JPH079185A - Laser irradiating device - Google Patents

Laser irradiating device

Info

Publication number
JPH079185A
JPH079185A JP5157365A JP15736593A JPH079185A JP H079185 A JPH079185 A JP H079185A JP 5157365 A JP5157365 A JP 5157365A JP 15736593 A JP15736593 A JP 15736593A JP H079185 A JPH079185 A JP H079185A
Authority
JP
Japan
Prior art keywords
laser beam
laser
cooling liquid
handpiece
guide path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5157365A
Other languages
Japanese (ja)
Other versions
JPH0829429B2 (en
Inventor
Toshihiko Suzuki
俊彦 鈴木
Shinichi Fujisaka
紳一 藤坂
Katsuhiko Sato
勝彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technology Research Association of Medical and Welfare Apparatus
Original Assignee
Technology Research Association of Medical and Welfare Apparatus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technology Research Association of Medical and Welfare Apparatus filed Critical Technology Research Association of Medical and Welfare Apparatus
Priority to JP5157365A priority Critical patent/JPH0829429B2/en
Publication of JPH079185A publication Critical patent/JPH079185A/en
Publication of JPH0829429B2 publication Critical patent/JPH0829429B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/146Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing a liquid

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Laser Surgery Devices (AREA)

Abstract

PURPOSE:To provide a laser irradiating device by which a cooling liquid is surely released to a laser beam irradiating part so that the cooling effect is enhanced. CONSTITUTION:A part of the laser beam light guide inside a hand piece 11 is closed by a window 12, and an introducing pipe 13 is inserted in the opening part that is provided on the side wall on the side of a laser beam emitting end 11a. A liquid pouring mechanism is structured such that the introducing pipe 13 is the part for introducing a cooling liquid, that a light guide between the window 12 and the emitting end 11a is the route for transporting the cooling liquid, and that the emitting end 11a is the discharging port for the cooling liquid. The irradiation of the laser beam B is from the emitting end 11a to a bone 14, and simultaneously the high purity water W that is sent in to the liquid pouring mechanism is poured at the part irradiated with the beam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ハンドピースから照射
されたレーザビームの照射部位が冷却されつつレーザ加
工が行われるレーザ照射装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser irradiation device for performing laser processing while cooling an irradiation portion of a laser beam emitted from a handpiece.

【0002】[0002]

【従来の技術】従来、この種のレーザ照射装置として
は、例えば、図2(a)に示される医療分野に用いられ
るレーザメスがある。
2. Description of the Related Art Conventionally, as a laser irradiation apparatus of this type, there is a laser knife used in the medical field shown in FIG.

【0003】ハンドピース1は内部が空洞化した円筒形
状をしており、この空洞部分がレーザビーム導光路を形
成している。レーザビームBはハンドピース1の内部に
設けられた集光レンズ2によって集光され、ハンドピー
ス先端部の照射口1aから被加工物である骨3に向けて
照射される。このレーザビーム照射により、骨3には切
開溝3aが形成される。また、ハンドピース1の外壁に
沿って導水パイプ4が設けられており、送水口4aを介
して注入された純水が放水口4bから切開溝3aに向け
て注水される。この際、放水口4bから放出される純水
は、同図(b)の一部拡大断面図に示されるように、水
柱5を形成している。この注水により骨3は冷却され、
切開溝3aおよびその周囲に炭化層が形成されたり、熱
変性が生じるのが防止されている。
The handpiece 1 has a cylindrical shape with a hollow inside, and this hollow portion forms a laser beam guiding path. The laser beam B is condensed by a condensing lens 2 provided inside the handpiece 1, and is irradiated from the irradiation opening 1a at the tip of the handpiece toward the bone 3 which is the workpiece. This laser beam irradiation forms an incision groove 3a in the bone 3. Further, a water guide pipe 4 is provided along the outer wall of the handpiece 1, and pure water injected through the water supply port 4a is poured from the water discharge port 4b toward the cut groove 3a. At this time, the pure water discharged from the water discharge port 4b forms a water column 5, as shown in a partially enlarged sectional view of FIG. By this water injection, the bone 3 is cooled,
It is prevented that a carbonized layer is formed in the cut groove 3a and its surroundings, and that thermal denaturation does not occur.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来のレーザ照射装置においては、切断・切開部への注水
がレーザビーム照射部に対して斜め上方または横方向か
ら行われ、注水冷却部とレーザ照射部とは一点でのみ合
致する構成になっている。従って、ハンドピースの先端
部と被加工物との間の距離が変化したり、被加工面に対
するハンドピースの角度が変化した場合などには、注水
冷却部とレーザ照射部とがずれてしまうことがしばしば
あった。このため、レーザビーム照射部の冷却は確実に
行われず、切断・切開部に炭化層が形成されたり、その
周辺部に熱変性層が形成されてしまうことがあった。特
に、上記従来のようにレーザ照射装置を医療分野におけ
るレーザメスに用いた場合に、注水冷却部が上記のよう
にずれてしまうと、切開部の炭化や周囲組織の熱損傷が
術後の治癒経過に悪影響を及ぼした。
However, in the above-mentioned conventional laser irradiation apparatus, water is injected into the cutting / incision portion obliquely above or laterally with respect to the laser beam irradiation portion, and the water injection cooling portion and the laser irradiation portion are irradiated. It has a structure that matches with the section only at one point. Therefore, when the distance between the tip of the handpiece and the workpiece changes, or when the angle of the handpiece with respect to the surface to be processed changes, the water cooling unit and the laser irradiation unit may shift. Was often there. For this reason, the laser beam irradiation portion is not reliably cooled, and a carbonized layer may be formed at the cutting / cutting portion or a heat-denatured layer may be formed at the peripheral portion. In particular, when the laser irradiation device is used as a laser scalpel in the medical field as in the above-mentioned conventional case, if the water injection cooling part is displaced as described above, carbonization of the incision part and thermal damage to surrounding tissues cause postoperative healing process. Had a bad effect on.

【0005】[0005]

【課題を解決するための手段】本発明はこのような課題
を解消するためになされたもので、レーザビームを被加
工物に照射するハンドピースと、被加工物のレーザビー
ム照射部位に向けて冷却液を放出する注液機構とを備え
たレーザ照射装置において、注液機構は、ハンドピース
のレーザビーム導光路を冷却液の輸送経路とし、ハンド
ピースのレーザビーム出射端を冷却液の放出口とするも
のである。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and aims at a handpiece for irradiating a workpiece with a laser beam and a laser beam irradiation portion of the workpiece. In a laser irradiation device equipped with a liquid injection mechanism for discharging a cooling liquid, the liquid injection mechanism uses a laser beam light guide path of the handpiece as a cooling liquid transport path, and a laser beam emitting end of the handpiece as a cooling liquid discharge port. It is what

【0006】また、注液機構が冷却液に一定の圧力を加
えるものである。
Further, the liquid injection mechanism applies a constant pressure to the cooling liquid.

【0007】また、ハンドピースは、冷却液が輸送され
るレーザビーム導光路の内面が鏡面状に形成されている
ものである。
In the handpiece, the inner surface of the laser beam guide path for transporting the cooling liquid is formed into a mirror surface.

【0008】[0008]

【作用】レーザビーム導光路を冷却液の輸送経路とし、
レーザビーム出射端を冷却液の放出口とすることによ
り、注液機構によって冷却液がレーザビーム照射部へ放
出される方向はレーザビーム出射方向に一致する。従っ
て、レーザビーム照射部と冷却部とはハンドピースの操
作にかかわらず常に一致する。
[Operation] The laser beam light guide is used as a coolant transport path,
By using the laser beam emission end as the cooling liquid emission port, the direction in which the cooling liquid is emitted to the laser beam irradiation unit by the liquid injection mechanism coincides with the laser beam emission direction. Therefore, the laser beam irradiation unit and the cooling unit always coincide with each other regardless of the operation of the handpiece.

【0009】また、冷却液に一定の圧力が加えられるこ
とにより、レーザビーム出射端からレーザビーム照射部
へ放出される冷却液は液柱を形成し、レーザビームはこ
の液柱を導光路として被加工物まで到達する。従って、
加圧された冷却液はビーム照射によって形成される切開
溝に向けて放出され、切開溝に残留する蒸散物等は冷却
液によって即座に除去される。
Further, when a constant pressure is applied to the cooling liquid, the cooling liquid emitted from the laser beam emitting end to the laser beam irradiation portion forms a liquid column, and the laser beam is covered with this liquid column as a light guide path. Reach the work piece. Therefore,
The pressurized cooling liquid is discharged toward the incision groove formed by the beam irradiation, and the evaporated substances and the like remaining in the incision groove are immediately removed by the cooling liquid.

【0010】また、レーザビーム導光路の内面が鏡面状
に形成されることにより、レーザビームの拡がり角の大
きい成分およびレーザ発振器からの自然放出光は、レー
ザビーム導光路の内面に吸収されなくなる。従って、レ
ーザビーム導光路内面にこれら光が吸収されて発生する
熱が抑えられ、この熱によって冷却液中に生じる発泡は
抑制される。特に、冷却液に一定の圧力が加えられるこ
とにより、レーザビームを起因とする発泡が効率よく抑
制される。
Further, since the inner surface of the laser beam guide path is formed into a mirror surface, the component having a large divergence angle of the laser beam and the spontaneous emission light from the laser oscillator are not absorbed by the inner surface of the laser beam guide path. Therefore, the heat generated by the absorption of these lights on the inner surface of the laser beam guide path is suppressed, and the bubbling generated in the cooling liquid by this heat is suppressed. In particular, by applying a constant pressure to the cooling liquid, foaming caused by the laser beam is efficiently suppressed.

【0011】[0011]

【実施例】図1(a)は本発明の一実施例によるレーザ
メスの断面図を示しており、同図(b)はこのレーザメ
ス先端部の一部拡大断面図を示している。
1 (a) is a sectional view of a laser knife according to an embodiment of the present invention, and FIG. 1 (b) is a partially enlarged sectional view of the tip of the laser knife.

【0012】ハンドピース11は内部が空洞化した円筒
形状をしており、この空洞部分がレーザビーム導光路を
形成している。このレーザビーム導光路の先端部は、透
光性材料からなるウインド12によって塞がれている。
また、この塞がれた部位よりもレーザビーム出射端11
a側の側壁には開口部が設けられており、この開口部に
導入パイプ13が挿入されている。本実施例におけるレ
ーザメスの注液機構は、ハンドピース11の中程に設け
られたこの導入パイプ13を冷却液の導入部とし、ウイ
ンド12およびレーザビーム出射端11a間のレーザビ
ーム導光路を冷却液の輸送経路とし、レーザビーム出射
端11aを冷却液の放出口としている。
The handpiece 11 has a cylindrical shape with a hollow inside, and this hollow portion forms a laser beam guiding path. The tip of the laser beam guide path is closed by a window 12 made of a translucent material.
Further, the laser beam emitting end 11 is more than the closed portion.
The side wall on the a side is provided with an opening, and the introduction pipe 13 is inserted into this opening. In the laser knife injection mechanism in this embodiment, the introduction pipe 13 provided in the middle of the handpiece 11 is used as a coolant introduction portion, and the laser beam guide path between the window 12 and the laser beam emission end 11a is provided with the coolant. And the laser beam emission end 11a is used as the cooling liquid discharge port.

【0013】レーザビームBは、図示しないエキシマレ
ーザ発振器より多関節ミラー方式のマニュピレータ、中
空導波路あるいは光ファイバ等の導光路によってハンド
ピース11に導かれる。導かれたレーザビームBは、レ
ーザビーム導光路に設けられた集光レンズ15により集
光され、レーザビーム出射端11aから出射されて骨1
4の所定部分に照射される。
The laser beam B is guided to a handpiece 11 from an excimer laser oscillator (not shown) through a multi-joint mirror type manipulator, a hollow waveguide, or a light guide path such as an optical fiber. The guided laser beam B is condensed by the condenser lens 15 provided in the laser beam guide path and emitted from the laser beam emission end 11a to be emitted from the bone 1
4 is irradiated to a predetermined portion.

【0014】また、このレーザビーム照射と同時に、導
入パイプ13を介して送り込まれた純水Wがビーム照射
部位に向けて注水される。この注水は図示しない加圧ポ
ンプによって任意の圧力、例えば数kg/cm2 に加圧
された状態で行われている。このため、同図(b)の拡
大図に示すように、ハンドピース11のビーム出射端1
1aから噴射される純水Wは、常時円柱状の水柱15を
形成している。従って、レンズ15によって集光される
レーザビームBは、ウインド12およびビーム出射端1
1a間の導光路に満たされた純水W中を通過し、さら
に、この水柱15の中心を通って骨14の照射部位に照
射されることになる。このレーザビーム照射によって骨
14のビーム照射部位に切開溝14aが形成される。
Simultaneously with the laser beam irradiation, the pure water W sent through the introduction pipe 13 is poured toward the beam irradiation site. This water injection is performed under a pressure of an arbitrary pressure, for example, several kg / cm 2 by a pressure pump (not shown). For this reason, as shown in the enlarged view of FIG.
The pure water W jetted from 1a always forms a cylindrical water column 15. Therefore, the laser beam B focused by the lens 15 is reflected by the window 12 and the beam emitting end 1.
The light passes through the pure water W filled in the light guide path between 1a, and further passes through the center of the water column 15 to be irradiated on the irradiation site of the bone 14. By this laser beam irradiation, a cut groove 14a is formed in the beam irradiation site of the bone 14.

【0015】エキシマレーザ光の純水に対する透過性は
高く、例えば、KrFエキシマレーザを用いた場合には
その発振波長である248nmに対してその減衰長(At
tenuation Length) は2,410mmである。本実施例
では、レーザビームBが通過する純水部分の長さは約6
0mm程度であるから、レーザビームBの透過率は約9
7.5%となり、レーザビームBの純水通過によるその
エネルギー減衰は非常に少ない。また、レーザビームB
のエネルギー密度は、レーザ発振器の出力制御部や導光
光学系に組み込まれる減衰フィルターにより、純水Wが
ブレークダウン(電界破壊)しない密度に調整されてい
る。また、レーザビームBの焦点位置は、集光レンズ1
5によってビーム照射部に位置するように調整されてい
る。このため、純水Wの内部におけるレーザビームBの
エネルギー損失は最小限に抑えられ、骨14のビーム照
射部ではレーザビームBのエネルギー密度は最大にな
る。従って、本実施例による注液機構によって被加工物
へのレーザビーム照射効率が低下するといったことはな
く、効率よく骨14の切断・切開が行なわれる。
The excimer laser light has a high transparency to pure water. For example, when a KrF excimer laser is used, its attenuation length (At
tenuation Length) is 2410 mm. In this embodiment, the length of the pure water portion through which the laser beam B passes is about 6
Since it is about 0 mm, the transmittance of the laser beam B is about 9
It is 7.5%, and its energy attenuation due to the passage of the pure water of the laser beam B is very small. Also, the laser beam B
The energy density of (1) is adjusted to a density at which the pure water W does not break down (electric field breakdown) by an attenuation filter incorporated in the output control section of the laser oscillator or the light guiding optical system. Further, the focus position of the laser beam B is determined by the condenser lens 1
It is adjusted so that it may be located in the beam irradiation part by 5. Therefore, the energy loss of the laser beam B inside the pure water W is minimized, and the energy density of the laser beam B is maximized at the beam irradiation portion of the bone 14. Therefore, the injection mechanism according to the present embodiment does not reduce the laser beam irradiation efficiency on the workpiece, and the bone 14 is efficiently cut and incised.

【0016】また、本実施例による注液機構によれば、
ウインド12およびレーザビーム出射端11a間のレー
ザビーム導光路を冷却液の輸送経路とし、レーザビーム
出射端11aを冷却液の放出口とすることにより、冷却
液がビーム照射部位へ放出される方向はレーザビームB
の出射方向、つまり、円筒状ハンドピース11の中心軸
方向に一致する。従って、ハンドピース11の操作にか
かわらずレーザビーム照射部位と注水冷却部とは常に一
致し、純水WとレーザビームBとは常に同一のビーム照
射地点に到達する。このため、従来のようにビーム照射
部と冷却部とがずれることはなく、ビーム照射部位は純
水によって確実に冷却され、切開部およびその周囲組織
に炭化層が形成されたり、熱損傷が生じることはない。
従って、本実施例によるレーザメスによれば、術後の治
癒経過に好影響をもたらす手術用レーザ照射装置が提供
される。
According to the liquid injection mechanism of this embodiment,
By using the laser beam guide path between the window 12 and the laser beam emitting end 11a as the transport path of the cooling liquid and using the laser beam emitting end 11a as the cooling liquid discharge port, the direction in which the cooling liquid is discharged to the beam irradiation site is Laser beam B
Is the same as the emission direction of, that is, the central axis direction of the cylindrical handpiece 11. Therefore, regardless of the operation of the handpiece 11, the laser beam irradiation site and the water injection cooling unit always coincide with each other, and the pure water W and the laser beam B always reach the same beam irradiation point. Therefore, unlike the conventional case, the beam irradiation part and the cooling part do not deviate from each other, the beam irradiation part is reliably cooled by pure water, and a carbonized layer is formed in the incision part and its surrounding tissue, and heat damage occurs. There is no such thing.
Therefore, the laser scalpel according to the present embodiment provides a laser irradiation device for surgery that has a favorable effect on the healing process after surgery.

【0017】さらに本実施例においては、ビーム照射部
への注水は純水Wが水柱15となって行われるため、レ
ンズ15で集光されて高エネルギー密度になったレーザ
ビームの照射部は純水Wに包み込まれる形で冷却され
る。従って、注水は、ビーム照射部を外れることなく、
かつ、ビーム照射部周辺に均一に行われ、切開部の冷却
は均一に効率よく確実に行われる。また、ビーム照射部
が包み込まれる形で注水が行われることにより、レーザ
ビーム照射によって照射部に発生する発光やビーム照射
に伴う衝撃音を低減させることが可能になる。
Further, in this embodiment, since the pure water W serves as the water column 15 for injecting water into the beam irradiation part, the irradiation part of the laser beam condensed by the lens 15 and having a high energy density is pure. It is cooled by being wrapped in water W. Therefore, water injection does not come off the beam irradiation part,
In addition, it is uniformly performed around the beam irradiation portion, and the incision portion is uniformly and efficiently cooled. Further, since the water is injected in such a manner that the beam irradiation unit is wrapped, it becomes possible to reduce the light emission generated in the irradiation unit by the laser beam irradiation and the impact noise accompanying the beam irradiation.

【0018】また、照射部にはレーザビーム照射によっ
て骨14の蒸散物や血液等の飛散物が発生し、切開溝1
4aに滞留するが、本実施例においてはこれら蒸散物お
よび飛散物は即座に除去される。すなわち、注水はレー
ザビームBの光軸方向に一致して行われるため、切開溝
14aの狭い間隔に残留する蒸散物および飛散物は加圧
された注水によって即座に除去される。従って、これら
蒸散物等によってレーザビームBが散乱したり、また、
蒸散物等にレーザ光のエネルギーが吸収されることはな
い。このため、レーザビームBは照射エネルギが低下す
ることなく骨14に照射され、レーザエネルギは効率よ
く骨14の切開作用に使われる。
Further, laser beam irradiation causes transpiration of the bones 14 and scattering materials such as blood to be generated in the irradiation portion, and the cut groove 1
Although it stays in 4a, in the present embodiment, these evaporated matters and scattered matters are immediately removed. That is, since the water injection is performed in line with the optical axis direction of the laser beam B, the evaporated substances and scattered substances remaining in the narrow gaps of the cut groove 14a are immediately removed by the pressurized water injection. Therefore, the laser beam B is scattered by these evaporated substances, and
The energy of the laser light is not absorbed by the evaporated material. Therefore, the laser beam B is applied to the bone 14 without lowering the irradiation energy, and the laser energy is efficiently used for the incision action of the bone 14.

【0019】また、レーザビームBの拡がり角の大きい
成分及びレーザ発振器からの自然放出光成分がレーザビ
ーム導光路の内側面に吸収されると、これら各光によっ
て生じる発熱等が起因し、ウインド12および出射端1
1a間の導光路に満たされた純水Wの内部に泡が発生す
る。このような純水内部での発泡は、レーザビームBの
導光に悪影響を及ぼす。本実施例ではこの悪影響を防止
する目的で、ウインド12および出射端11a間の導光
路の内面にAlコーティング等による内側ミラーが形成
されており、さらにこの内側ミラーに保護膜が施されて
いる。このようにレーザビーム導光路の内面が鏡面状に
形成されることにより、レーザビームBの拡がり角の大
きな成分およびレーザ発振器からの自然放出光が導光路
内面に吸収されなくなる。従って、導光路内面にこれら
光が吸収されて発生する熱は抑えられ、純水中における
発泡は抑制される。このため、レーザビームBは発泡に
よる悪影響を受けることなく、骨14に照射される。ま
た、本実施例のように純水Wを加圧することによって、
特にレーザビームBを起因とする発泡が効率的に抑えら
れることが実験的に確認されている。
Further, when the component of the laser beam B having a large divergence angle and the spontaneous emission light component from the laser oscillator are absorbed by the inner side surface of the laser beam guide path, the heat generated by each of these lights causes the wind 12. And output end 1
Bubbles are generated inside the pure water W filled in the light guide path between 1a. Such foaming inside the pure water adversely affects the light guide of the laser beam B. In this embodiment, in order to prevent this adverse effect, an inner mirror made of Al coating or the like is formed on the inner surface of the light guide path between the window 12 and the emitting end 11a, and a protective film is further applied to this inner mirror. By forming the inner surface of the laser beam guide path in a mirror-like manner in this manner, the components of the laser beam B having a large divergence angle and the spontaneous emission light from the laser oscillator are not absorbed by the inner surface of the light guide path. Therefore, heat generated by absorbing the light on the inner surface of the light guide path is suppressed, and foaming in pure water is suppressed. Therefore, the laser beam B is applied to the bone 14 without being adversely affected by foaming. Further, by pressurizing the pure water W as in this embodiment,
It has been experimentally confirmed that foaming caused by the laser beam B is effectively suppressed.

【0020】また、本実施例ではウインド12を設置し
たが、これを設置せずに集光レンズ15にウインドの役
目を兼用させることも可能であり、このようにすれば光
学部品の点数を減らすことができ、レーザビームの透過
率はさらに増加する。
Further, although the window 12 is installed in this embodiment, it is possible to use the condenser lens 15 also as the window without installing the window 12. By doing so, the number of optical components is reduced. Therefore, the transmittance of the laser beam is further increased.

【0021】なお、上記実施例では、生体の一部である
骨の加工に本発明を適用した場合について述べたため、
注水圧力は数kg/cm2 と小さい値に設定した。しか
し、注水圧力を数10kg/cm2 〜数t/cm2 に高
めることにより、水圧による切断効果(ウォータージェ
ット方式による切断効果)とレーザビーム照射による切
断効果との相乗した効果が得られ、種々の分野における
各種加工体の高速、高効率のレーザ加工が期待できる。
In the above embodiment, the case where the present invention is applied to the processing of bone which is a part of a living body is described.
The water injection pressure was set to a small value of several kg / cm 2 . However, by increasing the water injection pressure to several tens kg / cm 2 to several t / cm 2 , a synergistic effect of cutting effect by water pressure (cutting effect by water jet method) and cutting effect by laser beam irradiation can be obtained, and various effects can be obtained. In this field, high-speed, high-efficiency laser processing of various processed objects can be expected.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、冷
却液がレーザビーム照射部位へ放出される方向はレーザ
ビーム出射方向に一致する。従って、レーザビーム照射
部と注液冷却部とはハンドピースの操作にかかわらず常
に一致する。このため、レーザビームの照射部に確実に
冷却液が放出され、ビーム照射部の冷却効果は高まり、
切断・切開部に炭化層や熱変性層は形成されなくなる。
さらに、これら周辺部にもレーザ熱の悪影響が及ばなく
なる。
As described above, according to the present invention, the direction in which the cooling liquid is emitted to the laser beam irradiation site coincides with the laser beam emission direction. Therefore, the laser beam irradiation unit and the liquid injection cooling unit always coincide with each other regardless of the operation of the handpiece. For this reason, the cooling liquid is surely discharged to the laser beam irradiation part, and the cooling effect of the beam irradiation part is enhanced,
No carbonized layer or heat-modified layer is formed at the cut / incision.
Furthermore, the adverse effect of laser heat does not reach these peripheral portions.

【0023】また、冷却液に一定の圧力が加えられるこ
とにより、レーザビーム出射端からレーザビーム照射部
へ放出される冷却液は液柱を形成し、レーザビームはこ
の液柱を導光路として被加工物まで到達する。従って、
加圧した冷却液の注水方向はレーザビームの光軸方向に
一致し、ビーム照射によって形成される切開溝に残留す
る蒸散物等は即座に除去され、レーザエネルギは効率よ
く切開作用に使われる。
Further, when a constant pressure is applied to the cooling liquid, the cooling liquid emitted from the laser beam emitting end to the laser beam irradiation portion forms a liquid column, and the laser beam is covered with this liquid column as a light guide path. Reach the work piece. Therefore,
The direction of water injection of the pressurized cooling liquid coincides with the optical axis direction of the laser beam, the vaporized substances remaining in the incision groove formed by the beam irradiation are immediately removed, and the laser energy is efficiently used for the incision action.

【0024】また、レーザビーム導光路の内面が鏡面状
に形成されることにより、レーザビーム導光路の内面に
レーザビームの拡がり角の大きな成分およびレーザ発振
器からの自然放出光が吸収されなくなる。従って、レー
ザビーム導光路内面の発熱が抑えられ、冷却液中におけ
る発泡は抑制される。さらに、冷却液に一定の圧力が加
えられることにより、レーザビームに起因する発泡は特
に抑制される。このため、レーザビームの導光は発泡の
影響を受けることなく行われ、レーザエネルギは損失す
ることなく被加工物に照射される。
Further, since the inner surface of the laser beam guide path is formed into a mirror surface, a component having a large divergence angle of the laser beam and spontaneous emission light from the laser oscillator are not absorbed by the inner surface of the laser beam guide path. Therefore, heat generation on the inner surface of the laser beam guide path is suppressed, and foaming in the cooling liquid is suppressed. Furthermore, by applying a constant pressure to the cooling liquid, foaming due to the laser beam is particularly suppressed. Therefore, the light guide of the laser beam is performed without being affected by the foaming, and the laser energy is applied to the workpiece without loss.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によるレーザ照射装置を示す
断面図である。
FIG. 1 is a sectional view showing a laser irradiation apparatus according to an embodiment of the present invention.

【図2】従来のレーザ照射装置を示す断面図である。FIG. 2 is a cross-sectional view showing a conventional laser irradiation device.

【符号の説明】[Explanation of symbols]

11…ハンドピース、11a…レーザビーム出射端、1
2…ウインド、13…導入パイプ、14…骨、14a…
切開溝、15…水柱。
11 ... Handpiece, 11a ... Laser beam emitting end, 1
2 ... Wind, 13 ... Introduction pipe, 14 ... Bone, 14a ...
Incision groove, 15 ... Water column.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 レーザビームを被加工物に照射するハン
ドピースと、前記被加工物のレーザビーム照射部位に向
けて冷却液を放出する注液機構とを備えたレーザ照射装
置において、 前記注液機構は、前記ハンドピースのレーザビーム導光
路を冷却液の輸送経路とし、前記ハンドピースのレーザ
ビーム出射端を冷却液の放出口とすることを特徴とする
レーザ照射装置。
1. A laser irradiation apparatus comprising a handpiece for irradiating a workpiece with a laser beam, and a liquid injection mechanism for discharging a cooling liquid toward a laser beam irradiation portion of the workpiece. The mechanism is a laser irradiation device characterized in that the laser beam guide path of the handpiece is used as a coolant transport path, and the laser beam emission end of the handpiece is used as a coolant outlet.
【請求項2】 前記ハンドピースは、レーザビーム導光
路の一部が透光性材料によって塞がれ、この塞がれた部
位よりもレーザビーム出射端側の側壁に開口部が設けら
れ、 前記注液機構は、この開口部を介してレーザビーム導光
路に冷却液を注入し、レーザビーム出射端から冷却液を
放出させることを特徴とする請求項1記載のレーザ照射
装置。
2. In the handpiece, a part of the laser beam guide path is closed by a light-transmitting material, and an opening is provided on a side wall of the laser beam emission end side of the closed part, 2. The laser irradiation device according to claim 1, wherein the liquid injection mechanism injects the cooling liquid into the laser beam light guide path through the opening and discharges the cooling liquid from the laser beam emitting end.
【請求項3】 前記注液機構は冷却液に一定の圧力を加
えることを特徴とする請求項1項記載のレーザ照射装
置。
3. The laser irradiation apparatus according to claim 1, wherein the liquid injection mechanism applies a constant pressure to the cooling liquid.
【請求項4】 前記ハンドピースは、冷却液が輸送され
るレーザビーム導光路の内面が鏡面状に形成されている
ことを特徴とする請求項3記載のレーザ照射装置。
4. The laser irradiation apparatus according to claim 3, wherein in the handpiece, the inner surface of the laser beam guide path through which the cooling liquid is transported is formed into a mirror surface.
JP5157365A 1993-06-28 1993-06-28 Laser irradiation device Expired - Fee Related JPH0829429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5157365A JPH0829429B2 (en) 1993-06-28 1993-06-28 Laser irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5157365A JPH0829429B2 (en) 1993-06-28 1993-06-28 Laser irradiation device

Publications (2)

Publication Number Publication Date
JPH079185A true JPH079185A (en) 1995-01-13
JPH0829429B2 JPH0829429B2 (en) 1996-03-27

Family

ID=15648070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5157365A Expired - Fee Related JPH0829429B2 (en) 1993-06-28 1993-06-28 Laser irradiation device

Country Status (1)

Country Link
JP (1) JPH0829429B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002301581A (en) * 2001-02-05 2002-10-15 Denso Corp Recessing method by laser and method of manufacturing metal mold for molding honeycomb structure
JP2011121061A (en) * 2009-12-08 2011-06-23 Mitsubishi Electric Corp Method and apparatus for laser beam machining
JP2012152788A (en) * 2011-01-26 2012-08-16 Mitsubishi Electric Corp Laser processing method and laser processing system
KR20190109444A (en) * 2017-02-13 2019-09-25 도쿄 세이미츄 코퍼레이션 리미티드 Hub Blades and Hub Blade Manufacturing Method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399790A (en) * 1989-09-13 1991-04-24 Fujitsu Ltd Laser beam machine
JPH04162974A (en) * 1990-10-26 1992-06-08 Hitachi Ltd Method and equipment for laser beam welding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399790A (en) * 1989-09-13 1991-04-24 Fujitsu Ltd Laser beam machine
JPH04162974A (en) * 1990-10-26 1992-06-08 Hitachi Ltd Method and equipment for laser beam welding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002301581A (en) * 2001-02-05 2002-10-15 Denso Corp Recessing method by laser and method of manufacturing metal mold for molding honeycomb structure
JP2011121061A (en) * 2009-12-08 2011-06-23 Mitsubishi Electric Corp Method and apparatus for laser beam machining
JP2012152788A (en) * 2011-01-26 2012-08-16 Mitsubishi Electric Corp Laser processing method and laser processing system
KR20190109444A (en) * 2017-02-13 2019-09-25 도쿄 세이미츄 코퍼레이션 리미티드 Hub Blades and Hub Blade Manufacturing Method

Also Published As

Publication number Publication date
JPH0829429B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
US4925523A (en) Enhancement of ultraviolet laser ablation and etching organic solids
US4791927A (en) Dual-wavelength laser scalpel background of the invention
KR102235200B1 (en) A laser system and method for the treatment of body tissue
Walsh Jr et al. Er: YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage
KR101529367B1 (en) Laser induced vapor/plasma mediated medical procedures and device
Knappe et al. Principles of lasers and biophotonic effects
CN1178715C (en) Laser surgical device and method of its use
US20080151953A1 (en) Electromagnet energy distributions for electromagnetically induced mechanical cutting
US6544256B1 (en) Electromagnetically induced cutting with atomized fluid particles for dermatological applications
US5496306A (en) Pulse stretched solid-state laser lithotripter
Aron-Rosa et al. Excimer laser surgery of the cornea: qualitative and quantitative aspects of photoablation according to the energy density
US20090281531A1 (en) Interventional and therapeutic electromagnetic energy systems
US20050281887A1 (en) Fluid conditioning system
WO2021028473A1 (en) Tissue ablating laser device and method of ablating a tissue
JPH079185A (en) Laser irradiating device
CA2506280A1 (en) Laser apparatus for treating hard tissues and method for using the apparatus
JP3577653B2 (en) Dental gas laser device
US6050991A (en) Pulsed-emission laser for use in the medical field
JP2000317661A (en) Method and device for cutting by laser beam and method for cutting graphite block in the case of dismantling waste nuclear reactor
AU742054B2 (en) Apparatus for and method of laser surgery of hard tissues
JP2008167896A (en) Medical laser apparatus
Spörri et al. Effects of various laser types and beam transmission methods on female organ tissue in the pig: an in vitro study
EP0626229A1 (en) Solid state laser for removing physiologic tissue
Frank Biophysical fundamentals for laser application in medicine
Ivanenko et al. Transmyocardial Laser Revascularisation: Are New Approaches with New Lasers Possible?

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees