are controlled to start and stop by the microcomputer, but continuously operate while the safety device is operating. When a stepping motor is used as the motor, the driver that drives the rotating mirror motors 11a and 11b is
Each time each optical axis is generated, a specific number of pulses are output to drive two motors at a constant angle. The optical axis number setting device 13
The number of optical axes to be generated by scanning is set in advance, and is composed of, for example, a digital switch or a numeric keypad.For example, when the height of the monitored area is 1 m, the number of optical axes is 1 cm, and the number of optical axes is 100. Set in a book.

制御部20は、検出部10から受光データ信号を取り込み全
光軸受光か否かの判断を行ない遮光発生時には停止信号
を出力する上述の光軸判定手段と停止指令手段をなすマ
イクロコンピユータを有し、主リレー接点の溶着をチエ
ツクするために操作するチエツクスイツチ21、主リレー
接点の溶着の有無を検出する第5図のような溶着検出回
路22、及びマイクロコンピユータの異常を検出する異常
検出回路23を備えている。制御部20のマイクロコンピユ
ータは、上述の検出部10のそれと同様に、ワンチツプCP
Uを用いて構成され、予め決められたプログラムに基づ
き光軸判定と停止信号の出力処理を実行するCPU24、プ
ログラムデータ等の固定情報を記憶するROM25、検出部1
0から送られた受光データ等を読み出し書き込み可能に
記憶するRAM26、及び入出力回路27からなる。入出力回
路27は検出部10の入出力回路18と接続され、同期信号を
伝達すると共に受光データを取り込む、また、入出力回
路27にはチエツクスイツチ21、溶着検出回路22、異常検
出回路23、補助停止回路30、停止回路31が接続される。
The control unit 20 has a micro computer that forms the above-mentioned optical axis determination unit and stop command unit that receives a light reception data signal from the detection unit 10 and determines whether or not all optical bearing light is present and outputs a stop signal when light blocking occurs. , A check switch 21 operated to check the welding of the main relay contacts, a welding detection circuit 22 as shown in FIG. 5 for detecting the presence / absence of welding of the main relay contacts, and an abnormality detection circuit 23 for detecting an abnormality of the microcomputer. Is equipped with. The microcomputer of the control unit 20 is similar to that of the detection unit 10 described above, and the one-chip CP
CPU 24 configured by using U to execute optical axis determination and stop signal output processing based on a predetermined program, ROM 25 that stores fixed information such as program data, and detector 1
The input / output circuit 27 includes a RAM 26 for reading and writing the received light data and the like sent from 0 in a writable manner. The input / output circuit 27 is connected to the input / output circuit 18 of the detection unit 10 to transmit a synchronizing signal and fetch light reception data. Further, the input / output circuit 27 has a check switch 21, a welding detection circuit 22, and an abnormality detection circuit 23. The auxiliary stop circuit 30 and the stop circuit 31 are connected.

停止回路31はドライバ及び主リレーからなり、入出力回
路27から出力された停止信号により主リレーを動作させ
て工作機を停止させる構造である。補助停止回路30はド
ライバと補助リレーからなり、停止回路31の主リレーが
溶着などの作動不良を起こした場合、補助リレーを動作
させて工作機を停止させるように構成される。第5図の
接続図に示すように、主リレー1xの接点1xa、1xbと補助
リレー2xの接点2xaは工作機の停止入力端子間に並列に
接続され、主リレーが消勢状態で接点1xbがオンして停
止状態となり、補助リレーは付勢状態で接点2xaがオン
して停止状態となる。
The stop circuit 31 includes a driver and a main relay, and has a structure in which the main relay is operated by the stop signal output from the input / output circuit 27 to stop the machine tool. The auxiliary stop circuit 30 includes a driver and an auxiliary relay, and is configured to operate the auxiliary relay and stop the machine tool when the main relay of the stop circuit 31 causes a malfunction such as welding. As shown in the connection diagram of Fig. 5, the contacts 1xa and 1xb of the main relay 1x and the contact 2xa of the auxiliary relay 2x are connected in parallel between the stop input terminals of the machine tool, and the contact 1xb is connected when the main relay is deenergized. When the auxiliary relay is energized, it is stopped, and the contact 2xa is turned on when the auxiliary relay is energized.

主リレーの溶着状態を検出する溶着検出回路22は、第5
図に示すように、主リレーの一方の接点1xaにホトカプ
ラPCを接続して構成され、ホトカプラPCの出力側から抵
抗Rを介して検出信号を出力する。すなわち、停止信号
が出力され主リレーが消勢状態のとき、接点1xaがオフ
であるため、ホトカプラPCの出力側には電流が流れず、
高レベルの検出信号が出力され、停止信号が出力されず
主リレーが付勢状態のとき、接点1xaがオンするため、
ホトカプラPCの出力側が導通し、低レベルの検出信号が
出力される。
The welding detection circuit 22 for detecting the welding state of the main relay is
As shown in the figure, a photocoupler PC is connected to one contact 1xa of the main relay, and a detection signal is output from the output side of the photocoupler PC via a resistor R. That is, when the stop signal is output and the main relay is in the deenergized state, the contact 1xa is off, so no current flows on the output side of the photocoupler PC,
When the high-level detection signal is output, the stop signal is not output, and the main relay is energized, the contact 1xa turns on.
The output side of the photocoupler PC becomes conductive and a low level detection signal is output.

このように構成された検出部10は工作機の被監視箇所付
近に設置され、制御部20は工作機の制御盤付近に設置さ
れるが、検出部10と検出部20にそれぞれマイクロコンピ
ユータを内蔵し、データをシリアル伝達するため、その
間の回線は信号用とデータ用の2本でよい。
The detection unit 10 configured as described above is installed near the monitored portion of the machine tool, and the control unit 20 is installed near the control panel of the machine tool, but the detection unit 10 and the detection unit 20 each have a built-in microcomputer. However, since the data is serially transmitted, the line between them may be two for signal and data.

次に、安全装置の検出部10の動作を第6図に示すフロー
チヤートに基づき説明する。
Next, the operation of the detector 10 of the safety device will be described based on the flow chart shown in FIG.

検出部10のCPU15は、先ずステツプ10で各種レジスタ等
をリセツトするなどの初期化を行なつた後、ステツプ11
0にて、光軸数設定器13で設定された設定光軸数を読み
込み、RAM26に記憶する。次に、ステツプ120には、レー
ザ発振器1a,1bを起動し、レーザ発振器1a,1bからレーザ
光を発振される。レーザ光は変調器において例えば5MHz
程度の周波数で変調され、変調されたレーザ光は連続的
に発振される。
The CPU 15 of the detection unit 10 first performs initialization such as resetting various registers in step 10, and then executes step 11
At 0, the set number of optical axes set by the optical axis number setter 13 is read and stored in the RAM 26. Next, in step 120, the laser oscillators 1a and 1b are activated, and laser light is emitted from the laser oscillators 1a and 1b. Laser light is 5MHz at the modulator
The laser light that has been modulated at a frequency of a certain degree is oscillated continuously.

続いて、ステツプ130で、同期信号を制御部20から入力
すると、ステツプ140にて、回転ミラー用モータ11a,11b
に特定数の駆動パルスを出力し、回転ミラー2aと2bを一
定角度に回転させる。この時、レーザ発振器1a,1bから
発振されたレーザ光はハーフミラー4a,4bを透過して回
転ミラー2a,2bで反射され、パラボラミラー3a,3bの内周
面に当り、ここで反射されたレーザ光は第2図に示すよ
うに、被監視領域を水平に進み、対向配置されたリフレ
クタ12a,12bに当る。そして、リフレクタ12a,12bで反射
されたレーザ光は、同じ光軸上を戻り、それぞれ、パラ
ボラミラー3a,3b、回転ミラー2a,2b、ハーフミラー4a,4
bを経て、受光器5a,5bに受光される。
Then, in step 130, when a synchronizing signal is input from the control unit 20, in step 140, the rotary mirror motors 11a and 11b.
Then, a specific number of drive pulses are output to rotate the rotating mirrors 2a and 2b at a constant angle. At this time, the laser light oscillated from the laser oscillator 1a, 1b is transmitted through the half mirrors 4a, 4b and reflected by the rotating mirrors 2a, 2b, hitting the inner peripheral surfaces of the parabolic mirrors 3a, 3b, and reflected here. As shown in FIG. 2, the laser light travels horizontally in the monitored area and strikes the reflectors 12a, 12b arranged opposite to each other. Then, the laser light reflected by the reflectors 12a, 12b returns on the same optical axis, and the parabolic mirrors 3a, 3b, the rotating mirrors 2a, 2b, the half mirrors 4a, 4 respectively.
After passing through b, the light is received by the light receivers 5a and 5b.

受光器5aと5bがレーザ光を受光すると、受光信号が出力
され、受光信号は増幅された後、フイルタ回路を通され
て外乱光の影響を除去され、ステツプ150にて、A/D変換
器を通されてデジタル信号に変換された受光信号がCPU1
5に読み込まれる。そして、ステツプ160にて、受光信号
に基づき受光か否かを判定し、受光信号のレベルが所定
値以上で受光と判断したとき、次にステツプ170に進
み、受光パルス信号(受光データ)を制御部20へ出力す
る。一方、ステツプ160にて、受光器5a,5bのうち一方で
も遮光と判定した場合、ステツプ170を実行せず、その
ままステツプ180にジヤンプし、設定された光軸数から
「1」を減算し、次に、ステツプ190で減算した光軸数
が0か否かを判定する。
When the light receivers 5a and 5b receive the laser light, a light reception signal is output, the light reception signal is amplified, then passed through a filter circuit to remove the influence of ambient light, and at step 150, the A / D converter. The received light signal that has been passed through and converted into a digital signal is the CPU1
Read in 5. Then, in step 160, it is determined whether or not the light is received based on the light receiving signal. When it is determined that the light receiving signal level is equal to or higher than a predetermined value, the process proceeds to step 170, and the light receiving pulse signal (light receiving data) is controlled. Output to section 20. On the other hand, in step 160, when it is determined that one of the light receivers 5a and 5b is also light-shielded, step 170 is not executed and step 180 is skipped, and "1" is subtracted from the set number of optical axes, Next, it is determined whether or not the number of optical axes subtracted in step 190 is zero.

そして、減算光軸数が0でないとき、ステツプ140に戻
り、再び回転ミラー用モータ11a,11bに駆動パルスを出
力し、回転ミラー2aと2bをさらに一定角度に回転させ
る。これにより、回転ミラー2a,2bで反射されるレーザ
光はパラボラミラー3a,3bの1段階下で反射されること
になり、前回発生した光軸の直ぐ下に次の光軸が形成さ
れる。そして、その光軸上をリターンしたレーザ光が上
記と同様に同じ側の受光器5a,5bによつて受光され、受
光器5aと5bから出力される受光信号はステツプ150でデ
ジタル値に変換されCPU15に読み込まれ、CPU15は受光か
否かを判断した後、2つの受光器5a,5bが受光状態であ
れば受光パルス信号を制御部20に送り、光軸数をさらに
「1」減算する。このように、ステツプ140〜ステツプ1
90が繰り返されることにより、減算光軸数が0になつた
とき、レーザ光による1回の走査を終了する。そしてス
テツプ190からステツプ130に戻り、制御部20から送られ
る同期信号を入力した後、ステツプ140〜ステツプ190が
繰り返され、上記と同様にレーザ光による走査が繰り返
される。
When the subtraction optical axis number is not 0, the process returns to step 140, the drive pulse is output again to the rotary mirror motors 11a and 11b, and the rotary mirrors 2a and 2b are further rotated by a constant angle. As a result, the laser light reflected by the rotating mirrors 2a, 2b is reflected one step below the parabolic mirrors 3a, 3b, and the next optical axis is formed immediately below the previously generated optical axis. Then, the laser light returned on the optical axis is received by the light receivers 5a and 5b on the same side as above, and the light reception signals output from the light receivers 5a and 5b are converted into digital values in step 150. After being read by the CPU 15, the CPU 15 determines whether or not light is received, and if the two light receivers 5a and 5b are in a light receiving state, a light receiving pulse signal is sent to the control unit 20 and the number of optical axes is further subtracted by "1". In this way, Step 140 to Step 1
By repeating 90, when the subtraction optical axis number becomes 0, one scanning with the laser beam is completed. Then, the process returns from step 190 to step 130, and after inputting the synchronizing signal sent from the control unit 20, steps 140 to 190 are repeated, and the scanning with the laser beam is repeated in the same manner as above.

次に、制御部20の動作を第7図のフローチヤートに基づ
き説明する。
Next, the operation of the control unit 20 will be described based on the flow chart of FIG.

制御部20のCPU24は、先ずステツプ200にて、同期信号を
検出部10に出力し、次にステツプ210で、検出部10から
送られる受光パルス信号(受光データ)を読み込む。そ
して、ステツプ220にて、停止用の主リレーの接点1xa、
1xbの溶着をチエツクするチエツクスイツチ21がオンさ
れたか否かを判定し、チエツクスイツチ21がオンされな
い場合、次にステツプ230に進み、検出部10から送られ
た受光データに基づき、レーザ光の走査により発生した
全光軸が受光状態であるか否かを判定し、遮光された光
軸が無く全光軸受光状態であれば、次にステツプ240に
て、安全信号を停止回路31に出力する。この時、停止回
路31の主リレー1xは安全信号により付勢されて接点1xa
を閉じ接点1xbを開くため、停止出力は出ず、工作機は
停止されない。
The CPU 24 of the control unit 20 first outputs the synchronization signal to the detection unit 10 in Step 200, and then reads the light reception pulse signal (light reception data) sent from the detection unit 10 in Step 210. Then, at step 220, the contact 1xa of the main relay for stop,
Determine whether the check switch 21 for checking 1xb welding has been turned on.If the check switch 21 is not turned on, proceed to step 230 and scan the laser light based on the received light data sent from the detection unit 10. It is determined whether or not all the optical axes generated by are in the light receiving state, and if there is no shielded optical axis and the all optical bearing is in the optical state, then in step 240, a safety signal is output to the stop circuit 31. . At this time, the main relay 1x of the stop circuit 31 is energized by the safety signal and the contact 1xa
Since the contact is closed and the contact 1xb is opened, the stop output is not output and the machine tool is not stopped.

一方、ステツプ230で、遮光状態の光軸があつて全光軸
が受光状態ではないと判定された場合、次にステツプ25
0に進み、安全信号の出力を停止し、停止回路31の主リ
レー1xを消勢させ、その接点1xbをオンさせる停止処理
を行ない、工作機を停止させる。続いて、ステツプ240
から又はステツプ250からステツプ260に進み、停止回路
31の主リレーの接点1xa,1xbが溶着状態にあるか否かを
溶着検出回路22からの出力信号に基づき判定し、主リレ
ーの接点溶着が無ければ、この回の処理を終了し、主リ
レーの接点溶着が有れば、次にステツプ320に進み、溶
着異常信号を補助停止回路30に出力する。補助停止回路
30は溶着異常信号の入力により補助リレー2xを付勢して
その接点2xaを閉じ停止制御を行ない、工作機は停止す
る。
On the other hand, if it is determined in step 230 that there is a light-blocking optical axis and all the optical axes are not in the light-receiving state, then step 25
Proceeding to 0, the output of the safety signal is stopped, the main relay 1x of the stop circuit 31 is de-energized, the contact 1xb is turned on, the stop processing is performed, and the machine tool is stopped. Then, step 240
From or from step 250 to step 260, stop circuit
Based on the output signal from the welding detection circuit 22, it is determined whether the contacts 1xa, 1xb of the 31 main relay are in a welded state.If there is no contact welding of the main relay, this processing is terminated and the main relay If the contact welding of No. 2 is present, the process proceeds to Step 320, and an abnormal welding signal is output to the auxiliary stop circuit 30. Auxiliary stop circuit
When the welding abnormality signal is input, 30 energizes the auxiliary relay 2x to close its contact 2xa and perform stop control, and the machine tool stops.

一方、ステツプ220において、チエツクスイツチがオン
されたと判定された場合、ステツプ270以降を実行して
停止回路31の動作点検を行なう。すなわち、ステツプ27
0では、安全信号の出力を停止して停止回路31の主リレ
ーを消勢させ、その接点1xbをオンさせて工作機を停止
させる。そしてステツプ280にて、溶着異常検出信号を
補助停止回路30に出力し、これにより補助停止回路30の
補助リレーを付勢しその接点2xaをオンさせ、さらにス
テツプ290にて、停止回路31に安全信号を出力し、停止
回路31の主リレーを付勢し接点1xbをオフとする。この
ように、主リレーの接点をオンオフ動作させた後、ステ
ツプ300に進み、主リレーの接点が溶着状態にあるか否
かを溶着検出回路22からの出力信号に基づいて判定し、
主リレーの接点溶着が有れば、ステツプ320に進んで溶
着異常信号を補助停止回路30に出力して工作機を停止さ
せる。一方、主リレーの接点溶着が無い場合、次にステ
ツプ310に進み、溶着異常信号の出力を停止し、補助停
止回路30の停止制御を解除して点検動作を終了する。
On the other hand, when it is determined in step 220 that the check switch is turned on, step 270 and subsequent steps are executed to check the operation of the stop circuit 31. That is, step 27
At 0, the output of the safety signal is stopped to deactivate the main relay of the stop circuit 31, and its contact 1xb is turned on to stop the machine tool. Then, in step 280, a welding abnormality detection signal is output to the auxiliary stop circuit 30, thereby energizing the auxiliary relay of the auxiliary stop circuit 30 to turn on its contact 2xa, and in step 290, the stop circuit 31 is safe. A signal is output, the main relay of the stop circuit 31 is energized, and the contact 1xb is turned off. In this way, after the contact of the main relay is turned on and off, the process proceeds to step 300, where it is determined whether or not the contact of the main relay is in the welding state based on the output signal from the welding detection circuit 22,
If there is contact welding of the main relay, the process proceeds to step 320 to output a welding abnormality signal to the auxiliary stop circuit 30 to stop the machine tool. On the other hand, if there is no contact welding of the main relay, the process proceeds to step 310, the output of the welding abnormality signal is stopped, the stop control of the auxiliary stop circuit 30 is released, and the inspection operation is ended.

このように、ステツプ200からステツプ260又はステツプ
320が繰り返し実行されることにより、検出部10から送
られた受光データがチエツクされ、遮光された光軸があ
れば、安全信号が停止されて停止回路31が工作機を停止
させる停止制御が行なわれる。また、同時に停止回路31
の主リレーの溶着状態もチエツクされ、溶着が検出され
れば、溶着異常信号が補助停止回路30に出力され、補助
停止回路30において工作機の停止制御が行なわれる。さ
らに、チエツクスイツチ21がオンされたときには、ステ
ツプ220からステツプ270に進み、ステツプ270〜310が実
行されることにより、停止回路31の主リレーの接点を強
制的にオンオフさせてその接点の溶着状態がチエツクさ
れる。
Thus, from step 200 to step 260 or step 260
By repeatedly executing 320, the received light data sent from the detection unit 10 is checked, and if there is a shielded optical axis, the safety signal is stopped and the stop circuit 31 performs stop control to stop the machine tool. Be done. At the same time, the stop circuit 31
The welding state of the main relay is also checked, and if welding is detected, a welding abnormality signal is output to the auxiliary stop circuit 30, and the auxiliary stop circuit 30 controls the stop of the machine tool. Further, when the check switch 21 is turned on, the process proceeds from step 220 to step 270, and steps 270 to 310 are executed to forcibly turn on / off the contact of the main relay of the stop circuit 31 and weld the contact. Is checked.

上述のように、本発明の安全装置では、被監視領域の両
側からレーザ光を投光し、両側に対向設置されたリフレ
クタで反射され同じ光軸上をリターンしたレーザ光を受
光器で受光させる構造であるため、工作機でその作業領
域から治具や加工材料などを被監視範囲つまり光軸が形
成される領域から突出して作業を行なう必要がある場
合、第8図に示すように突出する加工材料40等が光軸を
遮光する箇所にリフレクタ39を接着しておけば、死角を
作らずに監視することができる。すなわち、突出した加
工材料40によつて遮光される光軸は両側のリフレクタ39
に当つて反射され、パラボラミラー3a,3b、回転ミラー2
a,2b、及びハーフミラー4a,4bを経て受光器5a,5bに受光
され、加工材料の両側にも光軸を生じさせ、従来のよう
に死角を作らずに被監視範囲を監視することができる。
As described above, in the safety device of the present invention, the laser light is projected from both sides of the monitored area, and the laser light reflected on the reflectors facing each other and returned on the same optical axis is received by the light receiver. Because of the structure, when it is necessary to perform work by projecting a jig, a processing material, etc. from the work area of the machine tool, that is, the area where the optical axis is formed, project the work tool as shown in FIG. If the processing material 40 or the like is attached to the portion where the optical axis is shielded from the reflector 39, it is possible to monitor without forming a blind spot. That is, the optical axis shielded by the protruding processing material 40 is the reflector 39 on both sides.
The parabolic mirrors 3a, 3b and the rotating mirror 2 are reflected by hitting
a, 2b, and the half mirrors 4a, 4b, the light is received by the light receivers 5a, 5b, and an optical axis is generated on both sides of the processed material, so that it is possible to monitor the monitored range without creating a blind spot as in the past. it can.

〈発明の効果〉 以上説明したように、本発明の工作機の安全装置によれ
ば、レーザ光により光軸を発生させるため、光軸を細く
絞つた状態で長い距離を投光させることができ、被監視
範囲の幅が広く光軸長が長くなつても光軸径が太く拡散
せず、光軸間隙を細く設定でき、目の細い監視を行なう
ことができる。さらに、両側のレーザ発振器からレーザ
光を投光し、反対側に対向して設置したリフレクタによ
り反射されたレーザ光を同じ光軸上でリターンさせ、受
光器によりこのリターンしたレーザ光を受光するように
したため、被監視範囲から加工材料や治具を突出させて
加工を行なう場合でも、加工材料や治具の両側(遮光す
る箇所)にリフレクタを接着すれば、光軸のなくなる死
角部分を作らずに監視でき、安全を確保できる。
<Effects of the Invention> As described above, according to the safety device for a machine tool of the present invention, since the optical axis is generated by the laser light, it is possible to project a long distance with the optical axis being narrowed down. Even if the width of the range to be monitored is wide and the optical axis length is long, the optical axis diameter is thick and does not diffuse, and the optical axis gap can be set to be small, so that the eyes can be closely monitored. Furthermore, laser light is projected from the laser oscillators on both sides, the laser light reflected by the reflectors facing each other on the opposite side is returned on the same optical axis, and the returned laser light is received by the light receiver. Therefore, even if the processing material or jig is projected from the monitored area and the processing is performed, if the reflectors are attached to both sides of the processing material or jig (light-shielding points), the blind spot where the optical axis disappears is not created. Can be monitored and safety can be secured.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の全体構成図、第2図〜第8図はその実
施例を示し、第2図は検出部の光学系の正面図、第3図
は同平面図、第4図は安全装置のブロツク図、第5図は
溶着検出回路の接続図、第6図は検出部の動作を示すフ
ローチヤート、第7図は制御部の動作を示すフローチヤ
ート第8図は他の使用例の説明図、第9図は従来の安全
装置の説明図である。 1a,1b……レーザ発振器、2a,2b……回転ミラー、3a,3b
……パラボラミラー、4a,4b……ハーフミラー、5a,5b…
…受光器、6……投光走査処理手段、7……受光処理手
段、8……光軸判定手段、9……停止指令手段、10……
検出部、12a,12b……リフレクタ、20……制御部。
FIG. 1 is an overall configuration diagram of the present invention, FIGS. 2 to 8 show an embodiment thereof, FIG. 2 is a front view of an optical system of a detector, FIG. 3 is a plan view of the same, and FIG. Block diagram of the safety device, FIG. 5 is a connection diagram of the welding detection circuit, FIG. 6 is a flow chart showing the operation of the detection unit, FIG. 7 is a flow chart showing the operation of the control unit, and FIG. 8 is another example of use. And FIG. 9 is an explanatory view of a conventional safety device. 1a, 1b …… Laser oscillator, 2a, 2b …… Rotating mirror, 3a, 3b
... parabolic mirrors, 4a, 4b ... half mirrors, 5a, 5b ...
... light receiver, 6 ... light emission scanning processing means, 7 ... light receiving processing means, 8 ... optical axis determination means, 9 ... stop command means, 10 ...
Detectors, 12a, 12b ...... Reflectors, 20 ... Control section.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】被監視領域の両側に2個のパラボラミラー
が光軸をずらした位置に対向して配置されると共に2個
のリフレクタが各々のパラボラミラーに対向して両側に
配置され、該各パラボラミラーの略焦点付近にそれぞれ
回転ミラーが配設され、該2対のパラボラミラーとリフ
レクタ間に多数の並行光軸を発生させるようにレーザ光
を該各々の回転ミラーに向けて照射する2台のレーザ発
振器が配設され、該リフレクタで反射された各光軸上を
リターンしたレーザ光をハーフミラーを介して受光する
ための2個の受光器が設けられてなる検出部と、 該検出部から送られる受光データを入力し、光軸に遮光
があるとき工作機を停止させるための停止信号を出力す
る制御部と、からなる安全装置であつて、 前記検出部には、前記2台のレーザ発振器を駆動してレ
ーザ光を投光すると共に、前記2個の回転ミラーをモー
タにより所定角度づつ回転駆動して光軸の走査を行なう
投光走査処理手段と、前記受光器から送られる受光信号
に基づき受光データ信号を出力する受光処理手段が設け
られ、 前記制御部には、前記検出部から送られる受光データ信
号に基づき全光軸受光か否かを判定する光軸判定手段
と、全光軸受光ではない場合、停止信号を出力して工作
機の停止指令を行なう停止指令手段が設けられたことを
特徴とする工作機の安全装置。
1. Two parabolic mirrors are arranged on both sides of the monitored area so as to face each other at positions where the optical axes are offset, and two reflectors are arranged on both sides so as to face each parabolic mirror. Rotating mirrors are arranged near the focal points of the parabolic mirrors, respectively, and irradiate the respective rotating mirrors with laser light so as to generate a large number of parallel optical axes between the two pairs of parabolic mirrors and reflectors. A detector provided with two laser oscillators and provided with two light receivers for receiving the laser light reflected by the reflector and returned on each optical axis through a half mirror; A safety device comprising: a control unit for inputting received light data sent from a unit, and outputting a stop signal for stopping the machine tool when the optical axis is shielded, wherein the detection unit includes the two units. The laser A projecting scan processing means for driving a shaker to project a laser beam, and at the same time, for rotationally driving the two rotary mirrors by a motor at a predetermined angle to scan an optical axis, and a light receiving unit sent from the photoreceiver. A light reception processing unit that outputs a light reception data signal based on a signal is provided, and the control unit includes an optical axis determination unit that determines whether all optical bearing light is received based on the light reception data signal sent from the detection unit, A safety device for a machine tool, characterized in that stop command means is provided for outputting a stop signal to issue a stop command for the machine tool when it is not an optical bearing light.
JP28008786A 1986-11-25 1986-11-25 Machine tool safety device Expired - Lifetime JPH0792191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28008786A JPH0792191B2 (en) 1986-11-25 1986-11-25 Machine tool safety device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28008786A JPH0792191B2 (en) 1986-11-25 1986-11-25 Machine tool safety device

Publications (2)

Publication Number Publication Date
JPS63135695A JPS63135695A (en) 1988-06-08
JPH0792191B2 true JPH0792191B2 (en) 1995-10-09

Family

ID=17620128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28008786A Expired - Lifetime JPH0792191B2 (en) 1986-11-25 1986-11-25 Machine tool safety device

Country Status (1)

Country Link
JP (1) JPH0792191B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07108478B2 (en) * 1990-12-20 1995-11-22 祥一郎 垣中 Safety device

Also Published As

Publication number Publication date
JPS63135695A (en) 1988-06-08

Similar Documents

Publication Publication Date Title
JP2789741B2 (en) Laser radar scanning device
US5426288A (en) Bar code reader and reading method using single laser light source for both reading information and measuring distance
US5153417A (en) Bar code reader using holograms
JPH0820371B2 (en) Defect inspection device and defect inspection method
JP2005121638A (en) Optoelectronic detection apparatus
JPH0792191B2 (en) Machine tool safety device
JPH1031064A (en) Scan type laser radar device
JPH0761591B2 (en) Machine tool safety device
JPH0792192B2 (en) Machine tool safety device
JPH086878B2 (en) Machine tool safety device
KR20200006999A (en) Lidar device and method using simplified detection
JPH06100312B2 (en) Machine tool safety device
JP2639509B2 (en) Optical barcode reader
KR100255173B1 (en) Scanning laser radar
JP2939413B2 (en) Target reflective object detector
JPH0743466A (en) Distance measuring apparatus
JP3155188B2 (en) Automatic tracking device
JP2788317B2 (en) Scanning pattern forming device for bar code reader
JPH09185778A (en) Area sensor
JP2000161961A (en) Rotary laser device
JPH02133186A (en) Carbonic acid gas laser beam machine
JPH0557547B2 (en)
JPH0523175U (en) Peripheral monitoring equipment for construction machinery
JPS6066737A (en) Laser irradiating apparatus
JPH10263860A (en) Diagnostic device for laser transmission system