JPH0791401B2 - Composite material - Google Patents

Composite material

Info

Publication number
JPH0791401B2
JPH0791401B2 JP63012037A JP1203788A JPH0791401B2 JP H0791401 B2 JPH0791401 B2 JP H0791401B2 JP 63012037 A JP63012037 A JP 63012037A JP 1203788 A JP1203788 A JP 1203788A JP H0791401 B2 JPH0791401 B2 JP H0791401B2
Authority
JP
Japan
Prior art keywords
axis
axes
composite material
dimensional
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63012037A
Other languages
Japanese (ja)
Other versions
JPH01188532A (en
Inventor
博志 八田
邦彦 村山
秀 山下
顕伸 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63012037A priority Critical patent/JPH0791401B2/en
Publication of JPH01188532A publication Critical patent/JPH01188532A/en
Publication of JPH0791401B2 publication Critical patent/JPH0791401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Woven Fabrics (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、複合材料としての弾性率・熱膨張率等の熱
機械特性に等方性から顕著な異方性までの間の任意の性
質を付与できる補強材を使用した複合材料に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to thermomechanical properties such as elastic modulus and coefficient of thermal expansion as a composite material having any property from isotropic to remarkable anisotropy. The present invention relates to a composite material using a reinforcing material capable of imparting.

〔従来の技術〕[Conventional technology]

繊維強化プラスチックに代表される複合材料は、主とし
て薄肉面材として用いられてきた。この場合の補強材と
しては、一方向ひきそろえ材や平面布をプリプレーグ化
したもので、肉厚が0.1mm程度の薄物が用いられ、上記
複合材料は、これらを積層した後含浸させた樹脂を硬化
させることにより構成される。このように積層した薄物
は配向角の分布を任意に変えることが可能なため、面内
特性に関しては自由度の大きい異方性複合材料を設計で
きる。
Composite materials represented by fiber reinforced plastics have been mainly used as thin wall materials. In this case, the reinforcing material is a unidirectional gathering material or a prefabricated flat cloth, and a thin material with a wall thickness of about 0.1 mm is used.The composite material is a resin impregnated after laminating these materials. It is composed by curing. Since the distribution of the orientation angle can be arbitrarily changed in the thin material laminated in this way, it is possible to design an anisotropic composite material having a large degree of freedom in terms of in-plane characteristics.

しかし、面外特性である面外方向の強度や層間強度に関
してはその補強効果が期待できず、制御不能であった。
複合材料が薄肉面材であれば、これら面外特性は実用上
無視しうるものであるが、肉厚部材や複雑形状物になる
と層間に生ずる応力や面外方向の応力が無視できなくな
るので、いくつかの層間あるいは面外方向の補強方法が
考えられてきた。その最も確実な補強方法が3次元織物
を利用する方法である。
However, regarding the out-of-plane characteristics such as the strength in the out-of-plane direction and the interlaminar strength, the reinforcing effect cannot be expected, and it is impossible to control.
If the composite material is a thin surface material, these out-of-plane characteristics are practically negligible, but if it becomes a thick member or a complicated shape, the stress generated between layers and the stress in the out-of-plane direction cannot be ignored, Several interlayer or out-of-plane reinforcement methods have been considered. The most reliable method is to use a three-dimensional fabric.

3次元織物に関しては、3軸3次元織物が、その製造方
法と織物組織を含めて特開昭61−245335号公報をはじめ
多数の文献に発表されている。その他の繊維配向のもの
では、一面内に0゜±60゜の3軸を配置したものに面外
の1軸を加えた4軸織物が公表されている。
Regarding the three-dimensional woven fabric, a triaxial three-dimensional woven fabric, including its manufacturing method and woven structure, has been disclosed in many documents including Japanese Patent Application Laid-Open No. 61-245335. For other fiber orientations, 4-axis woven fabrics have been published in which one axis out of the plane is added to one in which three axes of 0 ° ± 60 ° are arranged.

また、この他に構想段階のものではあるが、4,5,6,7,9,
10,11,13軸を有する3次元織物が提案されている。これ
らの織物の組織は、いずれも第5図の立方体の単位胞に
よって、その繊維配向を定義できるもので、3軸3次元
織物はX,Y,Z軸、4軸3次元織物はT,U,V,W軸、6軸3次
元織物はK,L,M,N,R,S軸、7軸3次元織物は上記3軸と
4軸を合わせたもの、9軸3次元織物は上記3軸と6軸
を合わせたもの、10軸3次元織物は上記4軸と6軸を合
わせたもの、11軸3次元織物は上記4軸と7軸と合わせ
たもの、13軸3次元織物は上記6軸と7軸を合わせたも
のがそれぞれ繊維配向角となっている。
Also, in addition to this, at the planning stage, 4,5,6,7,9,
Three-dimensional fabrics having 10, 11, 13 axes have been proposed. The texture of each of these fabrics can be defined by the unit cell of the cube shown in Fig. 5. The three-dimensional three-dimensional fabric has X, Y, Z axes, and the four-axis three-dimensional fabric has T, U. , V, W axes, 6-axis 3D fabrics are K, L, M, N, R, S axes, 7-axis 3D fabrics are the above 3 and 4 axes combined, 9-axis 3D fabrics are the 3 Axial and 6-axis combined, 10-axis 3D woven above 4 and 6-axis combined, 11-axis 3D woven above 4 and 7-axis combined, 13-axis 3D woven above The fiber orientation angle is obtained by combining the 6-axis and the 7-axis.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

現在までに実現されている3次元織物は、以上のように
3軸3次元織物に限定されているが、これを用いた複合
材料は、3軸のみで補強されているため、異方性が顕著
で、極端に弱い方向が残されたものにしかならなかっ
た。例えば、補強方向をx,y,zの3軸とすれば、これら
の軸を等分割する の方向には弾性率や強度が著しく低いことが明らかにさ
れている。
As described above, the three-dimensional woven fabrics that have been realized so far are limited to the triaxial three-dimensional woven fabrics. However, the composite material using this is reinforced only by three axes, so that the anisotropy is It was only the one that was marked and left extremely weak. For example, if the reinforcement direction is three axes of x, y, and z, these axes are equally divided. It has been clarified that the elastic modulus and the strength are remarkably low in the direction of.

また、すでに発表されている3軸以上の軸数を持つ3次
元織物に関しては、これらを補強材とする複合材料の特
性が明らかにされておらず、これらを利用するにして
も、どのような材料特性が得られるのか、また、どのよ
うな材料設計を行うのかについての指針は明らかにされ
ていなかった。
In addition, regarding the three-dimensional woven fabrics having three or more axes, which have already been announced, the characteristics of composite materials using these as reinforcement materials have not been clarified. No guidelines have been clarified as to whether material characteristics can be obtained and what kind of material design should be performed.

この発明は、上記のような問題点を解消するためになさ
れたもので、熱機械特性に等方性から一方向補強の顕著
な異方性までの間の任意の性質を有する複合材料を得る
ことを目的としている。
The present invention has been made to solve the above problems, and obtains a composite material having any of thermomechanical properties from isotropic to remarkable anisotropy of unidirectional reinforcement. Is intended.

〔課題を解決するための手段〕[Means for Solving the Problems]

この発明に係る複合材料は、立法体あるいは直方体の最
遠対角線で構成される4軸と立方体あるいは直方体の辺
で構成される3軸とを繊維配向角とする3次元7軸織物
を補強材として用いたものである。
The composite material according to the present invention uses a three-dimensional seven-axis woven fabric having a fiber orientation angle of four axes formed by the farthest diagonals of a cube or a rectangular parallelepiped and three axes formed by the sides of the cube or a rectangular parallelepiped as a reinforcing material. Used.

〔作用〕[Action]

上記織物の7軸全ての繊維含有率を等しくすれば、複合
材料の全ての方向の弾性率が実用上等方性と見なせる程
度に等しくなる。また、7軸のうちの任意の1軸を選
び、この繊維軸の繊維含有率のみを増加または減少させ
れば、弾性率が等方性から一方向補強の極端な異方性ま
での間の任意の性質を有する複合材料が得られる。この
任意の性質を有する複合材料の設計は、7軸のうち立方
体または直方体の最遠対角線より成る4軸の繊維配向角
を他の3つの辺より成る3軸のうちの1軸に対し対称に
変化させることによっても可能である。さらに、7軸の
うち前記4軸の繊維含有率を増減させれば、前記3軸の
うちの2軸で決まる複合材料の面内のせん断剛性の制御
が可能になる。
If the fiber contents of all seven axes of the woven fabric are made equal, the elastic modulus of the composite material in all directions becomes equal to a degree that can be regarded as isotropic in practical use. In addition, if any one of the seven axes is selected and only the fiber content of this fiber axis is increased or decreased, the elastic modulus is from isotropic to the extreme anisotropy of unidirectional reinforcement. A composite material having any properties is obtained. The design of a composite material having this arbitrary property is such that the fiber orientation angle of the four axes of the farthest diagonal of a cube or a rectangular parallelepiped among the seven axes is symmetrical with respect to one of the three axes of the other three sides. It can also be changed. Furthermore, by increasing or decreasing the fiber content of the four axes of the seven axes, it becomes possible to control the in-plane shear rigidity of the composite material determined by the two axes of the three axes.

なお、この発明で3次元7軸織物に注目したのは、弾性
率が等方化するからであるが、それだけが理由ではな
い。この織物は廃坑繊維の幾何学的配置から決まる最大
繊維含有率(繊維束を円柱と仮定して求める)が体積比
で56.4%と高く高度な複合材料特性が期待できることも
理由の一つである。このときの繊維含有率は最遠対角線
から成る4軸で1軸当たり7.56%、3辺から成る軸で1
軸当り8.73%である。
It should be noted that the reason why the three-dimensional seven-axis woven fabric is focused on in the present invention is that the elastic modulus is isotropic, but that is not the only reason. One of the reasons is that this woven fabric has a high fiber content ratio (determined assuming that the fiber bundle is a cylinder) determined by the geometrical arrangement of the abandoned mine fibers, which is as high as 56.4% by volume, and that high-level composite material properties can be expected. . The fiber content at this time is 7.56% per axis for the four axes consisting of the farthest diagonals and 1 for the axis consisting of three sides.
It is 8.73% per axis.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。この
実施例の複合材料は、エポキシ樹脂に、その補強材とし
て炭素繊維T300を素材とする3次元7軸織物を使用した
ものである。
An embodiment of the present invention will be described below with reference to the drawings. The composite material of this embodiment uses epoxy resin and a three-dimensional seven-axis woven fabric made of carbon fiber T300 as a reinforcing material.

第1図は、この3次元7軸織物の繊維配向軸を示したも
のであり、第3図は、第1図でZ軸に注目し、総繊維含
有率Vfを0.4(40%)に固定してZ軸の同含有率Vfに対
する相対充填率Nzを2/8,3/9,4/10と増加させたときの複
合材料のヤング率Eの評価結果を示したものである。第
3図の横軸θは観測角を示し、この定義は第2図に示し
てある。すなわち、θはZ軸を含みヤング率の最低値を
含む面内でZ軸から測定した角度である。
Fig. 1 shows the fiber orientation axis of this three-dimensional 7-axis woven fabric. Fig. 3 focuses on the Z axis in Fig. 1 and sets the total fiber content V f to 0.4 (40%). It shows the evaluation result of Young's modulus E of the composite material when the relative filling rate N z for the same content rate V f of Z axis is fixed and increased to 2/8, 3/9, 4/10. . The horizontal axis θ in FIG. 3 represents the observation angle, and this definition is shown in FIG. That is, θ is an angle measured from the Z axis in the plane including the Z axis and including the lowest Young's modulus.

第3図に示したようにZ軸(θ=0゜)の特性は大幅に
向上するが、X軸とY軸の両方向(θ=90゜)の特性の
減少はわずかである。しかも、この図には示せなかった
が、X,Y面内の等方性はほぼ維持されている。このよう
な特性を有するものを従来の複合材料で製作することは
困難である。
As shown in FIG. 3, the characteristics of the Z axis (θ = 0 °) are greatly improved, but the characteristics of both the X axis and the Y axis (θ = 90 °) are slightly reduced. Moreover, although not shown in this figure, the isotropic properties in the X and Y planes are almost maintained. It is difficult to fabricate those having such characteristics from conventional composite materials.

次に、複合材料のある1軸方向の特性を制御する場合
は、単位胞を構成する立方体の1軸を伸縮させて直方体
とし、T,U,V,Wの4軸繊維配向角を変化させることによ
っても得られる。ただし、この場合は立方体の伸縮を激
しく行うと繊維配向角に偏りが生じ、特性が低下する方
向が生じるので注意が必要である。
Next, when controlling the characteristic of the composite material in one uniaxial direction, the uniaxial axis of the cube forming the unit cell is expanded and contracted into a rectangular parallelepiped, and the four-axis fiber orientation angles of T, U, V, W are changed. It can also be obtained. However, in this case, it should be noted that when the cubic expansion and contraction is performed violently, the fiber orientation angle is biased and the characteristics may be deteriorated.

また、X,Y,Zの3軸のうち2軸の剛性を向上させる設計
も可能である。例えば、T,U,V,Wの各軸の繊維含有を変
化させることにより、X,Y,Zの3軸うち2軸で構成され
る面内のせん断弾性率を制御することが可能である。
It is also possible to design to improve the rigidity of two of the three X, Y and Z axes. For example, by changing the fiber content of each axis of T, U, V, W, it is possible to control the shear elastic modulus in the plane composed of two of the three axes of X, Y, Z. .

第1表は第4図から求まる3次元織物の最大繊維含有率
を示したものである。第3図は繊維配向軸数Nが3,4,6,
7,9の複合材料のヤング率Eを、第1表の最大繊維含有
率Vf-maxを用い て比較したもので、θはZ軸を含みヤング率の最低値を
含む面内でZ軸から測定した角度である。この図から3
次元7軸織物を用いた複合材料が他の織物を用いた複合
材料に比較して優れた特性を発揮することが判る。
Table 1 shows the maximum fiber content of the three-dimensional fabric obtained from FIG. Fig. 3 shows that the fiber orientation axis number N is 3, 4, 6,
Using the Young's modulus E of the composite materials of 7, 9 and the maximum fiber content V f-max in Table 1 Θ is an angle measured from the Z axis in the plane including the Z axis and including the minimum value of Young's modulus. 3 from this figure
It can be seen that the composite material using the dimensional 7-axis woven fabric exhibits superior properties as compared with the composite material using other woven fabrics.

なお、上記実施例では、できる限り各軸の繊維含有率を
そろえるような材料設計を行ったが、各軸の繊維含有率
をばらばらに行えば、より広範な材料設計が可能にな
る。
In the above-described embodiment, the material design is performed so that the fiber content of each axis is as uniform as possible, but if the fiber content of each axis is varied, a wider range of material design is possible.

〔発明の効果〕 以上のように、この発明によれば、補強材として3次元
7軸織物を使用するので、最適設計された7軸を繊維配
向角とすることができ、したがって、弾性率,強度等の
熱機械特性に等方性から顕著な異方性までの間の任意の
性質を有する複合材料を得ることできる。
[Effects of the Invention] As described above, according to the present invention, since the three-dimensional seven-axis woven fabric is used as the reinforcing material, the optimally designed seven-axis can be used as the fiber orientation angle. It is possible to obtain a composite material having thermomechanical properties such as strength having any property ranging from isotropic to remarkable anisotropy.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施例において補強材として使用す
る7軸3次元織物の繊維配向を模式的に示した説明図、
第2図は後述する第3図における観測角θの定義の説明
図、第3図は7軸3次元織物を用いた複合材料の各種設
計例におけるヤング率を示したグラフ、第4図は多軸3
次元織物を補強材とする各種複合材料のヤング率を軸数
をパラメータとして比較したグラフ、第5図は多軸3次
元織物の繊維配向を模式的に示した説明図である。 図において、X,Y,Zは立方体あるいは直方体の最遠対角
線で構成される軸、U,V,W,Tは立方体あるいは直方体の
辺で構成される軸である。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is an explanatory view schematically showing the fiber orientation of a 7-axis three-dimensional fabric used as a reinforcing material in the embodiment of the present invention,
FIG. 2 is an explanatory view of the definition of the observation angle θ in FIG. 3 described later, FIG. 3 is a graph showing Young's modulus in various design examples of composite materials using a 7-axis three-dimensional fabric, and FIG. Axis 3
A graph comparing Young's moduli of various composite materials using a three-dimensional woven fabric as a reinforcing material with the number of axes as a parameter, and FIG. 5 is an explanatory view schematically showing the fiber orientation of a multiaxial three-dimensional woven fabric. In the figure, X, Y, Z are axes formed by the farthest diagonals of a cube or a rectangular parallelepiped, and U, V, W, T are axes formed by the sides of the cube or a rectangular parallelepiped. In the drawings, the same reference numerals indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D03D 25/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location D03D 25/00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】立方体あるいは直方体の最遠対角線で構成
される4軸と立方体あるいは直方体の辺で構成される3
軸とを繊維配向角とする3次元7軸織物を補強材として
用いた複合材料。
1. A four-axis formed by the farthest diagonal of a cube or a rectangular parallelepiped and a side formed by a cube or a rectangular parallelepiped.
A composite material using as a reinforcing material a three-dimensional 7-axis woven fabric whose axis is the fiber orientation angle.
JP63012037A 1988-01-22 1988-01-22 Composite material Expired - Fee Related JPH0791401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63012037A JPH0791401B2 (en) 1988-01-22 1988-01-22 Composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63012037A JPH0791401B2 (en) 1988-01-22 1988-01-22 Composite material

Publications (2)

Publication Number Publication Date
JPH01188532A JPH01188532A (en) 1989-07-27
JPH0791401B2 true JPH0791401B2 (en) 1995-10-04

Family

ID=11794407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63012037A Expired - Fee Related JPH0791401B2 (en) 1988-01-22 1988-01-22 Composite material

Country Status (1)

Country Link
JP (1) JPH0791401B2 (en)

Also Published As

Publication number Publication date
JPH01188532A (en) 1989-07-27

Similar Documents

Publication Publication Date Title
Whitney et al. Modeling of 3-D angle-interlock textile structural composites
Zhang et al. A numerical micromechanics analysis of the mechanical properties of a plain weave composite
US9328511B2 (en) Method for manufacturing sandwich panel having core of truss structure
US8061391B2 (en) 3D composite fabric
Fujita et al. Tensile properties of carbon fiber triaxial woven fabric composites
CA1106735A (en) Three-dimensional, multi-directional structure
JP2012196967A (en) Thin ply laminate
US5993934A (en) Near zero CTE carbon fiber hybrid laminate
EP0352770B1 (en) Method for manufacturing laminate
US6790518B2 (en) Ductile hybrid structural fabric
BR0116543B1 (en) Reinforced article and manufacturing method.
JP2020525586A (en) Product containing reinforcing fiber and shape memory alloy wire and method of manufacturing the same
Yuan et al. A higher order finite element for laminated beams
WO2000064668A1 (en) Fiber-reinforced resin composite material having reduced coefficient of linear expansion
US5916682A (en) Carbon fiber reinforced composite material
Saravanos et al. An integrated methodology for optimizing the passive damping of composite structures
JPH0791401B2 (en) Composite material
US5263516A (en) Three-dimensional woven structure
JPH10168699A (en) Composite fiber material and its production
Salem Weight and cost multi-objective optimization of hybrid composite sandwich structures
JP2000245880A (en) Golf club shaft
JP2551287B2 (en) Multiaxially reinforced three-dimensional molding substrate for high energy absorption and high energy absorption composite material using the same
Dickinson et al. Impact resistance and compressional properties of three-dimensional woven carbon/epoxy composites
US20140271077A1 (en) Composite material structures configured for alternating compressive and tensile loading
JPH01204735A (en) Fiber reinforced composite material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees