JPH0791866A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH0791866A
JPH0791866A JP23437793A JP23437793A JPH0791866A JP H0791866 A JPH0791866 A JP H0791866A JP 23437793 A JP23437793 A JP 23437793A JP 23437793 A JP23437793 A JP 23437793A JP H0791866 A JPH0791866 A JP H0791866A
Authority
JP
Japan
Prior art keywords
fluid
heat
liquid
temperature
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23437793A
Other languages
Japanese (ja)
Inventor
Yutaka Watanabe
裕 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23437793A priority Critical patent/JPH0791866A/en
Publication of JPH0791866A publication Critical patent/JPH0791866A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to get over difficult points, such as corrosion resistance and heat-exchange with high efficiency by allowing a first fluid having a first specific gravity and a temperature to be circulated respectively as a counterflow with a second fluid whose specific gravity and temperature is different from the first fluid and which is insoluble with the first fluid and heat-exchanging both the first and second fluids. CONSTITUTION:In case when a heat exchanger is adopted for a device, which produces fresh water from marine water based on ice making, marine water taken in from a sea is cooled at a temperature of deg.C at an ice making unit of a refrigerating machine and partially converted into ice while pure water is separated from the other marine water. In the heat exchanger 6, deg.C marine water 3B of high salt content and concentration is heat-exchanged with an intermediate heat medium 10 (fluorine group compound of about 1.8 specific gravity and called as a liquid hereafter). In this heat exchanger 6, the marine water 3B of high salt content and concentration is distributed into a vessel from a nozzle 8 by way of a line 7 while the liquid 10 is adapted to flow in from a nozzle 9 installed at the upper part in the vessel 6. The marine water 3B and the liquid 10 are circulated as a counterflow so that they may be heat-exchanged. Then, the temperature of the marine water 3B in turned to approximately 25 deg.C while the temperature of the liquid 10 is turned to approximately 0 deg. and both the water and liquid are discharged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱エネルギーを交換する
熱交換器に関する。
FIELD OF THE INVENTION The present invention relates to a heat exchanger for exchanging heat energy.

【0002】[0002]

【従来の技術】食品工業、化学工業、卑近な例としての
海水の淡水化装置などでは濃度が異なる同種の液体間で
熱のやり取りを高効率に行う必要が多々ある。即ち、あ
る種の熱処理が行われ、濃度が変化した液体から熱(冷
熱も含め)を回収し、未処理の液体に与える作業などで
ある。
2. Description of the Related Art In the food industry, the chemical industry, and the desalination apparatus for seawater as a common example, it is often necessary to efficiently exchange heat between liquids of the same kind having different concentrations. That is, it is an operation of recovering heat (including cold heat) from a liquid whose concentration has been changed by performing a certain kind of heat treatment and applying the heat to an untreated liquid.

【0003】この場合、通常対向流型の熱交換器が用い
られるが、伝熱面を介しての熱交換の制約から交換熱量
が十分に上がらず、熱的損失や両流体の流動損失などを
伴うのが常識である。
In this case, a counter-flow type heat exchanger is usually used, but the heat exchange amount is not sufficiently increased due to the restriction of heat exchange through the heat transfer surface, which causes thermal loss and flow loss of both fluids. It is common sense to accompany.

【0004】[0004]

【発明が解決しようとする課題】従来技術では、これら
損失を最小限とするべく高性能伝熱面が採用されている
が十分な効果を得ているとは言い難い状況である。ま
た、熱交換器は金属を主な構成材料とする為、錆や腐食
の問題があり耐腐食性を有する高価な材料や保護処理が
必要になるなどの欠点がある。本発明の目的は耐腐食性
などの問題点を克服し構成簡易且つ高効率で熱交換可能
な熱交換器を提供することにある。
In the prior art, a high-performance heat transfer surface is used to minimize these losses, but it is difficult to say that a sufficient effect is obtained. Further, since the heat exchanger mainly uses metal as a constituent material, there are drawbacks such as a problem of rust and corrosion, an expensive material having corrosion resistance, and a protective treatment. An object of the present invention is to provide a heat exchanger capable of overcoming problems such as corrosion resistance and having a simple structure and high efficiency and heat exchange.

【0005】[0005]

【課題を解決するための手段】請求項1記載の本発明
は、第1の比重及び第1の温度を有する第1の流体と、
第1の流体に不溶で第1の比重より大なる第2の比重を
有するとともに第1の温度と異なる第2の温度を有する
第2の流体と、第1の流体を所定空間の下方より注入し
上方より回収する第1の流体循環部と、第2の流体を前
記所定空間の上方より注入し下方より回収する第2の流
体循環部とを備えて成ることを特徴とする。
The present invention according to claim 1 provides a first fluid having a first specific gravity and a first temperature,
A second fluid which is insoluble in the first fluid and has a second specific gravity larger than the first specific gravity and a second temperature different from the first temperature, and the first fluid are injected from below a predetermined space. The first fluid circulation unit collects the second fluid from above and the second fluid circulation unit injects the second fluid from above the predetermined space and collects it from below.

【0006】請求項2記載の本発明は、所定空間内に配
設されるとともに、この所定空間を気密に区画する中空
膜状部材と、第1の温度を有する第1の流体と、第1の
温度と異なる第2の温度を有する第2の流体と、前記第
1の流体を前記所定空間下方より注入し前記中空膜状部
材内部を流通させこの所定空間上方より回収する第1の
流体循環部と、前記第2の流体を前記所定空間上方より
注入し前記中空膜状部材外部を流通させこの所定空間下
方より回収する第2の流体循環部とを備えて成ることを
特徴とする。
According to a second aspect of the present invention, a hollow membrane-like member disposed in a predetermined space and airtightly partitioning the predetermined space, a first fluid having a first temperature, and a first fluid And a second fluid having a second temperature different from the above temperature, and the first fluid is injected from below the predetermined space, circulates inside the hollow membrane member, and is recovered from above the predetermined space. And a second fluid circulation unit that injects the second fluid from above the predetermined space, circulates the outside of the hollow membrane-like member, and recovers from below the predetermined space.

【0007】[0007]

【作用】以上の構成により、耐腐食性の難点を克服し、
構成簡易且つ高効率で熱交換を可能となしうる。
[Function] With the above configuration, the difficulty of corrosion resistance is overcome,
The heat exchange can be performed with a simple structure and high efficiency.

【0008】[0008]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。図1は本発明による熱交換器を製氷により海水
の淡水化装置へ応用した実施例である。海1より取水ラ
イン2を経由して取水された海水3は約25℃の水温を有
している。これを冷凍機4を用い、製氷部5にて0℃と
してその一部を氷として、海水中から純水を分離する。
ここでは製氷部5の詳細は本発明と関係無いので割愛す
るが、0℃の海水3Bからの純水(氷)の分離が進展
し、塩分濃度が高まると純水の分離性能が低下する事が
判っている。この為、連続的に新しい海水を製氷部5に
導入し製氷を継続する必要がある。製氷部5より排出さ
れる高塩分濃度の海水3Bは0℃であり、この冷熱を利
用して流入してくる低塩分濃度の海水3Aを出来るだけ
冷却してやれば冷凍機4の仕事量を軽減でき、淡水化効
率も向上する。この目的の為、本発明の熱交換器が使用
された。即ち、図1の熱交換器6は、製氷部5から排出
される0℃の高塩分濃度の海水3Bと中間熱媒体(第2
の液体:比重約1.8 の弗素系化合物=米国3M社製フロ
リナート液)とで熱交換させるものである。図2に示す
様に、製氷部5より排出された0℃の高塩分濃度の海水
3Bはライン7を経由して熱交換器6内部のノズル8か
ら容器内に流出する。(フロリナート液は比熱が海水の
約25%で、比重は約1.8 倍である。単位体積当たりの比
熱は海水の45%であり、熱当量を等しくする体積流量は
約2.2 倍)一方、容器6内部の上部に設置されたノズル
9を経てフロリナート液10が流入する。海水3Bとフロ
リナート液10は互いに進行方向が逆の流れとして存在し
両者の相対速度は重力および密度差によって支配されて
いる。容器内部には、流れ方向に液滴サイズに比して十
分大きな開口面積をもつハニカム状の整流板11が設置さ
れている。熱交換器6にて熱交換された高塩分濃度の海
水3Bは出口温度がほぼ25℃となり、反対にフロリナー
ト液10はほぼ0℃まで温度低下を達成している。一方、
海1より採取された低塩分濃度で約25℃の海水3Aはも
う一方の熱交換器12の下部からノズル8を経てフロリナ
ート液10の内部に流出、下降してくるフロリナート液10
の流れに逆らって浮力により上昇する。この際の熱交換
の手順は、熱交換器6の場合と全く同様である。熱交換
器12にて、約25℃の低塩分濃度海水3Aは約0℃まで冷
却された後ライン13より製氷部5に流入し冷凍機4の作
用にてその一部を氷とし塩分濃度を高められ高塩分濃度
の海水3Bとなり熱交換器6へ向けて排出される。熱交
換器12ではフロリナート液10は約0℃から約25℃まで昇
温し再びライン14を介して熱交換器6へ送液される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment in which the heat exchanger according to the present invention is applied to a desalination apparatus for seawater by making ice. Seawater 3 taken from the sea 1 via the water intake line 2 has a water temperature of about 25 ° C. Using the refrigerator 4, the ice-making unit 5 sets the temperature to 0 ° C., and a part of the ice is used to separate pure water from seawater.
The details of the ice making unit 5 are omitted here because they are not related to the present invention. However, when the separation of pure water (ice) from the seawater 3B at 0 ° C. progresses and the salt concentration increases, the separation performance of pure water decreases. Is known. Therefore, it is necessary to continuously introduce new seawater into the ice making unit 5 to continue ice making. The seawater 3B having a high salt concentration discharged from the ice making unit 5 is 0 ° C., and the work of the refrigerator 4 can be reduced if the inflowing seawater 3A having a low salt concentration is cooled as much as possible. The desalination efficiency is also improved. For this purpose, the heat exchanger according to the invention was used. That is, the heat exchanger 6 of FIG. 1 includes the seawater 3B having a high salt concentration of 0 ° C. and the intermediate heat medium (second heat medium) discharged from the ice making unit 5.
Liquid: a fluorine-based compound having a specific gravity of about 1.8 = Fluorinate liquid manufactured by 3M Co., USA) for heat exchange. As shown in FIG. 2, the seawater 3B having a high salt concentration of 0 ° C. discharged from the ice making section 5 flows out from the nozzle 8 inside the heat exchanger 6 into the container via the line 7. (The specific heat of Fluorinert liquid is about 25% of seawater and the specific gravity is about 1.8 times. The specific heat per unit volume is 45% of seawater, and the volume flow rate to make the heat equivalent is about 2.2 times.) The Fluorinert liquid 10 flows in through the nozzle 9 installed in the upper part of the inside. The seawater 3B and the Fluorinert liquid 10 exist as flows in which the traveling directions are opposite to each other, and the relative speed between the two is governed by gravity and the density difference. Inside the container, a honeycomb rectifying plate 11 having an opening area sufficiently larger than the droplet size in the flow direction is installed. The outlet temperature of the high-salinity seawater 3B that has been heat-exchanged in the heat exchanger 6 is approximately 25 ° C, while the temperature of the Fluorinert liquid 10 has decreased to approximately 0 ° C. on the other hand,
The seawater 3A with a low salinity of about 25 ° C collected from the sea 1 flows into the Fluorinert liquid 10 through the nozzle 8 from the lower part of the other heat exchanger 12, and then descends into the Fluorinert liquid 10
It rises due to buoyancy against the flow of. The heat exchange procedure at this time is exactly the same as that of the heat exchanger 6. In the heat exchanger 12, the seawater with a low salinity of about 25 ° C. 3A is cooled to about 0 ° C. and then flows into the ice making section 5 from the line 13 and a part of the ice is converted to a salinity by the action of the refrigerator 4. The seawater 3B that has been enhanced and has a high salinity concentration is discharged toward the heat exchanger 6. In the heat exchanger 12, the Fluorinert liquid 10 is heated from about 0 ° C. to about 25 ° C. and again sent to the heat exchanger 6 via the line 14.

【0009】次に、以上の様に構成された実施例の作用
を説明する。本発明の原理は比重が異なり互いに不溶な
2種類の液体が一方は浮上し一方は沈降する現象に基づ
いている。従って両液体の相対速度は液体の組合せによ
りほぼ確定し、それ以上の相対速度を持たせる事は出来
ない。この為、本発明では一方の液体として水を代表格
に選び、他方の液体として比重が1.5 以上の高比重非水
溶性液体を選定している。これにより、両者の相対速度
を比較的大きくとる事が可能となる。因みに、水とフロ
リナート間の相対速度は約0.8m/sである。図3は熱交換
器内部で液相となるフロリナート液10中を海水3が液滴
となって上昇する際の断面内での互いの占有する面積と
速度の関係の例解図である。フロリナートの移動速度V
f と水の移動速度Vw の絶対値の和は約0.8m/s一定であ
る為、熱交換器断面の単位面積当たりの処理流量はほぼ
一定である。
Next, the operation of the embodiment configured as described above will be described. The principle of the present invention is based on the phenomenon that two kinds of liquids having different specific gravities and insoluble in each other float on one and settle on the other. Therefore, the relative velocities of both liquids are almost determined by the combination of the liquids, and the relative velocities cannot be further increased. Therefore, in the present invention, water is representatively selected as one of the liquids, and a non-water-soluble liquid having a high specific gravity of 1.5 or more is selected as the other liquid. As a result, the relative speed between the two can be made relatively large. By the way, the relative velocity between water and Fluorinert is about 0.8 m / s. FIG. 3 is an illustrative view showing the relationship between the area occupied by each other and the velocity in the cross section when the seawater 3 rises as droplets in the Fluorinert liquid 10 which becomes the liquid phase inside the heat exchanger. Fluorinert movement speed V
Since the sum of the absolute value of f and the moving velocity Vw of water is about 0.8 m / s, the processing flow rate per unit area of the heat exchanger cross section is almost constant.

【0010】海1より取水された海水3Aは当初約25℃
と高温であるが熱交換器により製氷部5から排出された
0℃の高塩分濃度海水3Bの持つ冷熱により0℃近辺ま
で冷却する事が可能である。本実施例では氷として分離
された純水の持つ冷熱の行方については述べていない
が、氷の持つこの冷熱までも海水3Aの冷却に使用でき
る場合には製氷部5への流入温度を更に0℃へ近付ける
事が可能である。
The seawater 3A taken from the sea 1 is initially about 25 ° C.
Although it is a high temperature, it is possible to cool to around 0 ° C. by the cold heat of the 0 ° C. high-salt-concentration seawater 3B discharged from the ice making section 5 by the heat exchanger. In this embodiment, the fate of cold heat of pure water separated as ice is not described, but if the cold heat of ice can also be used to cool the seawater 3A, the inflow temperature to the ice making unit 5 is further reduced to 0. It is possible to approach ℃.

【0011】この様に、従来の熱交換器では取水した海
水3Aと排出する海水3Bとの熱交換に主に金属材料か
ら構成される例えばシェルアンドチューブ熱交換器を使
用する為、特に海水を対象とする本実施例の様な場合に
は錆、腐食が発生する。熱交換器では主要構造材に熱伝
導率が悪いプラスティックを用いても伝熱性能に変化は
無い。この為、錆、腐食などの問題を回避する事が可能
である。この様にして第1の液体から第2の液体へ熱エ
ネルギーが移動した後、全く同様な手段で、第2の液体
から最終目的である第3の液体へ(第1の液体の初期温
度まで加熱する事が目的である第1の液体と同種の液
体)熱エネルギーを転嫁する事が可能となる。結果とし
て原理的に直接接触熱交換が出来ない第1の液体から第
3の液体へ直接接触に準じる効率で熱が伝達された事に
なる。この様に、熱交換器を用いれば、目的温度(高温
あるいは低温)にある第1の液体から熱を採取し、次に
この熱を第3の液体に極めて高効率に移す事が可能であ
り、また使用する熱交換器もシェルアンドチューブの様
な高級・高価な物でなく単に筒型容器を用いれば目的を
達成できる。
As described above, since the conventional heat exchanger uses, for example, a shell-and-tube heat exchanger mainly made of a metal material for heat exchange between the intake seawater 3A and the discharge seawater 3B, the seawater is particularly used. In the case of the target embodiment, rust and corrosion occur. In the heat exchanger, there is no change in heat transfer performance even if the main structural material is plastic with poor thermal conductivity. Therefore, it is possible to avoid problems such as rust and corrosion. In this way, after the thermal energy is transferred from the first liquid to the second liquid, by the same means, from the second liquid to the final liquid, the third liquid (up to the initial temperature of the first liquid) It is possible to transfer heat energy of the same liquid as the first liquid whose purpose is heating). As a result, heat is transferred from the first liquid, which is in principle incapable of direct contact heat exchange, to the third liquid at an efficiency equivalent to that of direct contact. Thus, by using a heat exchanger, it is possible to extract heat from the first liquid at the target temperature (high or low temperature) and then transfer this heat to the third liquid with extremely high efficiency. Also, the heat exchanger to be used can achieve the purpose by simply using a cylindrical container instead of a high-grade and expensive material such as shell and tube.

【0012】以上説明した様に、本熱交換器によれば食
品工業、化学工業、海水淡水化などにおいて、温度の異
なる同種の液体の熱交換をフロリナートなど、これらの
液体に不溶な熱媒体を用いる事により可能とし、かつ、
熱交換器も従来の様に金属隔壁を介しての伝熱では無
く、隔壁と言う存在を取り去る事が可能で、ほぼ直接接
触熱交換である為、隔壁の汚れ、性能劣化、錆、腐食な
どこれまで不可避であった問題から開放される。
As described above, according to the present heat exchanger, in the food industry, chemical industry, seawater desalination, etc., heat exchange of liquids of the same kind having different temperatures such as Fluorinert can be performed by using a heat medium insoluble in these liquids. It is possible by using it, and
The heat exchanger does not transfer heat through a metal partition as in the past, but it is possible to remove the existence of a partition, and since it is almost direct contact heat exchange, dirt, performance deterioration, rust, corrosion etc. of the partition It frees you from the problems that were inevitable until now.

【0013】図4は本発明の他の実施例を示す熱交換器
の構成図である。第一の実施例では、熱交換器内部での
2種類の液体の相対速度は液体の組合せにより決まる。
液体間の比重差が十分でない場合に相対速度が減少し熱
交換の効率が低下してしまう。図4はこの問題を解決す
ると共に、相対速度を増大する為に開発された熱交換器
である。即ち、熱交換器20内の上方および下方には熱交
換する液体で体積流量の少ない流体を流す為の複数ヘッ
ダーが設置され、各ヘッダー間には柔軟性薄膜にて作ら
れたチューブが複数本連通して設置されている。本実施
例も第一の実施例同様に製氷による海水の淡水化装置に
組込まれた物である。
FIG. 4 is a block diagram of a heat exchanger showing another embodiment of the present invention. In the first embodiment, the relative velocities of the two types of liquid inside the heat exchanger are determined by the combination of the liquids.
If the specific gravity difference between the liquids is not sufficient, the relative velocity decreases and heat exchange efficiency decreases. FIG. 4 shows a heat exchanger developed to solve this problem and increase the relative speed. That is, a plurality of headers for flowing a heat exchange liquid having a small volume flow rate are installed above and below the heat exchanger 20, and a plurality of tubes made of a flexible thin film are provided between the headers. It is installed in communication. This embodiment is also incorporated in a seawater desalination apparatus using ice making, as in the first embodiment.

【0014】フロリナート液10は熱交換器20の上部より
温度25℃で流入し、ヘッダー21およびチューブ22の周囲
を流れ下方へ進む。一方、約0℃の海水3Bは熱交換器
20の下部ヘッダー21Aより流入チューブ22を通過し上方
へ流れる。相対速度を確保する為に、流量割合を変化さ
せてもチューブの柔軟性により夫々の流体の持つ占有面
積が変化する事により対応可能である。しかしながら従
来の熱交換技術の様なポンプによる液体の圧送は本発明
では無意味であり、あくまでも自然な浮上、沈降を原則
とする。
The Fluorinert liquid 10 flows in from the upper part of the heat exchanger 20 at a temperature of 25 ° C., flows around the header 21 and the tube 22, and proceeds downward. On the other hand, seawater 3B at about 0 ° C is a heat exchanger.
The lower header 21A of 20 passes through the inflow tube 22 and flows upward. Even if the flow rate is changed in order to secure the relative speed, it can be dealt with by changing the occupied area of each fluid due to the flexibility of the tube. However, the pumping of the liquid by the pump like the conventional heat exchange technique is meaningless in the present invention, and in principle, the natural levitation and sedimentation are basically used.

【0015】次に、この他の実施例について説明する。
薄膜を介した熱交換である事から熱伝達特性は直接接触
の場合に比して悪化する。しかしながら、柔軟性を持つ
薄膜である為、チューブ内外の液体は互いに流れの干渉
を生じ局所的に激しい揺らぎを持った流れとなる。この
為、伝熱面積では液滴による直接接触程は確保出来ない
が、直接接触の場合の様に径の小さい液滴(移動速度が
相対的に小さい)の発生を防止する事ができる。また、
万が一薄膜に穴があき内部流体の混合が発生しても熱交
換器20の上下に分離滞留するので、回収可能であり、性
能の劣化は僅かである。この様に、本実施例でも液体の
循環を比重差による自然循環を基礎として、薄膜チュー
ブを介する事による熱交換器内部の過混合防止と多少の
流量比変動に対する安定性確保を達成する事が可能とな
っている。流動はあくまで互いの流体間の密度差による
ものでありポンピング等の手段を用いていない事から、
薄膜チューブを介しての圧力差は僅かであり膜を破壊す
る力とはならない。
Next, another embodiment will be described.
Since the heat is exchanged through the thin film, the heat transfer characteristics are worse than in the case of direct contact. However, since it is a thin film having flexibility, the liquid inside and outside the tube interferes with each other in flow and locally becomes a flow with severe fluctuations. Therefore, in the heat transfer area, it is not possible to secure the extent of direct contact with droplets, but it is possible to prevent the generation of droplets with a small diameter (moving speed is relatively small) as in the case of direct contact. Also,
Even if there is a hole in the thin film and mixing of the internal fluid occurs, it stays at the top and bottom of the heat exchanger 20, so it can be collected and the performance is slightly deteriorated. As described above, also in the present embodiment, the liquid circulation is based on the natural circulation due to the difference in specific gravity, and it is possible to achieve the prevention of over-mixing inside the heat exchanger and the securing of the stability against a slight flow rate ratio variation through the thin film tube. It is possible. Since the flow is due to the density difference between the fluids and no means such as pumping is used,
The pressure difference across the thin film tube is so small that it does not force the membrane to break.

【0016】熱交換器容器および薄膜チューブ共にプラ
スティックやナイロンの使用が可能であり、海水等の使
用に対する錆や腐食は問題が極めて小さくなっている。
また、柔軟性を有する薄膜チューブはその使用時に自在
に変形し絶えず揺れ動く為、表面への微生物や汚れの付
着は僅かである事も特筆される。
Since it is possible to use plastic or nylon for both the heat exchanger container and the thin film tube, the problem of rust and corrosion due to the use of seawater or the like is extremely small.
It is also noted that the flexible thin film tube is freely deformed and constantly shakes when it is used, so that the adhesion of microorganisms and dirt to the surface is slight.

【0017】[0017]

【発明の効果】本発明によれば、耐腐食性の問題を克服
し、構成簡易且つ高効率な熱交換可能な熱交換器を提供
することができる。
According to the present invention, it is possible to provide a heat exchanger capable of overcoming the problem of corrosion resistance and having a simple structure and highly efficient heat exchange.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】図1に示した熱交換器内部の熱交換状態の例解
FIG. 2 is an exemplary solution diagram of a heat exchange state inside the heat exchanger shown in FIG.

【図3】図1に示した熱交換器の熱交換媒体の動きを説
明する図
FIG. 3 is a diagram for explaining the movement of the heat exchange medium of the heat exchanger shown in FIG.

【図4】本発明の他の実施例を示す熱交換器の構成断面
FIG. 4 is a sectional view showing the configuration of a heat exchanger according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…海 2…取水ライン 3…海水 3A…低塩分濃度
海水 3B…高塩分濃度海水 4…冷凍機 5…製氷部
6…熱交換器 7…排出ライン 8…ノズル 9…ノズル 10…フロリナート液 11…整流板 12…熱
交換器 13…流入ライン 14…フロリナート液ライン 15…流量制御機能付きポン
プ 16…制御装置 20…熱交換器 21…ヘッダー 21A
…下部ヘッダー 21B…上部ヘッダー 22…柔軟性薄膜
チューブ
1 ... Sea 2 ... Water intake line 3 ... Seawater 3A ... Low salinity seawater 3B ... High salinity seawater 4 ... Refrigerator 5 ... Ice making part 6 ... Heat exchanger 7 ... Discharge line 8 ... Nozzle 9 ... Nozzle 10 ... Fluorinert liquid 11 … Baffle plate 12… Heat exchanger 13… Inflow line 14… Fluorinate liquid line 15… Pump with flow rate control function 16… Control device 20… Heat exchanger 21… Header 21A
… Lower header 21B… Upper header 22… Flexible thin film tube

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1の比重及び第1の温度を有する第1
の流体と、第1の流体に不溶で第1の比重より大なる第
2の比重を有するとともに第1の温度と異なる第2の温
度を有する第2の流体と、第1の流体を所定空間の下方
より注入し上方より回収する第1の流体循環部と、第2
の流体を前記所定空間の上方より注入し下方より回収す
る第2の流体循環部とを備えて成る熱交換器。
1. A first having a first specific gravity and a first temperature.
And a second fluid that is insoluble in the first fluid, has a second specific gravity greater than the first specific gravity, and has a second temperature different from the first temperature, and the first fluid in a predetermined space. A first fluid circulation part for injecting from below and recovering from above,
And a second fluid circulation unit for injecting the fluid from above from the predetermined space and recovering it from below.
【請求項2】 所定空間内に配設されるとともに、この
所定空間を気密に区画する中空膜状部材と、第1の温度
を有する第1の流体と、第1の温度と異なる第2の温度
を有する第2の流体と、前記第1の流体を前記所定空間
下方より注入し前記中空膜状部材内部を流通させこの所
定空間上方より回収する第1の流体循環部と、前記第2
の流体を前記所定空間上方より注入し前記中空膜状部材
外部を流通させこの所定空間下方より回収する第2の流
体循環部とを備えて成る熱交換器。
2. A hollow film-shaped member which is disposed in a predetermined space and airtightly divides the predetermined space, a first fluid having a first temperature, and a second fluid different from the first temperature. A second fluid having a temperature; a first fluid circulation part for injecting the first fluid from below the predetermined space to circulate inside the hollow membrane member and recovering from above the predetermined space;
A second fluid circulation part for injecting the fluid from above the predetermined space, flowing through the outside of the hollow membrane member and recovering from below the predetermined space.
【請求項3】 所定空間には第1及び第2の流体の流れ
を整流させるハニカム状部材が配設されている請求項1
記載の熱交換器。
3. A honeycomb member for rectifying the flow of the first and second fluids is arranged in the predetermined space.
The heat exchanger described.
JP23437793A 1993-09-21 1993-09-21 Heat exchanger Pending JPH0791866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23437793A JPH0791866A (en) 1993-09-21 1993-09-21 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23437793A JPH0791866A (en) 1993-09-21 1993-09-21 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH0791866A true JPH0791866A (en) 1995-04-07

Family

ID=16970056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23437793A Pending JPH0791866A (en) 1993-09-21 1993-09-21 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH0791866A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9376330B2 (en) 2009-02-02 2016-06-28 Adionics Water pretreatment unit using a fluorinated liquid
WO2021235456A1 (en) * 2020-05-18 2021-11-25 株式会社ゼネシス Fluid container and heat exchange device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9376330B2 (en) 2009-02-02 2016-06-28 Adionics Water pretreatment unit using a fluorinated liquid
US10183873B2 (en) 2009-02-02 2019-01-22 Adionics Water pretreatment unit using a fluorinated liquid
WO2021235456A1 (en) * 2020-05-18 2021-11-25 株式会社ゼネシス Fluid container and heat exchange device

Similar Documents

Publication Publication Date Title
US7610768B2 (en) Apparatus and methods for water regeneration from waste
US4315402A (en) Heat transfer process and system
EP0335707B1 (en) Method for transferring heat between process liquor streams
Rane et al. Heat pump operated freeze concentration system with tubular heat exchanger for seawater desalination
US3259181A (en) Heat exchange system having interme-diate fluent material receiving and discharging heat
SE437560B (en) DEVICE AND PROCEDURE FOR VAPORATION OF CONDENSED NATURAL GAS
US6119458A (en) Immiscible, direct contact, floating bed enhanced, liquid/liquid heat transfer process
US4238296A (en) Process of desalination by direct contact heat transfer
US4310387A (en) Process and system of desalination by direct contact heat transfer
CN207515567U (en) A kind of high-efficiency falling film type evaporation equipment
JPH0791866A (en) Heat exchanger
CA2163318C (en) Shell and tube type evaporator
US10415864B2 (en) Ice slurry manufacturing process
US4335581A (en) Falling film freeze exchanger
JPS61500506A (en) Method and device for utilizing freezing heat of water as a heat source for heat pumps
SE8403575L (en) REFRIGERATOR COOLING EVAPORATORS
CN207214530U (en) A kind of condenser of built-in oil eliminator
CN105627787A (en) Full-evaporation air cooling condenser and using method thereof
US3616653A (en) Refrigeration in cycles of freezing and melting
US20220267173A1 (en) Systems and methods for separating soluble solutions
Mulyono et al. Concentration difference heat pump using fusion and freezing processes
JPS61108815A (en) Turbine plant with use of hot water
CN108895726B (en) Efficient double-side phase change heat exchanger
Mersmann et al. Evaporation and Condensation
JPS6071895A (en) Heat transmitting device