JPH0791749A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH0791749A
JPH0791749A JP23938793A JP23938793A JPH0791749A JP H0791749 A JPH0791749 A JP H0791749A JP 23938793 A JP23938793 A JP 23938793A JP 23938793 A JP23938793 A JP 23938793A JP H0791749 A JPH0791749 A JP H0791749A
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
condenser
cooling fan
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23938793A
Other languages
Japanese (ja)
Other versions
JP3448915B2 (en
Inventor
Hidehiko Muramatsu
秀彦 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23938793A priority Critical patent/JP3448915B2/en
Publication of JPH0791749A publication Critical patent/JPH0791749A/en
Application granted granted Critical
Publication of JP3448915B2 publication Critical patent/JP3448915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)

Abstract

PURPOSE:To provide a reliable refrigerator in which freezer oil is smoothly returned to a compressor without stagnating at low ambient temperature even if the mutual solubility of the freezer oil and refrigerant is low. CONSTITUTION:A flow speed of refrigerant within an inlet pipe 6a of a condenser 2 is detected by a flow speed meter 11. When this detected flow speed of refrigerant is less than a predetermined zero-penetration in an inlet pipe 6a of the condenser, a compressor cooling fan 9 is stopped. With such an arrangement as above, over-cooling of the compressor is prevented and the stagnation of the freezer oil in the pipe is restricted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は相互溶解性が悪い冷媒
と冷凍機油を使用した冷凍サイクルを備えた冷蔵庫に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator provided with a refrigeration cycle using a refrigerant having a poor mutual solubility and refrigerating machine oil.

【0002】[0002]

【従来の技術】従来、大型の家庭用冷蔵庫には、圧縮機
の温度過昇を防止するために圧縮機を収納する機械室に
圧縮機冷却用ファンが設けられ、圧縮機の運転に同期し
て圧縮機冷却用ファンを駆動し、圧縮機の温度上昇を抑
えて、冷蔵庫の安定した運転が確保されていた。
2. Description of the Related Art Conventionally, in a large domestic refrigerator, a compressor cooling fan is provided in a machine room for storing the compressor in order to prevent the compressor from overheating, and is synchronized with the operation of the compressor. The compressor cooling fan was driven to suppress the temperature rise of the compressor, ensuring stable operation of the refrigerator.

【0003】図13は従来の冷蔵庫の冷凍サイクルの一
例を示す冷凍回路図で、図において、(1)は冷媒ガスを
圧縮する圧縮機、(2)は圧縮機(1)から吐出された高圧冷
媒ガスを凝縮させる凝縮器、(3)は減圧装置であるキャ
ピラリチューブ、(4)は蒸発器、(5)は冷媒量調節機能を
有するヘッダ、(6)はこれらを接続し冷媒を流通させる
配管、(7)は冷媒と相互溶解性を有する冷凍機油で、圧
縮機(1)における摺動部の潤滑やシール作用を行なうも
ので、圧縮機(1)の密閉容器の底部に滞留している。(8)
はこれら圧縮機(1)、凝縮器(2)、キャピラリチューブ
(3)、蒸発器(4)、ヘッダ(5)及び配管(6)からなる冷凍サ
イクルである。
FIG. 13 is a refrigerating circuit diagram showing an example of a refrigerating cycle of a conventional refrigerator. In the figure, (1) is a compressor for compressing a refrigerant gas, and (2) is a high pressure discharged from the compressor (1). A condenser for condensing the refrigerant gas, (3) a capillary tube which is a decompression device, (4) an evaporator, (5) a header having a refrigerant amount adjusting function, and (6) connecting them to circulate the refrigerant. Piping, (7) is a refrigerating machine oil that has mutual solubility with the refrigerant, and serves to lubricate and seal the sliding part of the compressor (1), and stays at the bottom of the closed container of the compressor (1). There is. (8)
Are these compressors (1), condensers (2), capillary tubes
A refrigeration cycle comprising (3), an evaporator (4), a header (5) and a pipe (6).

【0004】次に冷凍機油(7)の作用について説明す
る。圧縮機(1)によって圧縮された冷媒は、凝縮器(2)に
吐出される。この時冷凍機油(7)の一部が冷媒と共に圧
縮機(1)から吐出される。圧縮機(1)から吐出された冷凍
機油(7)は冷媒と相互溶解性があるので流動性が良く、
凝縮器(2)、キャピラリチューブ(3)、蒸発器(4)、ヘッ
ダ(5)を通り、圧縮機(1)へ戻ってくる。よって冷凍機油
(7)が圧縮機(1)から無くなることはなく、正常な潤滑が
可能となる。
Next, the operation of the refrigerating machine oil (7) will be described. The refrigerant compressed by the compressor (1) is discharged to the condenser (2). At this time, a part of the refrigerating machine oil (7) is discharged from the compressor (1) together with the refrigerant. Refrigerating machine oil (7) discharged from the compressor (1) has good fluidity because it has mutual solubility with the refrigerant,
It returns to the compressor (1) through the condenser (2), the capillary tube (3), the evaporator (4), and the header (5). Therefore refrigerator oil
(7) does not disappear from the compressor (1), and normal lubrication is possible.

【0005】[0005]

【発明が解決しようとする課題】最近代替フロン対策と
して冷蔵庫に色々な種類の冷媒の使用が検討されてきた
が、冷凍機油(7)と相互溶解性が悪い冷媒とを用いた場
合、配管(6)内で冷媒と冷凍機油(7)が分離して二相流を
形成し、冷媒が冷凍機油を押し流すような流動様式とな
る。そのため、圧縮機(1)から冷媒と共に吐出された冷
凍機油(7)の圧縮機(1)への環流量は、循環冷媒流速(=
流量)に依存する。即ち、循環冷媒流速が一定以上ない
と、圧縮機(1)から冷凍サイクル(8)内に持ち出された冷
凍機油は配管(6)内に滞留し、圧縮機(1)に戻りにくくな
る。
Recently, the use of various types of refrigerants in refrigerators has been studied as a countermeasure against CFC substitutes. However, when a refrigerating machine oil (7) and a refrigerant having poor mutual solubility are used, the pipe ( In 6), the refrigerant and the refrigerating machine oil (7) are separated to form a two-phase flow, and the refrigerant has a flow mode that pushes the refrigerating machine oil. Therefore, the circulating flow rate of the refrigerating machine oil (7) discharged from the compressor (1) together with the refrigerant to the compressor (1) is the circulating refrigerant flow velocity (=
Flow rate). That is, if the circulating refrigerant flow velocity is not higher than a certain level, the refrigerating machine oil taken out from the compressor (1) into the refrigeration cycle (8) stays in the pipe (6) and becomes difficult to return to the compressor (1).

【0006】特に大型冷蔵庫では配管径が大きいため、
冷媒流速が小さくなり、冷凍機油(7)の滞留が生じやす
い。また小型冷蔵庫の様にストロークボリュームの小さ
な圧縮機(1)を使用する場合も循環冷媒量が小さくな
り、冷凍機油(7)が滞留する恐れがある。さらに、圧縮
機冷却用ファンの駆動によって圧縮機(1)の温度が低下
したり、低外気温時で蒸発温度が低い場合、圧縮機(1)
内に滞留する凝縮冷媒量が増し、循環冷媒流速が減ずる
ため、圧縮機(1)から持ち出された冷凍機油(7)は冷凍サ
イクル(8)の配管(6)内に滞留し、圧縮機(1)に一層戻り
にくくなり、潤滑油ぎれによる圧縮機トラブルを起こす
等の問題があった。また圧縮機(1)から持ち出された冷
凍機油(7)が熱交換器内に滞留した場合、熱交換器の伝
熱効率が低下し、冷蔵庫の冷却性能が悪化する恐れもあ
った。
Especially in a large refrigerator, since the pipe diameter is large,
Refrigerant flow velocity decreases, and refrigerating machine oil (7) easily accumulates. Further, when a compressor (1) having a small stroke volume is used as in a small refrigerator, the amount of circulating refrigerant becomes small and the refrigerating machine oil (7) may accumulate. Furthermore, when the temperature of the compressor (1) is lowered by driving the compressor cooling fan, or when the evaporation temperature is low at low outside air temperature, the compressor (1)
Since the amount of condensed refrigerant staying inside increases and the circulating refrigerant flow velocity decreases, the refrigerating machine oil (7) taken out from the compressor (1) stays inside the piping (6) of the refrigeration cycle (8), and the compressor ( It became more difficult to return to 1), and there were problems such as causing compressor trouble due to lubrication oil breakage. Further, when the refrigerating machine oil (7) taken out from the compressor (1) stagnates in the heat exchanger, the heat transfer efficiency of the heat exchanger may decrease, and the cooling performance of the refrigerator may deteriorate.

【0007】従来の圧縮機冷却用ファンを備えた冷蔵庫
では、圧縮機の運転にのみ同期させて冷却用ファンを駆
動させているため、相互溶解性が悪い冷媒と冷凍機油を
用いた場合、圧縮機の温度が低下しすぎ上述のような問
題点があった。
In a conventional refrigerator having a compressor cooling fan, the cooling fan is driven only in synchronization with the operation of the compressor. Therefore, when a refrigerant and refrigerating machine oil having poor mutual solubility are used, the compressor is compressed. The temperature of the machine was too low, and there was the above-mentioned problem.

【0008】図14は、相互溶解性が悪い冷媒と冷凍機
油を用いた場合、配管(6)中を上昇する冷媒ガスとこれ
により押し流される冷凍機油(7)との様子を説明する図
で、配管(6)の下端から冷媒ガスを流速Ugで上昇させ、
配管(6)の多孔質の壁から冷凍機油(7)を注入させてでき
た垂直管環状対向流の流動様相を示している。配管(6)
の中を上昇して流れる冷媒ガスの速度Ugがある流速を
越えて増加すると、冷凍機油は管壁を沿う油膜となって
自重に逆らって管壁を上昇する。この時の冷媒ガス流速
g'をゼロペネトレーション流速という。しかし冷媒ガ
ス流速Ugが小さくゼロペネトレーション流速Ug'を下
回った場合、冷凍機油(7)の油膜は管壁を滑らかに下降
する。
FIG. 14 is a diagram for explaining the states of the refrigerant gas rising in the pipe (6) and the refrigerating machine oil (7) pushed by the refrigerant gas when the refrigerant and refrigerating machine oil having poor mutual solubility are used. From the lower end of the pipe (6), raise the refrigerant gas at a flow rate U g ,
The vertical pipe annular counter-flow flow pattern formed by injecting the refrigerating machine oil (7) from the porous wall of the pipe (6) is shown. Plumbing (6)
When the velocity U g of the refrigerant gas flowing upwardly in the chamber increases above a certain flow velocity, the refrigerating machine oil forms an oil film along the pipe wall and goes up against the pipe wall against its own weight. The refrigerant gas flow rate U g 'at this time is referred to as a zero penetration flow rate. However, when the refrigerant gas flow rate U g is small and falls below the zero penetration flow rate U g ′, the oil film of the refrigerating machine oil (7) smoothly descends along the pipe wall.

【0009】冷蔵庫では、上記垂直管環状対向流は、圧
縮機(1)から凝縮器(2)までの配管(6)に相当する。特に
凝縮器入口部では、放熱に伴ってガス密度が増し、冷媒
ガス流速が減ずるため、循環冷媒流量が減ずる低外気温
運転時に冷媒流速Ugがゼロペネトレーション流速Ug'
を下回って冷凍機油(7)の滞留が発生する可能性が大で
ある。
In the refrigerator, the vertical tubular annular counterflow corresponds to the pipe (6) from the compressor (1) to the condenser (2). Especially in the condenser inlet, the gas density increases along with the radiator, for reducing the refrigerant gas flow rate, the circulation flow rate of refrigerant reduced low ambient temperature operation when the refrigerant flow rate U g is zero penetration velocity U g '
There is a high possibility that stagnation of the refrigerating machine oil (7) will occur.

【0010】この発明は上記のような問題点を解消する
ためになされたもので、相互溶解性が悪い冷媒と冷凍機
油を用いても、低外気温時に冷凍機油が滞留することな
く、確実に圧縮機へ戻る信頼性の高い冷蔵庫を得ること
を目的とする。
The present invention has been made in order to solve the above-mentioned problems, and even if a refrigerant and refrigerating machine oil having poor mutual solubility are used, the refrigerating machine oil does not stay at a low outside air temperature, and the refrigerating machine oil is reliably retained. Return to the compressor aims to get a reliable refrigerator.

【0011】[0011]

【課題を解決するための手段】この発明の請求項1記載
の発明に係る冷蔵庫は、凝縮器の入口配管内の冷媒流速
を検知する冷媒流速検知手段と、この冷媒流速検知手段
の検出値が所定値以下のとき、圧縮機冷却用ファンの駆
動を停止する圧縮機冷却用ファン制御手段とを設けたも
のである。
According to a first aspect of the present invention, there is provided a refrigerator in which the refrigerant flow velocity detecting means for detecting the refrigerant flow velocity in the inlet pipe of the condenser and the detected value of the refrigerant flow velocity detecting means are A compressor cooling fan control means for stopping the driving of the compressor cooling fan when the value is equal to or less than a predetermined value is provided.

【0012】この発明の請求項2記載の発明に係る冷蔵
庫は、凝縮器の入口配管内の冷媒流速を検知する冷媒流
速検知手段と、この冷媒流速検知手段の検出値が、予め
設定された上記凝縮器の入口配管のゼロペネトレーショ
ン流速値以下のとき、圧縮機冷却用ファンの駆動を停止
する圧縮機冷却用ファン制御手段とを設けたものであ
る。
In the refrigerator according to the second aspect of the present invention, the refrigerant flow velocity detecting means for detecting the refrigerant flow velocity in the inlet pipe of the condenser and the detection value of the refrigerant flow velocity detecting means are set in advance. Compressor cooling fan control means for stopping the drive of the compressor cooling fan when the flow velocity value is below the zero penetration flow rate value of the inlet pipe of the condenser is provided.

【0013】この発明の請求項3記載の発明に係る冷蔵
庫は、圧縮機の吸入配管内の冷媒温度を検知する吸入冷
媒温度検知手段と、凝縮器内の冷媒温度を検知する凝縮
器冷媒温度検知手段と、蒸発器内の冷媒温度を検知する
蒸発器冷媒温度手段と、これら温度検知手段による検出
値が、上記凝縮器の入口配管内の冷媒流速がこの入口配
管のゼロペネトレーション流速以上を満足する、予め設
定された温度範囲外のとき、圧縮機冷却用ファンの駆動
を停止する圧縮機冷却用ファン制御手段とを設けたもの
である。
According to a third aspect of the present invention, a refrigerator has a suction refrigerant temperature detecting means for detecting a refrigerant temperature in a suction pipe of a compressor, and a condenser refrigerant temperature detecting means for detecting a refrigerant temperature in a condenser. Means, an evaporator refrigerant temperature means for detecting the refrigerant temperature in the evaporator, and the values detected by these temperature detecting means, the refrigerant flow velocity in the inlet pipe of the condenser satisfies the zero penetration flow velocity of the inlet pipe or more. A compressor cooling fan control means for stopping the driving of the compressor cooling fan when the temperature is outside the preset temperature range is provided.

【0014】この発明の請求項4記載の発明に係る冷蔵
庫は、外気温度を検知する外気温度検知手段と、この外
気温度検知手段による検出値が、上記凝縮器の入口配管
内の冷媒流速がこの入口配管のゼロペネトレーション流
速以上を満足する、予め設定された温度範囲外のとき、
上記圧縮機冷却用ファンの駆動を停止する圧縮機冷却用
ファン制御手段とを設けたものである。
In the refrigerator according to the fourth aspect of the present invention, the outside air temperature detecting means for detecting the outside air temperature and the value detected by the outside air temperature detecting means are the refrigerant flow velocity in the inlet pipe of the condenser. When the temperature exceeds the zero penetration flow velocity of the inlet pipe and is outside the preset temperature range,
A compressor cooling fan control means for stopping the driving of the compressor cooling fan is provided.

【0015】[0015]

【作用】この発明の請求項1記載の発明においては、凝
縮器の入口配管内の冷媒流速が所定値以下になると、圧
縮機冷却用ファンの駆動が停止し、圧縮機の過冷が防止
され、配管内への冷凍機油の滞留が抑制される。
According to the first aspect of the present invention, when the refrigerant flow velocity in the inlet pipe of the condenser becomes equal to or lower than a predetermined value, the driving of the compressor cooling fan is stopped to prevent the compressor from being overcooled. The retention of refrigerating machine oil in the pipe is suppressed.

【0016】この発明の請求項2記載の発明において
は、凝縮器の入口配管内の冷媒流速が、予め設定された
凝縮器の入口配管のゼロペネトレーション流速値以下に
なると、圧縮機冷却用ファンの駆動が停止し、圧縮機の
過冷が防止され、配管内への冷凍機油の滞留が抑制され
る。
According to the second aspect of the present invention, when the refrigerant flow velocity in the inlet pipe of the condenser becomes equal to or lower than the preset zero penetration flow velocity value of the inlet pipe of the condenser, the cooling fan of the compressor is cooled. The drive is stopped, overcooling of the compressor is prevented, and refrigerating machine oil is prevented from staying in the pipe.

【0017】この発明の請求項3記載の発明において
は、圧縮機の吸入配管内の冷媒温度、凝縮器内の冷媒温
度及び蒸発器内の冷媒温度が、予め設定された温度範囲
外になると、圧縮機冷却用ファンの駆動が停止し、圧縮
機の過冷が防止され、配管内への冷凍機油の滞留が抑制
される。
In the invention according to claim 3 of the present invention, when the refrigerant temperature in the suction pipe of the compressor, the refrigerant temperature in the condenser, and the refrigerant temperature in the evaporator are out of preset temperature ranges, The drive of the compressor cooling fan is stopped, overcooling of the compressor is prevented, and refrigerating machine oil is prevented from staying in the piping.

【0018】この発明の請求項4記載の発明において
は、外気温度が予め設定された温度範囲外になると、圧
縮機冷却用ファンの駆動が停止し、圧縮機の過冷が防止
され、配管内への冷凍機油の滞留が抑制される。
According to a fourth aspect of the present invention, when the outside air temperature is out of a preset temperature range, the driving of the compressor cooling fan is stopped, the compressor is prevented from being overcooled, and the inside of the pipe is prevented. Of refrigerating machine oil is suppressed.

【0019】[0019]

【実施例】【Example】

実施例1.以下、この発明の一実施例を図について説明
する。図1〜図3はこの実施例1を示し、図1は構成
図、図2は制御部のブロック線図、図3は圧縮機冷却用
ファン制御動作を説明するフローチャートである。図に
おいて、(1)は圧縮機、(2)は凝縮器、(3)は減圧装置で
あるキャピラリチューブ、(4)は蒸発器、(5)はヘッダ、
(6)は配管、(7)は冷凍機油、(8)は冷凍サイクルで、以
上は図13に示す従来例と同様のものである。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. 1 to 3 show the first embodiment, FIG. 1 is a configuration diagram, FIG. 2 is a block diagram of a control unit, and FIG. 3 is a flowchart for explaining a compressor cooling fan control operation. In the figure, (1) is a compressor, (2) is a condenser, (3) is a capillary tube which is a decompression device, (4) is an evaporator, (5) is a header,
(6) is piping, (7) is refrigerating machine oil, and (8) is refrigeration cycle. The above is the same as the conventional example shown in FIG.

【0020】(6a)は凝縮器入口配管、(9)は圧縮機(1)を
強制空冷する圧縮機冷却用ファン、(10)はファンモー
タ、(11)は凝縮器入口配管(6a)内の冷媒流速を検知する
冷媒流速検知手段である流速計、(12)は冷蔵庫の制御
部、(13)は制御部(12)において、流速計(11)の検出値が
所定値以下のとき、ファンモータ(10)の駆動を停止する
圧縮機冷却用ファン制御手段、(14)は冷蔵庫内の温度を
検知する庫内温度センサ、(15)は制御部(12)を構成する
マイクロコンピュータ(以下マイコンという)である。
また、この実施例では、冷媒としてHFC−134a、
冷凍機油(7)としてハードアルキルベンゼン油が用いら
れている。
(6a) is a condenser inlet pipe, (9) is a compressor cooling fan for forcibly cooling the compressor (1), (10) is a fan motor, and (11) is inside the condenser inlet pipe (6a). Of the refrigerant flow velocity detecting means for detecting the refrigerant flow velocity, (12) the refrigerator control unit, (13) in the control unit (12), when the detection value of the flow velocity meter (11) is less than or equal to a predetermined value, A compressor cooling fan control means for stopping the drive of the fan motor (10), (14) an internal temperature sensor for detecting the temperature in the refrigerator, and (15) a microcomputer (hereinafter referred to as a microcomputer constituting the control unit (12). It is called a microcomputer).
Further, in this embodiment, HFC-134a,
Hard alkylbenzene oil is used as the refrigerating machine oil (7).

【0021】次に図3のフローチャートにより、圧縮機
冷却用ファンの制御動作を説明する。まず、ステップ(2
1)において庫内温度センサ(14)の検出温度を取込み、ス
テップ(22)でこの検出温度と予め設定された庫内温度用
の所定の設定値と比較し、検出値が設定値より低ければ
ステップ(23)に進み圧縮機(1)を停止させるとともに、
ステップ(24)でファンモータ(10)をも停止させ、ステッ
プ(22)で検出値が設定値より高いとステップ(25)に進み
圧縮機(1)を運転させる。
Next, the control operation of the compressor cooling fan will be described with reference to the flowchart of FIG. First, step (2
The temperature detected by the inside temperature sensor (14) is taken in in 1), and this detected temperature is compared with a predetermined set value for the inside temperature set in advance in step (22), and if the detected value is lower than the set value. While proceeding to step (23) to stop the compressor (1),
The fan motor (10) is also stopped in step (24), and if the detected value is higher than the set value in step (22), the process proceeds to step (25) to operate the compressor (1).

【0022】圧縮機(1)の運転時にステップ(26)で流速
計(11)の検出値を取込み、ステップ(27)でこの検出値と
予め設定された凝縮器入口冷媒流速用の所定の設定値と
比較し、検出値が設定値と等しいかまたは上回っている
場合には、ステップ(28)に進みファンモータ(10)の運転
を続行させ、検出値が設定値を下回っている場合には、
ステップ(29)に進みファンモータ(10)を停止させる。
During operation of the compressor (1), the detection value of the anemometer (11) is taken in in step (26), and in step (27) this detection value and a preset setting for the condenser inlet refrigerant flow velocity are set. If the detected value is equal to or exceeds the set value, proceed to step (28) to continue the fan motor (10) operation, and if the detected value is below the set value, ,
Proceed to step (29) to stop the fan motor (10).

【0023】以上のように、この実施例では圧縮機(1)
の運転と同期して圧縮機冷却用ファン(9)を駆動させ、
圧縮機(1)の過熱を防止し、低外気温度時の連続運転等
で冷媒流速が低下し冷凍機油(7)が滞留しやすい運転条
件下になると、これを検出して圧縮機冷却用ファン(9)
を駆動を停止するようにしている。
As described above, in this embodiment, the compressor (1)
Drive the compressor cooling fan (9) in synchronization with the operation of
When the operating conditions are such that the compressor (1) is prevented from overheating and the refrigerant flow velocity decreases due to continuous operation at low ambient temperature, etc., and refrigerating machine oil (7) tends to stay, it is detected and a compressor cooling fan is detected. (9)
The drive is stopped.

【0024】なお、流速計(11)の検出値と比較される予
め設定された凝縮器入口冷媒流速用の所定の設定値とし
て、凝縮器入口配管(6a)のゼロペネトレーション流速値
が使用される。このゼロペネトレーション流速値は次の
ようにして求められる。気液二相流におけるゼロペネト
レーション流速の半実験式は
The zero penetration flow rate value of the condenser inlet pipe (6a) is used as a predetermined set value for the preset condenser inlet refrigerant flow rate to be compared with the detected value of the flow velocity meter (11). . This zero penetration flow velocity value is obtained as follows. The semi-empirical formula for zero penetration flow velocity in gas-liquid two-phase flow is

【0025】[0025]

【数1】 [Equation 1]

【0026】となる。ここに Ug':ゼロペネトレーション流速〔m/s〕 Ug":無次
元速度 g :重力加速度=9.80665〔m/s2〕 D :管内
径〔m〕 ρl :冷凍機油密度=867〔kg/m3〕 ρg :冷媒
ガス密度〔kg/m3〕 である。Ug"を求める方法として次の4方法がある。
[0026] Where U g ': Zero penetration flow velocity [m / s] U g ": Dimensionless velocity g: Gravity acceleration = 9.80665 [m / s 2 ] D: Pipe inner diameter [m] ρ l : Refrigerator oil density = 867 [kg / m 3 ] ρ g : Refrigerant gas density [kg / m 3 ]. There are the following four methods for obtaining U g ".

【0027】 小管径向きとしてのWallsの方法 0.56≦Ug"=C≦1.00 (2) ここに C:常数Walls' method for small tube diameter direction 0.56 ≦ U g “= C ≦ 1.00 (2) where C: constant

【0028】 冷凍機油の表面張力を考慮したModifie
d-Wallsの方法
Modifie considering the surface tension of refrigerating machine oil
d-Walls method

【0029】[0029]

【数2】 ここに σ:冷凍機油表面張力[Equation 2] Where σ: Refrigerator oil surface tension

【0030】 大管径向きとしてのPuchkinaの方法Puchkina's method for large tube orientation

【0031】[0031]

【数3】 ここに Kg:kutateladze数=3.2 Nb=ボンド数[Equation 3] Here K g : kutateladze number = 3.2 Nb = bond number

【0032】 全管径向きとしてのRicherの方法Richer's method for all tube diameters

【0033】[0033]

【数4】 ここに Cw:壁面摩擦定数=0.008[Equation 4] Where Cw: wall friction constant = 0.008

【0034】以上の(2)〜(8)式の何れかで求めたUg"を
(1)式に代入してゼロペネトレーション流速Ug'を求め
る。
U g "determined by any of the above equations (2) to (8)
Substituting into equation (1), the zero penetration flow velocity U g 'is obtained.

【0035】一般的な冷蔵庫の凝縮器側冷媒圧力は1
0.3〔ata〕程度、この時の冷媒HFC−134a
の飽和蒸気密度49.9〔kg/m3〕、冷凍機油、ハ
ードアルキルベンゼン油の密度ρlは867〔kg/
3〕、また凝縮器入口配管(6a)の内径Dを4×10~3
〔m〕とすれば、ゼロペネトレーション流速Ug'は0.
8〔m/s〕となる。従って上記冷媒流速用の設定値
は、安全を考慮して1.2Ug'=1.0〔m/s〕とす
る。
The refrigerant pressure on the condenser side of a general refrigerator is 1
About 0.3 [ata], the refrigerant HFC-134a at this time
Saturated vapor density of 49.9 [kg / m 3 ], the density ρ l of refrigerating machine oil and hard alkylbenzene oil is 867 [kg /
m 3 ], and the inner diameter D of the condenser inlet pipe (6a) is 4 × 10 to 3
If [m], the zero penetration flow rate U g 'is 0.1.
It becomes 8 [m / s]. Therefore, the setting value for the refrigerant flow velocity is 1.2 U g '= 1.0 [m / s] in consideration of safety.

【0036】上記のように圧縮機冷却用ファン(9)を制
御すれば、低外気温時でも圧縮機(1)を過冷することが
ないので、圧縮機(1)内に貯溜する冷媒(7)の増加を防
ぎ、循環冷媒流量が減少するのを確実に防止し、配管内
(6)への冷凍機油の滞留を抑制でき、圧縮機(1)への油戻
りが保たれる。なお、上記実施例では冷媒流速検知手段
として流速計を使用しているが、冷媒流量計を使用して
もよい。
If the compressor cooling fan (9) is controlled as described above, the compressor (1) will not be overcooled even at low ambient temperature, so that the refrigerant (1) stored in the compressor (1) ( 7) increase, surely prevent the circulating refrigerant flow rate from decreasing, and
The refrigerating machine oil can be prevented from staying in the compressor (6), and the oil can be returned to the compressor (1). In the above embodiment, the flow velocity meter is used as the coolant flow velocity detecting means, but a coolant flow meter may be used.

【0037】実施例2.図4〜図9はこの実施例2を示
し、図4は構成図、図5〜図7は凝縮器冷媒温度及び蒸
発器冷媒温度に対する凝縮器入口冷媒流速の関係を各圧
縮機吸入ガス温度について示した図、図8は制御部のブ
ロック線図、図9は圧縮機冷却用ファン制御動作を説明
するフローチャートである。
Example 2. 4 to 9 show the second embodiment, FIG. 4 is a configuration diagram, and FIGS. 5 to 7 show the relationship between the condenser inlet refrigerant flow rate with respect to the condenser refrigerant temperature and the evaporator refrigerant temperature with respect to each compressor intake gas temperature. 8 is a block diagram of the control unit, and FIG. 9 is a flow chart for explaining the compressor cooling fan control operation.

【0038】図において、(1)は圧縮機、(2)は凝縮器、
(3)は減圧装置であるキャピラリチューブ、(4)は蒸発
器、(5)はヘッダ、(6)は配管、(7)は冷凍機油、(8)は冷
凍サイクル、(9)は圧縮機冷却用ファン、(10)はファン
モータ、(12)は冷蔵庫の制御部、(13)は圧縮機冷却用フ
ァン制御手段、(14)は庫内温度センサ、(15)はマイコン
で、以上は図1、図2で示した実施例1と同様のもので
ある。
In the figure, (1) is a compressor, (2) is a condenser,
(3) is a capillary tube which is a pressure reducing device, (4) is an evaporator, (5) is a header, (6) is piping, (7) is refrigerating machine oil, (8) is a refrigeration cycle, and (9) is a compressor. A cooling fan, (10) a fan motor, (12) a refrigerator control unit, (13) a compressor cooling fan control means, (14) an internal temperature sensor, and (15) a microcomputer. This is the same as the first embodiment shown in FIGS.

【0039】(6b)は圧縮機吸入配管、(16)は圧縮機吸入
配管(6b)内の冷媒温度を検知する吸入冷媒温度検知手段
である吸入管温度センサ、(17)は凝縮器(2)内の冷媒温
度を検知する凝縮器冷媒温度検知手段である凝縮器温度
センサ、(18)は蒸発器(4)内の冷媒温度を検知する蒸発
器冷媒温度手段である蒸発器温度センサである。また、
この実施例でも、冷媒としてHFC−134a、冷凍機
油(7)としてハードアルキルベンゼン油が用いられてい
る。
(6b) is a compressor suction pipe, (16) is a suction pipe temperature sensor which is a suction refrigerant temperature detecting means for detecting the refrigerant temperature in the compressor suction pipe (6b), and (17) is a condenser (2 ) Is a condenser temperature sensor is a condenser refrigerant temperature detection means for detecting the refrigerant temperature, (18) is an evaporator temperature sensor is an evaporator refrigerant temperature means for detecting the refrigerant temperature in the evaporator (4) . Also,
Also in this embodiment, HFC-134a is used as the refrigerant and hard alkylbenzene oil is used as the refrigerating machine oil (7).

【0040】図5〜図7において、プロットされた各点
の上に書かれた数値は、その点の凝縮器温度Teと蒸発
器冷媒温度Tcで、吸入冷媒温度が−10℃(図5)、
30℃(図6)、40℃(図7)の時の、凝縮器入口冷
媒流速値Ugの実測値を、その下の括弧内の数値は、こ
の冷媒流速値Ugと上記(1)式から算出されるゼロペネト
レーション流速値Ug'の比Ug/Ug'をそれぞれ示して
いる。図中の直線Aは、Ug/Ug'=1.2(20%の余
裕度)となる点を連ねた線である。この直線Aよりも上
の領域では冷凍機油の滞留は起こらず、直線よりも下の
領域では冷凍機油の滞留が生じることを示している。こ
れらのデータが予めマイコン(15)に読込まれている。
5 to 7, the numerical values written above each plotted point are the condenser temperature T e and the evaporator refrigerant temperature T c at that point, and the suction refrigerant temperature is −10 ° C. (see FIG. 5),
The measured values of the refrigerant flow velocity value U g at the inlet of the condenser at 30 ° C. (FIG. 6) and 40 ° C. (FIG. 7) are indicated by the numerical values in parentheses below the refrigerant flow velocity value U g and the above (1). The ratio U g / U g 'of the zero penetration flow velocity value U g ' calculated from the equation is shown, respectively. A straight line A in the figure is a line connecting points where U g / U g '= 1.2 (margin of 20%). It is shown that refrigerating machine oil does not stay in the region above the straight line A and refrigerating machine oil stays in the region below the straight line. These data are read in advance in the microcomputer (15).

【0041】次に図9のフローチャートにより、この実
施例の圧縮機冷却用ファンの制御動作を説明する。ま
ず、ステップ(21)において庫内温度センサ(14)の検出温
度を取込み、ステップ(22)でこの検出温度と予め設定さ
れた庫内温度用の所定の設定値と比較し、検出値が設定
値より低ければステップ(23)に進み圧縮機(1)を停止さ
せるとともに、ステップ(24)でファンモータ(10)をも停
止させ、ステップ(22)で検出値が設定値より高いとステ
ップ(25)に進み圧縮機(1)を運転させる。
Next, the control operation of the compressor cooling fan of this embodiment will be described with reference to the flow chart of FIG. First, in step (21), the detected temperature of the inside temperature sensor (14) is taken in, and in step (22) this detected temperature is compared with a preset set value for the inside temperature, and the detected value is set. If it is lower than the value, proceed to step (23) to stop the compressor (1), stop the fan motor (10) at step (24), and step (22) if the detected value is higher than the set value. Proceed to 25) to operate the compressor (1).

【0042】圧縮機(1)の運転時にステップ(30)で、吸
入管温度センサ(16)、凝縮器温度センサ(17)及び蒸発器
温度センサ(18)の検出値を取込み、ステップ(31)で、こ
れら検出値を基に予めマイコン(15)に読込まれている上
記図5〜図7のデータから冷媒流速値Ugを算出し、こ
の値がゼロペネトレーション流速値Ug'の1.2倍であ
る設定値1.2Ug'と比較し、算出された冷媒流速値U
gが設定値1.2Ug'と等しいかまたは上回っている場
合(設定温度範囲内)には、ステップ(28)に進みファン
モータ(10)の運転を続行させ、下回っている場合(設定
温度範囲外)には、ステップ(29)に進みファンモータ(1
0)を停止させる。
At the time of operating the compressor (1), in the step (30), the detection values of the suction pipe temperature sensor (16), the condenser temperature sensor (17) and the evaporator temperature sensor (18) are fetched, and the step (31) Then, based on these detected values, the refrigerant flow velocity value U g is calculated from the data of FIGS. 5 to 7 previously read in the microcomputer (15), and this value is 1.2 of the zero penetration flow velocity value U g '. Refrigerant flow velocity value U calculated by comparing with set value 1.2U g
If g is equal to or greater than the set value 1.2 U g '(within the set temperature range), proceed to step (28) to continue the operation of the fan motor (10), and if it is below the set value (set temperature). Out of range) go to step (29)
0) is stopped.

【0043】このように、この実施例においては、吸入
管、凝縮器、蒸発器の各温度センサ(16)(17)(18)からの
検出値を取り込み、冷凍機油滞留条件と比較し、滞留し
ない条件を満足すれば圧縮機(1)の運転と同期してファ
ンモータ(10)を駆動させ、滞留する条件にあればファン
モータ(10)を駆動させず、圧縮機(1)を過剰に冷却する
ことのないようにしており、上記実施例1と同様の効果
を奏する。
As described above, in this embodiment, the detected values from the temperature sensors (16), (17) and (18) of the suction pipe, the condenser, and the evaporator are fetched, compared with the refrigerating machine oil retention condition, and accumulated. If the condition is not satisfied, the fan motor (10) is driven in synchronization with the operation of the compressor (1), and if the condition is stagnant, the fan motor (10) is not driven and the compressor (1) is overloaded. No cooling is performed, and the same effect as that of the first embodiment is obtained.

【0044】実施例3.図10〜図12はこの実施例3
を示し、図10は制御部のブロック線図、図11は圧縮
機冷却用ファン制御動作を説明するフローチャート、図
12は外気温に対する凝縮器冷媒温度及び蒸発器冷媒温
度の関係を実験的に求めた図である。
Example 3. 10 to 12 show the third embodiment.
FIG. 10 is a block diagram of the control unit, FIG. 11 is a flow chart for explaining the compressor cooling fan control operation, and FIG. 12 is an experimentally obtained relationship between the condenser refrigerant temperature and the evaporator refrigerant temperature with respect to the outside air temperature. It is a figure.

【0045】図において、(1)は圧縮機、(10)はファン
モータ、(14)は庫内温度センサ、(15)はマイコン、(19)
は外気温度を検知する外気温度検知手段である外気温度
センサで、冷蔵庫の制御部(12)の基盤を収納する空間に
設置される。また、この実施例でも、冷媒としてHFC
−134a、冷凍機油(7)としてハードアルキルベンゼ
ン油が用いられている。
In the figure, (1) is a compressor, (10) is a fan motor, (14) is an internal temperature sensor, (15) is a microcomputer, and (19).
Is an outside air temperature sensor which is an outside air temperature detecting means for detecting the outside air temperature, and is installed in a space for accommodating the base of the control unit (12) of the refrigerator. Also in this embodiment, HFC is used as the refrigerant.
-134a, hard alkylbenzene oil is used as the refrigerating machine oil (7).

【0046】次に図11のフローチャートにより、圧縮
機冷却用ファンの制御動作を説明する。まず、ステップ
(21)において庫内温度センサ(14)の検出温度を取込み、
ステップ(22)でこの検出温度と予め設定された庫内温度
用の所定の設定値と比較し、検出値が設定値より低けれ
ばステップ(23)に進み圧縮機(1)を停止させるととも
に、ステップ(24)でファンモータ(10)をも停止させ、ス
テップ(22)で検出値が設定値より高いとステップ(25)に
進み圧縮機(1)を運転させる。
Next, the control operation of the compressor cooling fan will be described with reference to the flowchart of FIG. First, the step
In (21), take in the temperature detected by the internal temperature sensor (14),
In step (22), this detected temperature is compared with a predetermined set value for the preset internal temperature, and if the detected value is lower than the set value, the process proceeds to step (23) to stop the compressor (1), The fan motor (10) is also stopped in step (24), and if the detected value is higher than the set value in step (22), the process proceeds to step (25) to operate the compressor (1).

【0047】圧縮機(1)の運転時にステップ(33)で外気
温度センサ(19)の検出値を取込み、ステップ(34)でこの
検出値と予め設定された外気温度用の所定の設定値と比
較し、検出値が設定値と等しいかまたは上回っている場
合には、ステップ(28)に進みファンモータ(10)の運転を
続行させ、検出値が設定値を下回っている場合には、ス
テップ(29)に進みファンモータ(10)を停止させる。
During operation of the compressor (1), the detected value of the outside air temperature sensor (19) is taken in at step (33), and this detected value and a predetermined set value for outside air temperature are set at step (34). Compare, if the detected value is equal to or more than the set value, proceed to step (28) to continue the operation of the fan motor (10) .If the detected value is less than the set value, proceed to the step. Proceed to (29) and stop the fan motor (10).

【0048】なお、外気温度センサ(19)の検出値と比較
される予め設定された外気温度用の所定の設定値とし
て、凝縮器入口配管(6a)の冷媒流速がゼロペネトレーシ
ョン流速以上を満足する外気温度とする。図12はこの
設定値を求めるための実験データを示し、の2台の
冷蔵庫について、外気温度が−20℃、−15℃、−1
1℃、30℃及び50℃の場合の凝縮器温度Teと蒸発
器冷媒温度Tcをプロットしたもので、図中直線Bは吸
入冷媒温度が50℃の時に、Cは吸入冷媒温度が−15
℃の時に、凝縮器入口配管(6a)の冷媒流速Ugとゼロペ
ネトレーション流速Ug'との比Ug/Ug'=1.2(20
%の余裕度)となる点を連ねた線である。
The refrigerant flow velocity in the condenser inlet pipe (6a) satisfies a zero penetration flow velocity or more as a predetermined set value for the outside air temperature to be compared with the detection value of the outside air temperature sensor (19). Use the outside temperature. FIG. 12 shows the experimental data for obtaining this set value, and the outside air temperature of the two refrigerators was −20 ° C., −15 ° C., −1.
The condenser temperature T e and the evaporator refrigerant temperature T c at 1 ° C., 30 ° C. and 50 ° C. are plotted, and in the figure, a straight line B indicates a suction refrigerant temperature of 50 ° C. and a C indicates a suction refrigerant temperature of −. 15
When the temperature is ℃, the ratio U g / U g '= 1.2 (20) of the refrigerant flow rate U g of the condenser inlet pipe (6a) and the zero penetration flow rate U g '
% Margin) is a line that connects points.

【0049】この直線B、Cよりも上の領域では冷凍機
油の滞留は起こらず、直線よりも下の領域では冷凍機油
の滞留が生じることを示している。この実験データから
外気温度が−10℃以下では、冷凍機油が滞留する可能
性が非常に高い。従って中型冷蔵庫の上記外気温度用の
設定値は、安全を考慮して0.0℃程度とする。
It is shown that the refrigerating machine oil does not stay in the region above the straight lines B and C, and the refrigerating machine oil stays in the region below the straight line. From the experimental data, when the outside air temperature is −10 ° C. or lower, the refrigerating machine oil is very likely to stay. Therefore, the set value for the outside air temperature of the medium-sized refrigerator is set to about 0.0 ° C in consideration of safety.

【0050】以上のように、この実施例においては、外
気温度センサ(9)からの検出値を取り込み、冷凍機油が
滞留しない外気温度条件と比較し、この条件を満足すれ
ば圧縮機(1)の運転と同期してファンモータ(10)を駆動
させ、滞留する条件にあればファンモータ(10)を駆動さ
せず、圧縮機(1)を過剰に冷却することのないようにし
ており、上記実施例1と同様の効果を奏する。さらに、
外気温度センサは、庫内の過冷却防止用ヒータの制御等
のため、従来の冷蔵庫に設置されている概存のものを流
用可能なので、上記の効果をさらに安価に得ることがで
きる。
As described above, in this embodiment, the detected value from the outside air temperature sensor (9) is fetched and compared with the outside air temperature condition in which refrigerating machine oil does not stay. If this condition is satisfied, the compressor (1) The fan motor (10) is driven in synchronism with the operation of, and the fan motor (10) is not driven under the condition of staying so as not to excessively cool the compressor (1). The same effect as that of the first embodiment is achieved. further,
As the outside air temperature sensor, the existing one installed in the conventional refrigerator can be used for controlling the heater for preventing the subcooling in the refrigerator, etc., so that the above effect can be obtained at a lower cost.

【0051】[0051]

【発明の効果】以上のようにこの発明の請求項1記載の
発明によれば、凝縮器の入口配管内の冷媒流速が所定値
以下になると、圧縮機冷却用ファンの駆動を停止するよ
うにしたので、また、請求項2記載の発明によれば、凝
縮器の入口配管内の冷媒流速が、予め設定された凝縮器
の入口配管のゼロペネトレーション流速値以下になる
と、圧縮機冷却用ファンの駆動が停止するようにしたの
で、圧縮機の過冷が防止され、配管内への冷凍機油の滞
留が抑制され、圧縮機への油戻りが良く、信頼性の高い
冷蔵庫が得られる効果がある。また、凝縮器の入口配管
内の冷媒流速を直接測定するようにしたので、上記滞留
抑制条件が高精度で得られ一層効果が大となる。
As described above, according to the first aspect of the present invention, the drive of the compressor cooling fan is stopped when the refrigerant flow velocity in the inlet pipe of the condenser becomes a predetermined value or less. Therefore, according to the invention of claim 2, when the refrigerant flow velocity in the inlet pipe of the condenser becomes equal to or lower than the preset zero penetration flow velocity value of the inlet pipe of the condenser, the compressor cooling fan is cooled. Since the drive is stopped, overcooling of the compressor is prevented, refrigerating machine oil is prevented from staying in the pipes, oil returns to the compressor well, and a highly reliable refrigerator can be obtained. . Further, since the flow velocity of the refrigerant in the inlet pipe of the condenser is directly measured, the above-mentioned retention suppressing condition can be obtained with high accuracy, and the effect is further enhanced.

【0052】この発明の請求項3記載の発明によれば、
圧縮機の吸入配管内の冷媒温度、凝縮器内の冷媒温度及
び蒸発器内の冷媒温度が、予め設定された温度範囲外に
なると、圧縮機冷却用ファンの駆動を停止するようにし
たので、圧縮機の過冷が防止され、配管内への冷凍機油
の滞留が抑制され、圧縮機への油戻りが良く、しかも冷
媒流速計のような高価なものを使用することなく安価な
温度センサが使用できるので、安価で信頼性の高い冷蔵
庫が得られる効果がある。
According to the invention of claim 3 of the present invention,
When the refrigerant temperature in the suction pipe of the compressor, the refrigerant temperature in the condenser and the refrigerant temperature in the evaporator are out of the preset temperature range, the driving of the compressor cooling fan is stopped, Overcooling of the compressor is prevented, refrigerating machine oil is prevented from staying in the pipes, oil returns to the compressor well, and an inexpensive temperature sensor is used without using an expensive refrigerant current meter. Since it can be used, there is an effect that an inexpensive and highly reliable refrigerator can be obtained.

【0053】この発明の請求項4記載の発明によれば、
外気温度が予め設定された温度範囲外になると、圧縮機
冷却用ファンの駆動を停止するようにしたので、圧縮機
の過冷が防止され、配管内への冷凍機油の滞留が抑制さ
れ、圧縮機への油戻りが良く、しかも庫内の過冷却防止
等のため一般的に設置されている概存の外気温度センサ
を流用することができるので、更に安価で信頼性の高い
冷蔵庫が得られる効果がある。
According to the invention of claim 4 of the present invention,
When the outside air temperature is out of the preset temperature range, the compressor cooling fan is stopped, so the compressor is prevented from overcooling, and refrigerating machine oil is prevented from accumulating in the piping. The oil return to the machine is good, and the existing outside air temperature sensor that is commonly installed to prevent overcooling of the inside of the refrigerator can be used, so a cheaper and more reliable refrigerator can be obtained. effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1の構成図。FIG. 1 is a configuration diagram of a first embodiment of the present invention.

【図2】この発明の実施例1の制御部のブロック線図。FIG. 2 is a block diagram of a control unit according to the first embodiment of the present invention.

【図3】この発明の実施例1の圧縮機冷却用ファン制御
動作を説明するフローチャート。
FIG. 3 is a flowchart illustrating a compressor cooling fan control operation according to the first embodiment of the present invention.

【図4】この発明の実施例2の構成図。FIG. 4 is a configuration diagram of a second embodiment of the present invention.

【図5】冷蔵庫の凝縮器入口配管内における冷凍機油の
滞留条件を示す図。
FIG. 5 is a diagram showing a condition for retaining refrigerating machine oil in a condenser inlet pipe of a refrigerator.

【図6】冷蔵庫の凝縮器入口配管内における冷凍機油の
滞留条件を示す図。
FIG. 6 is a diagram showing a condition for retaining refrigerating machine oil in a condenser inlet pipe of a refrigerator.

【図7】冷蔵庫の凝縮器入口配管内における冷凍機油の
滞留条件を示す図。
FIG. 7 is a diagram showing a condition for retaining refrigerating machine oil in a condenser inlet pipe of a refrigerator.

【図8】この発明の実施例2の制御部のブロック線図。FIG. 8 is a block diagram of a control unit according to a second embodiment of the present invention.

【図9】この発明の実施例3の圧縮機冷却用ファン制御
動作を説明するフローチャート。
FIG. 9 is a flowchart illustrating a compressor cooling fan control operation according to the third embodiment of the present invention.

【図10】この発明の実施例1の制御部のブロック線
図。
FIG. 10 is a block diagram of a control unit according to the first embodiment of the present invention.

【図11】この発明の実施例1の圧縮機冷却用ファン制
御動作を説明するフローチャート。
FIG. 11 is a flowchart illustrating a compressor cooling fan control operation according to the first embodiment of the present invention.

【図12】外気温に対する凝縮器冷媒温度及び蒸発器冷
媒温度の関係を実験的に求めた図。
FIG. 12 is a diagram obtained by experimentally determining the relationship between the condenser refrigerant temperature and the evaporator refrigerant temperature with respect to the outside air temperature.

【図13】従来の冷蔵庫の冷凍サイクルの一例を示す冷
凍回路図。
FIG. 13 is a refrigeration circuit diagram showing an example of a refrigeration cycle of a conventional refrigerator.

【図14】冷媒配管中を上昇する冷媒ガスとこれにより
押し流される冷凍機油との様子を説明する図。
FIG. 14 is a diagram illustrating a state of refrigerant gas rising in a refrigerant pipe and refrigerating machine oil pushed by the refrigerant gas.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 減圧装置(キャピラリーチューブ) 4 蒸発器 6 配管 6a 凝縮器入口配管 6b 圧縮機吸入配管 7 冷凍機油 8 冷凍サイクル 9 圧縮機冷却用ファン 11 冷媒流速検知手段(冷媒流速計) 13 圧縮機冷却用ファン制御手段 16 吸入冷媒温度検知手段(吸入管温度センサ) 17 凝縮器冷媒温度検知手段(凝縮器温度センサ) 18 蒸発器冷媒温度検知手段(蒸発器温度センサ) 19 外気温度検知手段(外気温度センサ) 1 Compressor 2 Condenser 3 Decompression device (capillary tube) 4 Evaporator 6 Pipe 6a Condenser inlet pipe 6b Compressor suction pipe 7 Refrigerator oil 8 Refrigeration cycle 9 Compressor cooling fan 11 Refrigerant flow velocity detection means (refrigerant flow meter) 13 Compressor Cooling Fan Control Means 16 Intake Refrigerant Temperature Detection Means (Intake Pipe Temperature Sensor) 17 Condenser Refrigerant Temperature Detection Means (Condenser Temperature Sensor) 18 Evaporator Refrigerant Temperature Detection Means (Evaporator Temperature Sensor) 19 Outside Air Temperature Detection Means (outside air temperature sensor)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、減圧装置、蒸発器及び
これらを接続する配管を有し、相互溶解性が悪い冷媒と
冷凍機油を使用した冷凍サイクルと、上記圧縮機を冷却
する圧縮機冷却用ファンとを備えた冷蔵庫において、上
記凝縮器の入口配管内の冷媒流速を検知する冷媒流速検
知手段と、この冷媒流速検知手段の検出値が所定値以下
のとき、上記圧縮機冷却用ファンの駆動を停止する圧縮
機冷却用ファン制御手段とを設けたことを特徴とする冷
蔵庫。
1. A refrigeration cycle having a compressor, a condenser, a decompression device, an evaporator, and pipes connecting them, using a refrigerant and refrigerating machine oil having poor mutual solubility, and a compressor for cooling the compressor. In a refrigerator equipped with a cooling fan, a refrigerant flow velocity detecting means for detecting the refrigerant flow velocity in the inlet pipe of the condenser, and a compressor cooling fan when the detection value of the refrigerant flow velocity detecting means is below a predetermined value. And a compressor cooling fan control means for stopping the driving of the refrigerator.
【請求項2】 圧縮機、凝縮器、減圧装置、蒸発器及び
これらを接続する配管を有し、相互溶解性が悪い冷媒と
冷凍機油を使用した冷凍サイクルと、上記圧縮機を冷却
する圧縮機冷却用ファンとを備えた冷蔵庫において、上
記凝縮器の入口配管内の冷媒流速を検知する冷媒流速検
知手段と、この冷媒流速検知手段の検出値が、予め設定
された上記凝縮器の入口配管のゼロペネトレーション流
速値以下のとき、上記圧縮機冷却用ファンの駆動を停止
する圧縮機冷却用ファン制御手段とを設けたことを特徴
とする冷蔵庫。
2. A refrigeration cycle having a compressor, a condenser, a decompression device, an evaporator, and pipes connecting them, and using a refrigerant and refrigerating machine oil having poor mutual solubility, and a compressor for cooling the compressor. In a refrigerator equipped with a cooling fan, a refrigerant flow velocity detecting means for detecting the refrigerant flow velocity in the inlet pipe of the condenser, and the detection value of the refrigerant flow velocity detecting means is a preset inlet pipe of the condenser. A compressor cooling fan control means for stopping the driving of the compressor cooling fan when the flow rate is equal to or less than the zero penetration flow velocity value.
【請求項3】 圧縮機、凝縮器、減圧装置、蒸発器及び
これらを接続する配管を有し、相互溶解性が悪い冷媒と
冷凍機油を使用した冷凍サイクルと、上記圧縮機を冷却
する圧縮機冷却用ファンとを備えた冷蔵庫において、上
記圧縮機の吸入配管内の冷媒温度を検知する吸入冷媒温
度検知手段と、上記凝縮器内の冷媒温度を検知する凝縮
器冷媒温度検知手段と、上記蒸発器内の冷媒温度を検知
する蒸発器冷媒温度検知手段と、これら温度検知手段に
よる検出値が、上記凝縮器の入口配管内の冷媒流速がこ
の入口配管のゼロペネトレーション流速以上を満足す
る、予め設定された温度範囲外のとき、上記圧縮機冷却
用ファンの駆動を停止する圧縮機冷却用ファン制御手段
とを設けたことを特徴とする冷蔵庫。
3. A refrigeration cycle having a compressor, a condenser, a pressure reducing device, an evaporator, and pipes connecting these, and using a refrigerant and refrigerating machine oil having poor mutual solubility, and a compressor for cooling the compressor. In a refrigerator equipped with a cooling fan, a suction refrigerant temperature detecting means for detecting a refrigerant temperature in a suction pipe of the compressor, a condenser refrigerant temperature detecting means for detecting a refrigerant temperature in the condenser, and the evaporation. Evaporator refrigerant temperature detecting means for detecting the refrigerant temperature in the condenser, the detection value by these temperature detecting means, the refrigerant flow velocity in the inlet pipe of the condenser is equal to or more than zero penetration flow velocity of the inlet pipe, preset And a compressor cooling fan control means for stopping the driving of the compressor cooling fan when the temperature is out of the specified temperature range.
【請求項4】 圧縮機、凝縮器、減圧装置、蒸発器及び
これらを接続する配管を有し、相互溶解性が悪い冷媒と
冷凍機油を使用した冷凍サイクルと、上記圧縮機を冷却
する圧縮機冷却用ファンとを備えた冷蔵庫において、外
気温度を検知する外気温度検知手段と、この外気温度検
知手段による検出値が、上記凝縮器の入口配管内の冷媒
流速がこの入口配管のゼロペネトレーション流速以上を
満足する、予め設定された温度範囲外のとき、上記圧縮
機冷却用ファンの駆動を停止する圧縮機冷却用ファン制
御手段とを設けたことを特徴とする冷蔵庫。
4. A refrigeration cycle having a compressor, a condenser, a decompression device, an evaporator, and pipes connecting them, and using a refrigerant and refrigerating machine oil having poor mutual solubility, and a compressor for cooling the compressor. In a refrigerator equipped with a cooling fan, the outside air temperature detecting means for detecting the outside air temperature, and the value detected by this outside air temperature detecting means is such that the refrigerant flow velocity in the inlet pipe of the condenser is equal to or higher than the zero penetration flow velocity in the inlet pipe. And a compressor cooling fan control means for stopping the drive of the compressor cooling fan when the temperature is outside a preset temperature range that satisfies the above condition.
JP23938793A 1993-09-27 1993-09-27 refrigerator Expired - Fee Related JP3448915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23938793A JP3448915B2 (en) 1993-09-27 1993-09-27 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23938793A JP3448915B2 (en) 1993-09-27 1993-09-27 refrigerator

Publications (2)

Publication Number Publication Date
JPH0791749A true JPH0791749A (en) 1995-04-04
JP3448915B2 JP3448915B2 (en) 2003-09-22

Family

ID=17044032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23938793A Expired - Fee Related JP3448915B2 (en) 1993-09-27 1993-09-27 refrigerator

Country Status (1)

Country Link
JP (1) JP3448915B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304705A (en) * 2000-04-17 2001-10-31 Daikin Ind Ltd Cryogenic cooling system
JP2007248001A (en) * 2006-03-17 2007-09-27 Mitsubishi Electric Corp Refrigeration air conditioner
JP2008145036A (en) * 2006-12-08 2008-06-26 Mitsubishi Heavy Ind Ltd Air conditioner and oil return control method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304705A (en) * 2000-04-17 2001-10-31 Daikin Ind Ltd Cryogenic cooling system
JP2007248001A (en) * 2006-03-17 2007-09-27 Mitsubishi Electric Corp Refrigeration air conditioner
JP2008145036A (en) * 2006-12-08 2008-06-26 Mitsubishi Heavy Ind Ltd Air conditioner and oil return control method thereof

Also Published As

Publication number Publication date
JP3448915B2 (en) 2003-09-22

Similar Documents

Publication Publication Date Title
CN100387916C (en) Cooling apparatus and method for setting refrigerant sealing amount for the same
JP3484866B2 (en) Refrigeration equipment
JPH0633917B2 (en) Falling film evaporator
JPH11304293A (en) Refrigerant condenser
JP2004156858A (en) Refrigerating cycle device and control method thereof
KR100817027B1 (en) Apparatus and method for discharging vapour and liquid
JP2006336943A (en) Refrigeration system, and cold insulation box
JP2009186033A (en) Two-stage compression type refrigerating device
JP5773711B2 (en) refrigerator
JP3448915B2 (en) refrigerator
JP4292525B2 (en) Refrigerant amount detection method for vapor compression refrigeration cycle
JPH0933123A (en) Cryostatic refrigerating device
JP2015224799A (en) Air conditioner
JP2000337722A (en) Vapor compression type refrigeration cycle
JP2003194427A (en) Cooling device
JP3298225B2 (en) Air conditioner
JP6348048B2 (en) Refrigeration cycle equipment
CN106403334A (en) Refrigerating system capable of performing optimizing control on pressure ratio of water chilling unit
JP2012242049A (en) Refrigerating apparatus
JPH0763184A (en) Lubrication control method for heat pump driving compressor and its device
JP2013228115A (en) Refrigerating device
EP3872421A1 (en) Refrigeration circuit and refrigeration unit with microchannel evaporator
KR0176887B1 (en) Evaporating apparatus of refrigeration cycle
CN115585566A (en) Refrigerating system and freezer of double evaporator
JPH0791791A (en) Refrigerator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070711

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100711

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110711

LAPS Cancellation because of no payment of annual fees