JPH079170A - Friction press welding method for aluminum alloy composite material - Google Patents

Friction press welding method for aluminum alloy composite material

Info

Publication number
JPH079170A
JPH079170A JP15720393A JP15720393A JPH079170A JP H079170 A JPH079170 A JP H079170A JP 15720393 A JP15720393 A JP 15720393A JP 15720393 A JP15720393 A JP 15720393A JP H079170 A JPH079170 A JP H079170A
Authority
JP
Japan
Prior art keywords
friction
round bar
aluminum alloy
pressure
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15720393A
Other languages
Japanese (ja)
Inventor
Wataru Yagi
木 渉 八
Masuo Yamada
田 益 雄 山
Koichi Chigusa
種 康 一 千
Junji Sugishita
下 潤 二 杉
Noboru Egami
上 登 江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP15720393A priority Critical patent/JPH079170A/en
Publication of JPH079170A publication Critical patent/JPH079170A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To enable the outflow of the ceramic particles or whiskers disintegrated more finely than the base metal parts to be integrated on joint surfaces to the outside in a softened state and the outflow of the softened part subjected to the influence of the friction heat near the joint surfaces to the outside in a softened state. CONSTITUTION:Friction press welding is executed while not only a total offset allowance but a friction offset allowance as well are measured. More specifically, the rotating speed of a round bar 11 is lowered when the friction offset allowance attains 3.5 to 7mm and the friction press welding is ended when the total offset allowance attains 10 to 20mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム合金複合
材料の摩擦圧接方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a friction welding method for aluminum alloy composite materials.

【0002】[0002]

【従来の技術】従来、この種のアルミニウム合金複合材
料の摩擦圧接方法としては、1991年日本軽金属学会
『アルミナ粒子分散形6061アルミニウム合金複合材
料の摩擦圧接』に示されるものが知られている。これ
は、何れか一方がアルミニウム合金にアルミナ粒子1
6.1vol %を分散複合したアルミニウム合金複合材料
からなる2つの丸棒の摩擦圧接法である。
2. Description of the Related Art Conventionally, as a friction welding method for this kind of aluminum alloy composite material, a method shown in "Friction welding of alumina particle dispersion type 6061 aluminum alloy composite material" of the Japan Institute of Light Metals in 1991 is known. This is because one of them is aluminum alloy and alumina particles 1
This is a friction welding method for two round bars made of an aluminum alloy composite material in which 6.1 vol% is dispersed and composited.

【0003】具体的には、一方の丸棒(以下、第1丸棒
と称する)を固定した状態で他方の丸棒(以下、第2丸
棒と称する)を長手方向を軸として定速回転(回転数5
8 s-1 )させながら所定の圧力P1(以下、摩擦圧力
と称する)で所定時間t1(以下、摩擦時間と称する)
第2丸棒の接合面(即ち端面)を第1丸棒の接合面(即
ち端面)に向かって押圧して両接合面間で発生する摩擦
熱により両接合面を軟化させ、その後、第2丸棒の回転
速度を低下させ、第2丸棒の減速時又は第2丸棒の回転
を停止させた直後に摩擦圧力P1よりも大きい圧力P2
(以下、アプセット圧力と称する。)で所定時間t2
(以下、アプセット時間と称する。但しt2=5s で実
施)第2丸棒の接合面を第1丸棒の接合面に向かって押
圧して軟化状態にある両接合面を凝固させて接合してい
る。
Specifically, while one round bar (hereinafter referred to as the first round bar) is fixed, the other round bar (hereinafter referred to as the second round bar) is rotated at a constant speed with the longitudinal direction as an axis. (Rotation speed 5
8 s −1 ) at a predetermined pressure P1 (hereinafter referred to as friction pressure) for a predetermined time t1 (hereinafter referred to as friction time)
The joint surface (that is, the end surface) of the second round bar is pressed toward the joint surface (that is, the end surface) of the first round bar to soften both joint surfaces by the frictional heat generated between both joint surfaces, and then the second joint The pressure P2, which is greater than the friction pressure P1, immediately after the rotation speed of the round bar is reduced and the second round bar is decelerated or immediately after the rotation of the second round bar is stopped.
(Hereinafter referred to as upset pressure) for a predetermined time t2
(Hereinafter referred to as upset time. However, it is performed at t2 = 5s.) The joining surface of the second round bar is pressed toward the joining surface of the first round bar to solidify and join the two joining surfaces in the softened state. There is.

【0004】ここで、各圧接条件即ち摩擦圧力P1=2
0,30,40,50MPa ,アプセット圧力P2=6
0,80,100MPa ,摩擦時間t1=2,3,4,5
s を組み合わせて圧接を行った結果、全寄り代(即ち圧
接前の丸棒の長さと圧接後の丸棒の長さとの差)は、摩
擦圧力P1又はアプセット圧力P2に関係なく摩擦時間
t1が長くなるに伴い増大し、同一摩擦時間t1では摩
擦圧力P1又はアプセット圧力P2が大きい程増大し
た。又、摩擦圧力P1=50MPa ,アプセット圧力P2
=100MPa ,摩擦時間t1=5s の時に全寄り代が最
も高い値(23.6mm)であった。
Here, each pressure contact condition, that is, friction pressure P1 = 2
0, 30, 40, 50 MPa, upset pressure P2 = 6
0,80,100MPa, friction time t1 = 2,3,4,5
As a result of performing the pressure welding by combining s, the total deviation (that is, the difference between the length of the round bar before the pressure welding and the length of the round bar after the pressure welding) is determined by the friction time t1 regardless of the friction pressure P1 or the upset pressure P2. It increases with an increase in length, and increases with increasing frictional pressure P1 or upset pressure P2 at the same frictional time t1. Also, friction pressure P1 = 50 MPa, upset pressure P2
= 100 MPa and friction time t1 = 5 s, the total margin was the highest value (23.6 mm).

【0005】[0005]

【発明が解決しようとする課題】ここで、摩擦圧力P1
=30MPa ,アプセット圧力P2=60MPa ,摩擦時間
t1=3s の場合における圧接後の第2丸棒(又は第1
丸棒)の接合面及び母材部の組織図を図6に示し、同場
合における圧接後の第2丸棒(又は第1丸棒)の接合面
近傍の硬度分布を図7に示す。
Here, the friction pressure P1
= 30MPa, upset pressure P2 = 60MPa, and friction time t1 = 3s, the second round bar (or the first round bar after pressure welding)
FIG. 6 shows a structural diagram of the joint surface of the round bar) and the base metal portion, and FIG. 7 shows the hardness distribution in the vicinity of the joint surface of the second round bar (or the first round bar) after pressure welding in the same case.

【0006】図6に示されるように、第2部材の接合面
には母材部よりも微細に破砕され熱により変質したアル
ミナ粒子31が集積している。従って、接合面と母材部
との間のアルミナ粒子31の体積割合(vol %)の差が
大きくなり、接合面と母材部との間の引張強度及び剛性
の差が大きくなる。尚、30はアルミニウム合金を示
す。
As shown in FIG. 6, alumina particles 31 crushed finer than the base material and altered by heat are accumulated on the joint surface of the second member. Therefore, the difference in the volume ratio (vol%) of the alumina particles 31 between the joint surface and the base material portion becomes large, and the difference in tensile strength and rigidity between the joint surface and the base material portion becomes large. In addition, 30 shows an aluminum alloy.

【0007】又、図7に示されるように、接合面近傍に
て硬度の急激的な変化が認められ、接合面から略2〜5
mm離れた部分から略10mm離れた部分まで軟化域が認め
られ、その硬度は母材部の略60〜70%の値である。
これは、摩擦熱の影響を受けた部分と判断できる。従っ
て、前記軟化域の引張強度は母材部の引張強度に比較し
て大幅に低下し、軟化域は母材部と比較して破断し易く
なる。
Further, as shown in FIG. 7, a rapid change in hardness is recognized in the vicinity of the joint surface, and the hardness is about 2 to 5 from the joint surface.
A softened area is recognized from a portion separated by 10 mm to a portion separated by 10 mm, and the hardness thereof is a value of about 60 to 70% of that of the base material portion.
It can be determined that this is a portion affected by frictional heat. Therefore, the tensile strength of the softened region is significantly lower than the tensile strength of the base material portion, and the softened area is more likely to break than the base material portion.

【0008】尚、上記の現象は、他の圧接条件において
も同様に起こる。
The above phenomenon similarly occurs under other pressure welding conditions.

【0009】上記した従来の摩擦圧接方法は、各圧接条
件即ち摩擦圧力P1,アプセット圧力P2,摩擦時間t
1及びアプセット時間t2における全寄り代を測定した
にすぎず(略4mm〜23.6mm)、全寄り代及び摩擦寄
り代(即ち摩擦後の丸棒の減少分)を測定しながら摩擦
圧接を行っていないので、圧接時に接合面にて集積する
母材部よりも微細に破砕され熱により変質したアルミナ
粒子を径方向外部に流出できないばかりか、接合面近傍
の摩擦熱の影響を受けた軟化域を径方向外部に流出する
ことができず、上記のような問題点が生じる。
In the conventional friction welding method described above, each pressure welding condition, that is, friction pressure P1, upset pressure P2, friction time t.
1 and only the total deviation at the upset time t2 was measured (approximately 4 mm to 23.6 mm), and the friction welding was performed while measuring the total deviation and the friction deviation (that is, the reduced amount of the round bar after friction). Since the alumina particles that are finely crushed and deteriorated by heat compared to the base metal that accumulates on the joint surface during pressure welding cannot flow out to the outside in the radial direction, the softened area near the joint surface is affected by friction heat. Cannot flow out to the outside in the radial direction, and the above-mentioned problems occur.

【0010】故に、本発明は、上記問題点を解決するこ
とを、その技術的課題とするものである。
Therefore, the present invention has as its technical problem to solve the above problems.

【0011】[0011]

【課題を解決するための手段】上記技術的課題を解決す
るために本発明において講じた技術的手段は、少なくと
も何れか一方がアルミニウム合金にセラミックス粒子又
はウィスカーを複合したアルミニウム合金複合材料から
なる第1,第2部材を摩擦圧接する方法であって、第1
部材を定速回転させながら所定の圧力で第1,第2部材
の内の何れか一方の部材を他方の部材に向かって押圧し
て両部材の接触面で発生する摩擦熱により接触面を軟化
させ、摩擦寄り代を3.5〜7mmにした後に第1部材の
回転速度を低下させ、第1部材の減速時又は第1部材の
停止時に第1部材の定速回転時に一方の部材に加える圧
力よりも大きい圧力で一方の部材の接触面を他方の部材
の接触面に向かって押圧して全寄り代を10〜20mmに
した後に軟化状態にある両接触面を凝固させて接合した
ことである。
In order to solve the above technical problems, the technical measures taken in the present invention are such that at least one of them comprises an aluminum alloy composite material in which ceramic particles or whiskers are compounded in an aluminum alloy. 1, a method of friction welding the second member,
While rotating the member at a constant speed, one of the first and second members is pressed toward the other member by a predetermined pressure to soften the contact surface by frictional heat generated at the contact surface of both members. Then, the rotational speed of the first member is reduced after setting the friction deviation margin to 3.5 to 7 mm, and is applied to one member when the first member is rotating at a constant speed when the first member is decelerated or stopped. By pressing the contact surface of one member toward the contact surface of the other member with a pressure larger than the pressure so that the total margin is 10 to 20 mm, the two contact surfaces in the softened state are solidified and joined. is there.

【0012】[0012]

【作用】上記技術的手段によれば、全寄り代のみならず
摩擦寄り代を測定しながら摩擦圧接を行い、且つ摩擦寄
り代を3.5〜7mmに設定し且つ全寄り代を10〜20
mmに設定したので、第1部材の減速時又は第1部材の停
止時に第1,第2部材の内の何れか一方の部材を他方の
部材に向かって押圧することにより接合面にて集積する
母材部(即ち接合面から所定だけ離れた部分)よりも微
細に破砕されたセラミックス粒子又はウィスカーを軟化
状態のまま外部に流出できると共に、接合面近傍の摩擦
熱の影響を受けた軟化部分を軟化状態のまま外部に流出
できる。
According to the above technical means, friction welding is performed while measuring not only the total deviation but also the friction deviation, and the friction deviation is set to 3.5 to 7 mm and the total deviation is 10 to 20.
Since it is set to mm, when either the first member decelerates or the first member stops, one of the first and second members is pressed toward the other member to accumulate on the joint surface. The ceramic particles or whiskers finely crushed from the base metal part (that is, the part away from the joint surface) can flow out to the outside in the softened state, and the softened portion near the joint surface affected by friction heat Can flow to the outside in a softened state.

【0013】ここで、摩擦寄り代を3.5mmより短くす
ると、上記のような作用を発揮せず、7mmより長くする
と、歩留りが悪くなる。一方、全寄り代を10mmより短
くすると、上記のような作用を発揮せず、20mmより長
くすると、歩留りが悪くなる。
Here, if the frictional deviation margin is shorter than 3.5 mm, the above-mentioned action is not exhibited, and if it is longer than 7 mm, the yield is deteriorated. On the other hand, if the total margin is shorter than 10 mm, the above-mentioned action is not exhibited, and if it is longer than 20 mm, the yield is deteriorated.

【0014】以上示したように、接合面にて集積する母
材部よりも微細に破砕されたセラミックス粒子又はウィ
スカーを軟化状態のまま外部に流出できるので、接合面
と母材部との間のセラミックス粒子又はウィスカーの含
有量(体積%)の差が小さくなり、接合面と母材部との
間の引張強度及び剛性の差も小さくなる。又、接合面近
傍の摩擦熱の影響を受けた軟化部分を軟化状態のまま外
部に流出できるので、接合面から数mm離れた部分(従来
の軟化域に相当する部分)の硬度が急激的に低下するこ
となく接合面から数mm離れた部分の引張強度は母材部の
引張強度と略等しくなり、接合面から数mm離れた部分が
破断し難くなる。
As described above, since ceramic particles or whiskers finely crushed than the base material portion accumulated on the joint surface can flow out to the outside in the softened state, the space between the joint surface and the base material portion can be discharged. The difference in the content (volume%) of the ceramic particles or whiskers becomes small, and the difference in tensile strength and rigidity between the joint surface and the base material part also becomes small. In addition, since the softened part near the joint surface that is affected by frictional heat can flow out to the outside in the softened state, the hardness of the part several mm away from the joint surface (the part corresponding to the conventional softened zone) can be drastically increased. The tensile strength of the part several mm away from the joint surface does not decrease and becomes almost equal to the tensile strength of the base metal part, and the part several mm away from the joint surface is less likely to break.

【0015】[0015]

【実施例】以下、本発明の一実施例を添付図面に基づい
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0016】本発明は、少なくとも何れか一方がアルミ
ニウム合金にセラミックス粒子又はウィスカーを複合し
たアルミニウム合金複合材料からなる第1,第2部材を
摩擦圧接する方法に関するものである。
The present invention relates to a method of friction welding the first and second members, at least one of which is made of an aluminum alloy composite material in which ceramic particles or whiskers are composited in an aluminum alloy.

【0017】〔実施例〕図1及び図2を参照して本実施
例に係るアルミニウム合金複合材料の摩擦圧接方法につ
いて説明する。
[Embodiment] A friction welding method for an aluminum alloy composite material according to this embodiment will be described with reference to FIGS. 1 and 2.

【0018】AC8Aアルミニウム合金に炭化珪素粒子
(ウィスカー)を20vol %分散複合したアルミニウム
合金複合材料からなる直径20mm,長さ100mmの丸棒
11,12を2本機械加工し、丸棒11,12の端面1
1a,12aを脱脂洗浄した。次に、丸棒11,12の
端面11a,12a近傍を150〜300℃の温度で予
熱した。
Two round rods 11 and 12 each having a diameter of 20 mm and a length of 100 mm and made of an aluminum alloy composite material in which 20 vol% of silicon carbide particles (whiskers) are dispersed in an AC8A aluminum alloy are machined. End face 1
1a and 12a were degreased and washed. Next, the vicinity of the end faces 11a and 12a of the round bars 11 and 12 was preheated at a temperature of 150 to 300 ° C.

【0019】クランプ13にて保持された丸棒11(第
1部材)を周速2m/s で定速回転させながら摩擦圧力P
1=6kgf/mmで静止側の丸棒12の端面12aを回転側
の丸棒11の端面11aに向かって押圧して両丸棒1
1,12の接触面11a,12aで発生する摩擦熱によ
り接触面11a,12a近傍を軟化させた。この時、摩
擦寄り代(即ち摩擦による丸棒11,12の減少分)を
常時測定し、摩擦寄り代が4mmになった時に丸棒11の
回転速度を低下させた。これに伴い丸棒12を加える圧
力を増やしていき、丸棒11の回転が停止した直後に丸
棒12を加える圧力(アプセット圧力)をP2=12kg
f/mmに維持した。尚、丸棒11の減速時にアプセット圧
力をP2=12kgf/mmに維持しても良い。丸棒12の接
触面12aを丸棒11の接触面11aに向かってアプセ
ット圧力P2=12kgf/mmで押圧している際には、全寄
り代(即ち圧接後の丸棒の長さと圧接前の丸棒の長さと
の差)を常時測定し、全寄り代が16.3mmになった時
に軟化状態にある両接触面11a,12aを凝固させて
接合した。
Friction pressure P while rotating round bar 11 (first member) held by clamp 13 at a constant peripheral speed of 2 m / s
At 1 = 6 kgf / mm, the end surface 12a of the stationary side round bar 12 is pressed toward the end surface 11a of the rotating side round bar 11 so that both round bars 1
The vicinity of the contact surfaces 11a and 12a was softened by the frictional heat generated at the contact surfaces 11a and 12a of Nos. 1 and 12. At this time, the friction shift margin (that is, the reduction amount of the round bars 11 and 12 due to friction) was constantly measured, and the rotation speed of the round bar 11 was reduced when the friction deflection margin became 4 mm. Along with this, the pressure applied to the round bar 12 is increased, and the pressure (upset pressure) applied to the round bar 12 immediately after the rotation of the round bar 11 is stopped is P2 = 12 kg.
It was maintained at f / mm. The upset pressure may be maintained at P2 = 12 kgf / mm during deceleration of the round bar 11. When pressing the contact surface 12a of the round bar 12 toward the contact surface 11a of the round bar 11 with an upset pressure P2 = 12 kgf / mm, the total deviation (that is, the length of the round bar after the pressure welding and the pressure before the pressure welding). The difference from the length of the round bar) was constantly measured and both contact surfaces 11a and 12a in the softened state were solidified and joined when the total deviation was 16.3 mm.

【0020】上記に示した摩擦圧接法にて接合した2つ
の丸棒11,12の接合部14の平面図,拡大組織図を
夫々図3(a),図3(b)に示す。尚、図3において
15はアルミニウム合金,16は炭化珪素粒子である。
又、丸棒11の接合面17から長手方向に略10mm離れ
た部分までの範囲における硬度分布及び炭化珪素粒子の
体積割合を図5に示す。
3A and 3B are a plan view and an enlarged structure diagram of the joint portion 14 of the two round bars 11 and 12 joined by the friction welding method described above, respectively. In FIG. 3, 15 is an aluminum alloy and 16 is silicon carbide particles.
Further, FIG. 5 shows the hardness distribution and the volume ratio of silicon carbide particles in the range from the joining surface 17 of the round bar 11 to the portion separated by about 10 mm in the longitudinal direction.

【0021】〔比較例〕AC8Aアルミニウム合金に炭
化珪素粒子(ウィスカー)を20vol %分散複合したア
ルミニウム合金複合材料からなる直径20mm,長さ10
0mmの丸棒21,22を2本機械加工し、丸棒21,2
2の端面を脱脂洗浄した。
Comparative Example A diameter of 20 mm and a length of 10 made of an aluminum alloy composite material in which 20 vol% of silicon carbide particles (whiskers) were dispersed and dispersed in an AC8A aluminum alloy.
Two 0 mm round bars 21 and 22 were machined to form round bars 21 and 22.
The end face of No. 2 was degreased and washed.

【0022】丸棒21(第1部材)を周速2m/s で定速
回転させながら摩擦圧力P1=6kgf/mmで静止側の丸棒
22の端面を回転側の丸棒21の端面に向かって押圧し
て両丸棒21,22の接触面で発生する摩擦熱により接
触面近傍を溶融させた。この時、摩擦寄り代を常時測定
し、摩擦寄り代が2mmになった時に丸棒21の回転速度
を低下させた。これに伴い丸棒22を加える圧力を増や
していき、丸棒21の回転が停止した直後に丸棒22を
加える圧力(アプセット圧力)をP2=8kgf/mmに維持
した。尚、丸棒21の減速時にアプセット圧力をP2=
8kgf/mmに維持しても良い。丸棒22の接触面を丸棒2
1の接触面に向かってアプセット圧力P2=8kgf/mmで
押圧している際には、全寄り代を常時測定し、全寄り代
が5.7mmになった時に軟化状態にある両接触面を凝固
させて接合した。
While rotating the round bar 21 (first member) at a constant peripheral speed of 2 m / s, the end surface of the stationary side round bar 22 is directed toward the end surface of the rotating side round bar 21 at a friction pressure P1 = 6 kgf / mm. It was pressed and melted in the vicinity of the contact surfaces by frictional heat generated at the contact surfaces of both round bars 21, 22. At this time, the friction deviation amount was constantly measured, and when the friction deviation amount became 2 mm, the rotation speed of the round bar 21 was decreased. Along with this, the pressure applied to the round bar 22 was increased, and the pressure (upset pressure) applied to the round bar 22 immediately after the rotation of the round bar 21 was stopped was maintained at P2 = 8 kgf / mm. When decelerating the round bar 21, the upset pressure is set to P2 =
It may be maintained at 8 kgf / mm. The contact surface of round bar 22
While pressing the upset pressure P2 = 8 kgf / mm toward the contact surface of No. 1, the total deviation is measured at all times, and when the total deviation becomes 5.7 mm, both contact surfaces in the softened state are measured. Solidified and joined.

【0023】比較例に係る摩擦圧接法にて接合した2つ
の丸棒21,22の接合部23の平面図,拡大組織図を
夫々図4(a),図4(b)に示す。尚、図4において
24はアルミニウム合金,25は炭化珪素粒子である。
又、丸棒21の接合面26から長手方向に略10mm離れ
た部分までの範囲における硬度分布及び炭化珪素粒子2
5の体積割合を図5に示す。
4A and 4B are a plan view and an enlarged structure diagram of the joint portion 23 of the two round bars 21 and 22 joined by the friction welding method according to the comparative example, respectively. In FIG. 4, 24 is an aluminum alloy and 25 is a silicon carbide particle.
Further, the hardness distribution and the silicon carbide particles 2 in the range from the joining surface 26 of the round bar 21 to the portion separated by about 10 mm in the longitudinal direction.
The volume ratio of 5 is shown in FIG.

【0024】図3から、本実施例に係る丸棒11,12
の接合部14には、母材部(即ち接合面17から10mm
以上離れた部分)よりも微細に破砕された炭化珪素粒子
が集積しておらず、圧接による接合面が殆ど確認できな
い程に丸棒11,12が一体化していることが認めら
れ、これは、摩擦圧接時に接合部14に集積する微細に
破砕された炭化珪素粒子が軟化状態のまま径方向に流出
したことを意味する。従って、図5に示されるように、
炭化珪素粒子16の体積割合(vol %)は丸棒11の接
合面17から長手方向に略10mm離れた部分までの範囲
で殆ど変化することなく、特に、接合面17の炭化珪素
粒子16の体積割合(vol %)は母材部のそれと略等し
い。
From FIG. 3, the round bars 11 and 12 according to this embodiment are shown.
In the joint portion 14 of, the base material portion (that is, 10 mm from the joint surface 17
It is recognized that the finely crushed silicon carbide particles are not accumulated and the round bars 11 and 12 are integrated to such an extent that the joining surface by pressure welding can hardly be confirmed. It means that the finely crushed silicon carbide particles accumulated in the joint portion 14 at the time of friction welding flow out in the radial direction in the softened state. Therefore, as shown in FIG.
The volume ratio (vol%) of the silicon carbide particles 16 hardly changes in the range from the joint surface 17 of the round bar 11 to a portion separated by about 10 mm in the longitudinal direction. The ratio (vol%) is almost equal to that of the base metal part.

【0025】これに対して、図3に示されるように、比
較例に係る丸棒11,12の接合部23には、微細に破
砕された炭化珪素粒子25が接合面26に沿って帯状に
集積していることが認められ、これは、摩擦圧接時に接
合部23に集積する微細に破砕された炭化珪素粒子25
が軟化状態のまま径方向に流出しなかったことを意味す
る。従って、図5に示されるように、炭化珪素粒子25
の体積割合(vol %)は丸棒21の接合面26から長手
方向に略10mm離れた部分までの範囲でかなり変化し、
本実施例と比較してその変化量の差は歴然と現れてい
る。
On the other hand, as shown in FIG. 3, in the joint portion 23 of the round bars 11 and 12 according to the comparative example, finely crushed silicon carbide particles 25 are striped along the joint surface 26. It is recognized that the finely crushed silicon carbide particles 25 are accumulated in the joint portion 23 during friction welding.
Means that it did not flow in the radial direction in the softened state. Therefore, as shown in FIG.
Volume ratio (vol%) of the round bar 21 changes considerably in the range from the joining surface 26 of the round bar 21 to a distance of about 10 mm in the longitudinal direction,
The difference in the amount of change clearly appears in comparison with the present embodiment.

【0026】一方、図5から、丸棒11の接合面17か
ら長手方向に略10mm離れた部分までの範囲における硬
度分布は殆ど変化していないことが分かる。具体的に言
うと、硬度の最大値と最小値との差が20Hv以下になっ
ている。これは、アプセット圧力を加えている時に接合
面17近傍の摩擦熱の影響を受けた軟化部分を軟化状態
のまま外部に流出したことを意味する。これに対して、
比較例による摩擦圧接で接合した接合面26近傍の硬度
分布は本実施例と比較して大幅に変化している。即ち、
接合面から略2〜10mm離れた部分が軟化域となってお
り、接合面の硬度とその軟化域の硬度との差は略40Hv
であり本実施例の2倍となる。
On the other hand, it can be seen from FIG. 5 that the hardness distribution in the range from the joining surface 17 of the round bar 11 to the portion separated by about 10 mm in the longitudinal direction is hardly changed. Specifically, the difference between the maximum hardness value and the minimum hardness value is 20 Hv or less. This means that the softened portion under the influence of the frictional heat in the vicinity of the joint surface 17 flows to the outside in the softened state while applying the upset pressure. On the contrary,
The hardness distribution in the vicinity of the joint surface 26 joined by friction welding according to the comparative example is significantly different from that of the present embodiment. That is,
The softened area is approximately 2 to 10 mm away from the joint surface, and the difference between the hardness of the joint surface and the hardness of the softened area is approximately 40 Hv.
Which is twice as large as that in this embodiment.

【0027】以上示したように、本実施例においては、
全寄り代のみならず摩擦寄り代を測定しながら摩擦圧接
を行い、具体的には摩擦寄り代が4mmになった時に丸棒
11の回転速度を低下させ、全寄り代が16.3mmにな
った時に摩擦圧接を終了したので、丸棒11の減速時又
は丸棒11の停止時に丸棒12を丸棒11に向かって押
圧することにより接合部14にて集積する母材部よりも
微細に破砕された炭化珪素粒子を軟化状態のまま外部に
流出できると共に、接合面17近傍の摩擦熱の影響を受
けた軟化部分を軟化状態のまま外部に流出できる。
As shown above, in this embodiment,
Friction welding is performed while measuring not only the total deviation, but also the frictional deviation. Specifically, when the frictional deviation becomes 4 mm, the rotation speed of the round bar 11 is reduced, and the total deviation becomes 16.3 mm. Since the friction welding is completed when the round bar 11 is decelerated, the round bar 12 is pressed toward the round bar 11 when the round bar 11 is decelerated or stopped, so that the round bar 12 is finer than the base metal part accumulated at the joint 14. The crushed silicon carbide particles can flow out to the outside in the softened state, and the softened portion in the vicinity of the joint surface 17 affected by the friction heat can flow out to the outside in the softened state.

【0028】接合部14にて集積する母材部よりも微細
に破砕された炭化珪素粒子を軟化状態のまま外部に流出
できるので、接合部14と母材部との間の炭化珪素粒子
の体積割合(vol %)の差が小さくなり、接合部14と
母材部との間の引張強度及び剛性の差も小さくなる。
又、接合面17近傍の摩擦熱の影響を受けた軟化部分を
軟化状態のまま外部に流出できるので、接合面17から
数mm離れた部分(従来の軟化域に相当する部分)の硬度
が急激的に低下することなく接合面17から数mm離れた
部分の引張強度は母材部の引張強度と略等しくなり、接
合面17から数mm離れた部分が破断し難くなる。
Since silicon carbide particles crushed finer than the base material portion accumulated at the joint portion 14 can flow out to the outside in the softened state, the volume of the silicon carbide particles between the joint portion 14 and the base material portion. The difference in proportion (vol%) becomes small, and the difference in tensile strength and rigidity between the joint portion 14 and the base material portion also becomes small.
In addition, since the softened portion in the vicinity of the joint surface 17 that is affected by frictional heat can flow out to the outside in the softened state, the hardness of the portion a few mm away from the joint surface 17 (the portion corresponding to the conventional softened region) is sharp. The tensile strength of the part several mm away from the joint surface 17 is substantially equal to the tensile strength of the base material without any decrease, and the part several mm away from the joint surface 17 is less likely to break.

【0029】尚、本実施例においては、摩擦寄り代が4
mm,全寄り代が16.3mmの場合について示したが、本
発明はこれに限定される必要は全くなく、摩擦寄り代が
3.5〜7mm,全寄り代が10〜20mmの場合であれば
上記の効果が得られる。
In the present embodiment, the friction deviation amount is 4
However, the present invention need not be limited to this, and it is possible that the frictional deviation is 3.5 to 7 mm and the total deviation is 10 to 20 mm. For example, the above effect can be obtained.

【0030】尚、本実施例においては、丸棒11の周速
Nが2m/s ,摩擦圧力P1が6kgf/mm及びアプセット圧
力P2が12kgf/mmの場合について示したが、本発明は
これに限定される必要は全くなく、N=2〜4m/s ,P
1=4〜8kgf/mm,P2=6〜24kgf/mmの場合に適用
される。ここで、P2/P1=1.5〜5が望ましい。
In this embodiment, the case where the peripheral speed N of the round bar 11 is 2 m / s, the friction pressure P1 is 6 kgf / mm, and the upset pressure P2 is 12 kgf / mm is shown. There is no need to be limited, N = 2-4 m / s, P
It is applied when 1 = 4 to 8 kgf / mm and P2 = 6 to 24 kgf / mm. Here, P2 / P1 = 1.5 to 5 is desirable.

【0031】又、本実施例においては、回転状態の丸棒
11の端面11aに丸棒12の端面12aを接触させる
前に(即ち摩擦を加える前に)丸棒11の端面11a近
傍及び丸棒12の端面12a近傍を予熱したので、摩擦
圧接時間を短縮できる。
Further, in this embodiment, before the end surface 11a of the round bar 11 in contact with the end surface 12a of the round bar 12 (that is, before friction is applied) and the vicinity of the end surface 11a of the round bar 11 and the round bar. Since the vicinity of the end face 12a of 12 is preheated, the friction welding time can be shortened.

【0032】[0032]

【発明の効果】本発明は、以下の如く効果を有する。The present invention has the following effects.

【0033】接合面にて集積する母材部よりも微細に破
砕されたセラミックス粒子又はウィスカーを軟化状態の
まま外部に流出でき、接合面と母材部との間のセラミッ
クス粒子又はウィスカーの体積割合の差が小さくなり、
接合面と母材部との間の引張強度及び剛性の差も小さく
なる。
The ceramic particles or whiskers crushed finer than the base material portion accumulated on the joint surface can flow out to the outside in a softened state, and the volume ratio of the ceramic particles or whiskers between the joint surface and the base material portion. The difference between
Differences in tensile strength and rigidity between the joint surface and the base material portion are also reduced.

【0034】又、接合面近傍の摩擦熱の影響を受けた軟
化部分を軟化状態のまま外部に流出でき、接合面から数
mm離れた部分(従来の軟化域に相当する部分)の硬度が
急激的に低下することはない。その結果、接合面から数
mm離れた部分の引張強度は母材部の引張強度と略等しく
なり、接合面から数mm離れた部分が破断し難くなる。
Further, the softened portion in the vicinity of the joint surface, which is affected by frictional heat, can flow out to the outside in the softened state,
The hardness of the part separated by mm (the part corresponding to the conventional softening region) does not drop sharply. As a result, a few
The tensile strength of the part separated by mm becomes substantially equal to the tensile strength of the base metal part, and the part separated by several mm from the joint surface becomes difficult to break.

【0035】[0035]

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例に係る摩擦圧接方法の説明図である。FIG. 1 is an explanatory diagram of a friction welding method according to this embodiment.

【図2】本実施例に係る摩擦圧接サイクルの説明図であ
る。
FIG. 2 is an explanatory diagram of a friction welding cycle according to this embodiment.

【図3】図3aは本実施例に係る摩擦圧接方法にて接合
した2つの丸棒の接合部の平面図,図3bは接合部の拡
大組織図である。
FIG. 3a is a plan view of a joint portion of two round bars joined by the friction welding method according to the present embodiment, and FIG. 3b is an enlarged structural diagram of the joint portion.

【図4】図4aは比較例に係る摩擦圧接方法にて接合し
た2つの丸棒の接合部の平面図,図4bは接合部の拡大
組織図である。
FIG. 4a is a plan view of a joint portion of two round bars joined by a friction welding method according to a comparative example, and FIG. 4b is an enlarged structural diagram of the joint portion.

【図5】本実施例及び比較例において丸棒の接合面から
長手方向に略10mm離れた部分までの範囲における硬度
分布及び炭化珪素粒子の体積割合を示すグラフである。
FIG. 5 is a graph showing a hardness distribution and a volume ratio of silicon carbide particles in a range from a joint surface of a round bar to a portion separated by about 10 mm in a longitudinal direction in this example and a comparative example.

【図6】図6aは従来技術に係る摩擦圧接方法による接
合面の拡大組織図,図6bは母材部の拡大組織図であ
る。
FIG. 6a is an enlarged structural diagram of a joint surface by a friction welding method according to a conventional technique, and FIG. 6b is an enlarged structural diagram of a base material portion.

【図7】従来技術において丸棒の接合面から長手方向に
略25mm離れた部分までの範囲における硬度分布を示す
グラフである。
FIG. 7 is a graph showing a hardness distribution in a range from a joint surface of a round bar to a portion approximately 25 mm apart in the longitudinal direction in the conventional technique.

【符号の説明】[Explanation of symbols]

11 丸棒(第1部材) 11a 端面(接触面) 12 丸棒(第2部材) 12a 端面(接触面) 14 接合部 15 アルミニウム合金 16 炭化珪素粒子(ウィスカー) 17 接合面 11 Round Bar (First Member) 11a End Surface (Contact Surface) 12 Round Bar (Second Member) 12a End Surface (Contact Surface) 14 Joining Part 15 Aluminum Alloy 16 Silicon Carbide Particles (Whiskers) 17 Joining Surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉 下 潤 二 三重県桑名郡長島町松ヶ島161の2 (72)発明者 江 上 登 愛知県春日井市藤山台8丁目16番地5 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junji Sugishita 162-1 Matsugashima, Nagashima-cho, Kuwana-gun, Mie Prefecture 2 (72) Noboru Egami 8-16 Fujiyamadai, Kasugai-shi, Aichi

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも何れか一方がアルミニウム合
金にセラミックス粒子又はウィスカーを複合したアルミ
ニウム合金複合材料からなる第1,第2部材を摩擦圧接
する方法であって、 前記第1部材を定速回転させながら所定の圧力で前記第
1,第2部材の内の何れか一方の部材を他方の部材に向
かって押圧して両部材の接触面で発生する摩擦熱により
前記両接触面を軟化させ、摩擦寄り代を3.5〜7mmに
した後に前記第1部材の回転速度を低下させ、前記第1
部材の減速時又は前記第1部材の停止時に前記第1部材
の定速回転時に前記一方の部材に加える圧力よりも大き
い圧力で前記一方の部材の接触面を前記他方の部材の接
触面に向かって押圧して全寄り代を10〜20mmにした
後に軟化状態にある前記両接触面を凝固させて接合した
ことを特徴とするアルミニウム合金複合材料の摩擦圧接
方法。
1. A method of friction-welding at least one of an aluminum alloy composite material in which ceramic particles or whiskers are composited to an aluminum alloy, wherein the first member is rotated at a constant speed. While pressing one of the first and second members toward the other member with a predetermined pressure, the frictional heat generated at the contact surfaces of the two members softens the two contact surfaces to cause friction. After setting the deviation margin to 3.5 to 7 mm, the rotation speed of the first member is reduced to
When decelerating the member or stopping the first member, the contact surface of the one member is directed toward the contact surface of the other member with a pressure larger than the pressure applied to the one member when the first member rotates at a constant speed. A method for friction welding of an aluminum alloy composite material, characterized in that both contact surfaces in a softened state are solidified and joined after being pressed by pressing to set the total deviation to 10 to 20 mm.
【請求項2】 前記第1部材の回転周速度を2〜3m/s
に設定し、又前記第1部材の減速時又は前記第1部材の
停止時に前記第1,第2部材の内の何れか一方の部材に
加える圧力を前記第1部材の定速回転時に前記一方の部
材に加える圧力の2〜5倍に設定したことを特徴とする
請求項1記載のアルミニウム合金複合材料の摩擦圧接方
法。
2. The peripheral speed of rotation of the first member is 2 to 3 m / s.
And the pressure applied to one of the first and second members when the first member is decelerating or when the first member is stopped is applied to the one member when the first member rotates at a constant speed. The method for friction welding of an aluminum alloy composite material according to claim 1, wherein the pressure applied to the member is set to 2 to 5 times.
【請求項3】 前記第1部材を回転させる前に前記両部
材の接触面近傍を予熱したことを特徴とする請求項1記
載のアルミニウム合金複合材料の摩擦圧接方法。
3. The friction welding method for an aluminum alloy composite material according to claim 1, wherein the vicinity of the contact surfaces of both members is preheated before rotating the first member.
JP15720393A 1993-06-28 1993-06-28 Friction press welding method for aluminum alloy composite material Pending JPH079170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15720393A JPH079170A (en) 1993-06-28 1993-06-28 Friction press welding method for aluminum alloy composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15720393A JPH079170A (en) 1993-06-28 1993-06-28 Friction press welding method for aluminum alloy composite material

Publications (1)

Publication Number Publication Date
JPH079170A true JPH079170A (en) 1995-01-13

Family

ID=15644463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15720393A Pending JPH079170A (en) 1993-06-28 1993-06-28 Friction press welding method for aluminum alloy composite material

Country Status (1)

Country Link
JP (1) JPH079170A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019190A (en) * 2012-07-12 2014-02-03 Hitachi Automotive Systems Kyushu Ltd Aluminum alloy propeller shaft and friction pressure welding method of the same
JP2014083564A (en) * 2012-10-23 2014-05-12 Ihi Corp Friction joining method, and joined structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019190A (en) * 2012-07-12 2014-02-03 Hitachi Automotive Systems Kyushu Ltd Aluminum alloy propeller shaft and friction pressure welding method of the same
US9364918B2 (en) 2012-07-12 2016-06-14 Hitachi Automotive Systems Kyushu, Ltd. Aluminum alloy propeller shaft and friction welding process thereof
JP2014083564A (en) * 2012-10-23 2014-05-12 Ihi Corp Friction joining method, and joined structure

Similar Documents

Publication Publication Date Title
US6227433B1 (en) Friction welded fastener process
US4462293A (en) Wear-resistant and shock-resistant tools and method of manufacture thereof
CN1646269B (en) Diamond blade
JP2008161942A (en) Friction stir welding of metal matrix composite members
JP4412608B2 (en) Joining method and joined body
US5161335A (en) Abrasive body
JPH079170A (en) Friction press welding method for aluminum alloy composite material
US20070280849A1 (en) Friction stir welding process and structure
CA2030712A1 (en) Process for manufacturing a slotted hole screen
JP3821656B2 (en) Friction welding method of amorphous alloy and joining member
CN111745287A (en) Friction-assisted local liquid phase diffusion welding method
JPH08141755A (en) Friction welding method for different kinds of metallic material
JP2679537B2 (en) Stress concentration relaxation method for welded joints
US4690523A (en) Monolithic reinforced eyeglass frame and friction welding method for manufacturing same
US3435510A (en) Bonding
JP2004001087A (en) Method for friction pressure welding of wheel carriage member and wheel carriage member using the same
Jackson Nanostructured grinding wheels for ultra-precision engineering applications
JP2005271016A (en) Friction welding method of steel tube and aluminum alloy hollow member
JPH06335786A (en) Manufacture of composite disk rotor
JP3395962B2 (en) Friction joining method for graphite cast iron
JP3053592B2 (en) Base metal for superabrasive wheels
WO2015147041A1 (en) Friction welding joined body and joining method therefor
JP2003053554A (en) Cemented carbide combined body and producing method therefor
JP2000061929A (en) Wire saw having tapered part in base metal
KR102402939B1 (en) Method for manufacturing backing plate, and backing plate for friction stir welding