JPH07913Y2 - Infiltration detection fiber - Google Patents
Infiltration detection fiberInfo
- Publication number
- JPH07913Y2 JPH07913Y2 JP1989023841U JP2384189U JPH07913Y2 JP H07913 Y2 JPH07913 Y2 JP H07913Y2 JP 1989023841 U JP1989023841 U JP 1989023841U JP 2384189 U JP2384189 U JP 2384189U JP H07913 Y2 JPH07913 Y2 JP H07913Y2
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- water
- strength member
- optical
- core wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Examining Or Testing Airtightness (AREA)
Description
【考案の詳細な説明】 〈産業上の利用分野〉 本考案は、水が浸入して来たことを検知し得る光ファイ
バに関し、特に浸水前の通常の状態におけう伝送損失の
増大を抑制したものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to an optical fiber capable of detecting the entry of water, and particularly suppresses an increase in transmission loss in a normal state before water immersion. It was done.
〈従来の技術〉 光ファイバを用いた光伝送システムは、大容量化、長距
離化、高信頼化に伴い、陸上中継伝送ばかりか海底中継
伝送にも使用されるに至っている。<Prior Art> Optical transmission systems using optical fibers have come to be used not only for land relay transmission but also for submarine relay transmission due to the large capacity, long distance, and high reliability.
このような光伝送システムを海底中継伝送に応用する場
合に特に考慮しなければならないことは、光ケーブルが
水に対して種々の点で脆弱なため、ケーブル自体の構造
に信頼性の高い耐水能力を持たせる必要があることであ
る。つまり、異種金属が存在する光ケーブル内に浸水が
起こると、電気分解により水素ガスが発生して光ファイ
バ内に拡散し、吸収損失の増加を招いたり、或いはこの
水素ガスが光ファイバと化学反応して水酸基が生成さ
れ、吸収損失が増大する他、光ファイバの表面の欠陥成
長が速められ、光ファイバの寿命が短くなると共に信頼
性も低下する等の弊害を有するためである。When applying such an optical transmission system to undersea relay transmission, special consideration must be given to the fact that the optical cable is vulnerable to water in various points, and therefore the structure of the cable itself must have a reliable water resistance. It is necessary to have it. In other words, when water is immersed in an optical cable containing dissimilar metals, hydrogen gas is generated by electrolysis and diffuses into the optical fiber, causing an increase in absorption loss, or this hydrogen gas chemically reacts with the optical fiber. This is because hydroxyl groups are generated, absorption loss is increased, defect growth on the surface of the optical fiber is accelerated, the life of the optical fiber is shortened, and reliability is reduced.
従って、光ケーブルには可能な限り水が浸入しないよう
に工夫する必要があるが、逆に光ケーブルが破損して水
が浸入した場合には、この浸水箇所を検知して光ケーブ
ルの補修を直ちに行えるようにしておくことが望まし
い。Therefore, it is necessary to devise so that water does not enter the optical cable as much as possible, but on the contrary, if the optical cable is damaged and water invades, it is possible to detect this inundation location and immediately repair the optical cable. It is desirable to keep it.
従来、光ケーブル内の浸水を検知するものとしては、ガ
ス保守システムを利用したり、特開昭62-28703号公報や
1987年International Wire and Cable Symposium Prode
edingの第284ページから第290ページにかけて掲載され
た浸水検知ファイバ等が知られている。Conventionally, a gas maintenance system has been used as a device for detecting water ingress in an optical cable, or JP-A-62-28703 or
1987 International Wire and Cable Symposium Prode
The water detection fiber and the like, which are published on pages 284 to 290 of eding, are known.
前述したガス保守システムでは、光ケーブル内に形成さ
れた微小隙間に乾燥空気を圧送し、光ケーブルが破損し
た場合の乾燥空気の漏出を検出することで、或る区間で
の光ケーブルの破損状態を把握するようにしている。In the above-mentioned gas maintenance system, the dry air is pressure-fed to the minute gap formed in the optical cable to detect the leak of the dry air when the optical cable is damaged, thereby grasping the damaged state of the optical cable in a certain section. I am trying.
又、特開昭62-28703号公報に開示された浸水検知ファイ
バは、その概略構造を表す第3図に示すように、光ファ
イバ心線1に水との接触で長さ方向に収縮し得る線状体
2を巻回したものであり、この線状体2が水と接触して
その長さ方向に自己収縮する結果、光ファイバ心線1に
張力が加わって伝送損失を増大させ、この伝送損失の増
大を光ケーブル3の信号光の出射端側に設けられた図示
しない後方散乱光測定器にて測定し、浸水箇所を検知す
るようにしている。Further, the water immersion detecting fiber disclosed in Japanese Patent Laid-Open No. 62-28703 can be contracted in the lengthwise direction by contacting the optical fiber core wire 1 with water as shown in FIG. The linear body 2 is wound, and the linear body 2 is brought into contact with water and self-contracts in the lengthwise direction. As a result, tension is applied to the optical fiber core wire 1 to increase transmission loss. The increase of the transmission loss is measured by a backscattered light measuring device (not shown) provided on the side of the optical cable 3 where the signal light is emitted, so that the flooded portion is detected.
一方、1987年International Wire and Cable Symposium
Prodeedingの第284ページから第290ページにかけて掲
載された浸水検知ファイバは、その概略構造を表す第4
図に示すように、抗張力体4を被覆する吸水膨張層5の
外周に光ファイバ心線6を螺旋状に巻き付け、更にこの
上からアラミド繊維7を光ファイバ心線6の巻き付けピ
ッチとは異なるピッチで螺旋状に重ね巻きしたものであ
る。そして、吸水膨張層5の吸水膨張により光ファイバ
心線6がアラミド繊維7との交差部分8で圧縮応力を受
け、これにより光ファイバ心線6の伝送損失を増大さ
せ、これを前述の浸水検知ファイバと同様に光ケーブル
9の信号光の出射端側に設けられた図示しない後方散乱
光測定器にて測定し、浸水箇所を検知するようにしてい
る。Meanwhile, 1987 International Wire and Cable Symposium
The infiltration detection fiber, published from page 284 to page 290 of Prodeeding, shows the schematic structure of the fourth part.
As shown in the figure, the optical fiber core wire 6 is spirally wound around the outer circumference of the water absorption expansion layer 5 covering the tensile strength member 4, and the aramid fiber 7 is further arranged on the outer circumference of the optical fiber core wire 6 at a pitch different from the winding pitch of the optical fiber core wire 6. It is a spirally wound layer. Then, due to the water absorption expansion of the water absorption expansion layer 5, the optical fiber core wire 6 is subjected to compressive stress at the intersection 8 with the aramid fiber 7, thereby increasing the transmission loss of the optical fiber core wire 6, and the above-mentioned water immersion detection. Similar to the fiber, the backscattered light measuring device (not shown) provided on the output end side of the signal light of the optical cable 9 is used to detect and detect the flooded portion.
〈考案が解決しようとする課題〉 ガス保守システムにて光ケーブルの浸水を判断する方法
では、監視可能な区間が20km程度しかなく、又、乾燥空
気を圧送するための設備を一定区間毎に設ける必要があ
るため、設備コスト等が嵩む欠点を有する。<Problems to be solved by the invention> In the method of judging the inundation of the optical cable by the gas maintenance system, there is only about 20 km of observable section, and it is necessary to install equipment for pumping dry air at certain intervals. Therefore, there is a drawback that equipment cost and the like increase.
又、第3図に示す従来の浸水検知ファイバでは線状体2
の長さ方向の収縮によって光ファイバ心線1に張力が付
与されるように、線状体2を光ファイバ心線1に対して
比較的高張力で巻回する必要がある。同様に、第4図に
示す従来の浸水検知ファイバでは、吸水膨張層5が軟質
で柔かな性質を有するため、光ファイバ心線6をこの吸
水膨張層5の外周面に押え付ける必要上、アラミド繊維
7を重ね巻きすることで実際には交差部分8で光ファイ
バ心線6が押し曲げられた状態となる。このため、光フ
ァイバ心線1,6には常時微小曲げ応力がそれぞれ作用
し、これに基づく伝送損失を常に包含する不具合があっ
た。In addition, in the conventional water detection fiber shown in FIG.
It is necessary to wind the linear body 2 around the optical fiber core wire 1 with a relatively high tension so that the optical fiber core wire 1 is tensioned by the contraction in the length direction. Similarly, in the conventional water detection fiber shown in FIG. 4, since the water absorption expansion layer 5 has a soft and soft property, it is necessary to press the optical fiber core wire 6 to the outer peripheral surface of the water absorption expansion layer 5, and thus the aramid By overlapping and winding the fiber 7, the optical fiber core wire 6 is actually pushed and bent at the intersection 8. For this reason, the optical fiber cores 1 and 6 are always subjected to minute bending stresses, respectively, and there is a problem that transmission loss based on these is always included.
〈課題を解決するための手段〉 本考案による浸水検知ファイバは、光ファイバと、この
光ファイバの周囲に巻回される抗張力体と、この抗張力
体と前記光ファイバとに一体的に被覆された水と接触し
て膨潤を起こす水反応体を具えたものである。<Means for Solving the Problems> The water immersion detection fiber according to the present invention comprises an optical fiber, a strength member wound around the optical fiber, and the strength member and the optical fiber which are integrally coated. It is provided with a water reaction product which causes swelling upon contact with water.
ここで、抗張力体としては引張り強度等の物理的性質が
優れ且つ化学的にも安定な線材、例えばアラミド繊維や
ナイロン編組等を挙げることができる。又、水反応体を
構成する材料としては、水と接触して体積変化等の形状
変化をもたらすもの、例えば住友化学工業株式会社製の
スミカゲルSP520や製鉄化学工業株式会社製のアクアキ
ープ10SH等の粉粒体をウレタンアクリレート系紫外線硬
化樹脂やシリコン樹脂、或いは有機溶媒に溶かしたスチ
レンとブタジエンのブロックポリマー等のバインダで結
合させたもの等を挙げることができる。Here, examples of the tensile strength member include a wire material having excellent physical properties such as tensile strength and being chemically stable, such as aramid fiber or nylon braid. Further, as the material constituting the water reactant, those which bring about a shape change such as volume change upon contact with water, such as Sumika Gel SP520 manufactured by Sumitomo Chemical Co., Ltd. or Aqua Keep 10SH manufactured by Iron and Steel Chemical Co., Ltd. Examples thereof include those obtained by binding the powder and granules with a urethane acrylate-based ultraviolet curable resin, a silicone resin, or a binder such as a block polymer of styrene and butadiene dissolved in an organic solvent.
〈作用〉 光ファイバの周囲には水反応体が一体的に被覆されてい
るため、この水反応体が浸水により半径方向及び長手方
向に膨潤すると、光ファイバもそれに伴い長手方向に伸
張することになる。ここで、抗張力体は、光ファイバに
比べて抗張力が大きいため、それほど長手方向に延びな
い、その為、抗張力体の周囲に光ファイバが螺旋状に巻
き付いた状態となる。その結果、光ファイバの捩じれに
よる伝送損失の増大を検出することにより、浸水があっ
たことを判定する。尚、抗張力体と水反応体とは一体的
に被覆されているため、抗張力体と水反応体との境界部
分で水反応体の膨潤に伴う相対的な位置ずれは起こらな
い。<Function> Since the water reactant is integrally coated around the optical fiber, when the water reactant swells in the radial direction and the longitudinal direction due to the inundation, the optical fiber also expands in the longitudinal direction accordingly. Become. Here, since the tensile strength member has a greater tensile strength than the optical fiber, the tensile strength member does not extend so much in the longitudinal direction. Therefore, the optical fiber is helically wound around the tensile strength member. As a result, it is determined that there is water infiltration by detecting an increase in transmission loss due to the twist of the optical fiber. Since the strength member and the water reactant are integrally coated, relative displacement does not occur at the boundary portion between the strength member and the water reactant due to swelling of the water reactant.
〈実施例〉 本考案による浸水検知ファイバの一実施例の概略構造を
表す第1図に示すように、外径が125μmの単一モード
伝送用光ファイバ11は、ウレタンアクリレート系紫外線
硬化樹脂の被覆層12で覆われて外径が0,4mmの光ファイ
バ心線13を構成している。この光ファイバ心線13の周囲
には、2000デニールのアラミド繊維が抗張力体14として
16.7mmの曲率半径で11.5mmのピッチとなるように螺旋状
に緩く巻回されており、ここに水反応体15が被覆され、
全体として0.8mmの外径寸法を有する光ケーブル16とし
ている。水反応体15は本実施例では低ヤング率(例えば
5kg/mm2)のウレタンアクリレート系紫外線硬化樹脂100
重量部に対し、住友化学工業株式会社製スミカゲルSP52
0を25重量部混練したものであり、この水反応体15内に
光ファイバ心線13及び抗張力体14が一体的に埋設された
状態となっている。<Embodiment> As shown in FIG. 1 showing a schematic structure of an embodiment of the water immersion detection fiber according to the present invention, an optical fiber 11 for single mode transmission having an outer diameter of 125 μm is coated with a urethane acrylate-based UV curable resin. It is covered with a layer 12 to form an optical fiber core wire 13 having an outer diameter of 0.4 mm. Around the optical fiber core 13, 2,000 denier aramid fiber is used as the strength member 14.
It is spirally loosely wound so that the radius of curvature is 16.7 mm and the pitch is 11.5 mm, and the water reactant 15 is coated thereon,
The optical cable 16 has an outer diameter of 0.8 mm as a whole. The water reactant 15 has a low Young's modulus (for example,
5kg / mm 2 ) urethane acrylate UV curable resin 100
For parts by weight, Sumika Gel SP52 manufactured by Sumitomo Chemical Co., Ltd.
25 parts by weight of 0 is kneaded, and the optical fiber core wire 13 and the strength member 14 are integrally embedded in the water reaction body 15.
この光ケーブル16の両端部に50gの張力を負荷した状態
で水中1m以下に保持した所、水反応体15が水を吸って膨
潤し、光ファイバ状に曲げられ、1.55μmの波長の光に
対して0.3dBの伝送損失が観測された。なお、この光ケ
ーブル16を構成する光ファイバ心線13自体の1.55μmの
波長の光に対する伝送損失は0.20dB/kmであり、又、乾
燥空気中での1.55μmの波長の光に対するこの光ケーブ
ル16の伝送損失は0.21dB/kmであった。When both ends of this optical cable 16 are kept under 1 m in water with a tension of 50 g, the water reactant 15 absorbs water and swells, is bent into an optical fiber, and has a wavelength of 1.55 μm. A transmission loss of 0.3 dB was observed. The transmission loss of the optical fiber core wire 13 itself constituting the optical cable 16 for light having a wavelength of 1.55 μm is 0.20 dB / km, and the transmission loss of the optical cable 16 for light having a wavelength of 1.55 μm in dry air. The transmission loss was 0.21 dB / km.
本実施例では、抗張力体14が光ファイバ心線13の外周面
にできるだけゆるく光ファイバに強い力が加わらないよ
うに、抗張力体14を水反応体15で完全に囲むようにした
が、光ファイバ心線13に微小曲げ応力が負荷しないよう
に、光ファイバ心線13の外周面に軽く接触する程度で抗
張力体14を巻回しても何ら問題はなく、いわゆるSZ巻き
を行うことも有効である。なお、図中で先の実施例と同
一機能の部分には、これと同一の符号を記してある。In the present embodiment, the strength member 14 is completely surrounded by the water reaction material 15 so that the strength of the strength member 14 is as loose as possible on the outer peripheral surface of the optical fiber core 13 and a strong force is not applied to the optical fiber. There is no problem in winding the tensile strength member 14 to such an extent that it is lightly contacted with the outer peripheral surface of the optical fiber core wire 13 so as not to apply a minute bending stress to the core wire 13, and so-called SZ winding is also effective. . In the figure, parts having the same functions as those of the previous embodiment are designated by the same reference numerals.
〈考案の効果〉 本考案の浸水検知ファイバによると、光ファイバの周囲
に巻回される抗張力体を水反応体と一体化し、この水反
応体を光ファイバの外周面に接合したので、浸水前に抗
張力体で光ファイバに微小曲げ応力が負荷せず、浸水前
における伝送損失の増加を未然に防ぐことができる。<Effect of the device> According to the water immersion detection fiber of the present invention, the tensile strength member wound around the optical fiber is integrated with the water reaction product, and this water reaction product is joined to the outer peripheral surface of the optical fiber. Since the tensile strength body does not apply a small bending stress to the optical fiber, it is possible to prevent an increase in transmission loss before water immersion.
第1図は本考案による浸水検知ファイバの一実施例の一
部を透視した斜視図、第2図及び第3図は従来の浸水検
知ファイバの一例をそれぞれ示す斜視図である。 又、図中の符号で11は光ファイバ、12は被覆層、13は光
ファイバ心線、14は抗張力体、15は水反応体、16は光ケ
ーブルである。FIG. 1 is a perspective view showing a part of an embodiment of a water immersion detection fiber according to the present invention, and FIGS. 2 and 3 are perspective views showing an example of a conventional water immersion detection fiber. In the figure, reference numeral 11 is an optical fiber, 12 is a coating layer, 13 is an optical fiber core wire, 14 is a strength member, 15 is a water reaction material, and 16 is an optical cable.
Claims (1)
回される抗張力体と、この抗張力体と前記光ファイバと
に一体的に被覆された水と接触して膨潤を起こす水反応
体とを具えた浸水検知ファイバ。1. An optical fiber, a tensile strength member wound around the optical fiber, and a water reaction material which swells in contact with water integrally coated on the tensile strength member and the optical fiber. Infiltration detection fiber with.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1989023841U JPH07913Y2 (en) | 1989-03-03 | 1989-03-03 | Infiltration detection fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1989023841U JPH07913Y2 (en) | 1989-03-03 | 1989-03-03 | Infiltration detection fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02115143U JPH02115143U (en) | 1990-09-14 |
JPH07913Y2 true JPH07913Y2 (en) | 1995-01-11 |
Family
ID=31243174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1989023841U Expired - Lifetime JPH07913Y2 (en) | 1989-03-03 | 1989-03-03 | Infiltration detection fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07913Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0607572D0 (en) * | 2006-04-18 | 2006-05-24 | Dunlop Oil & Marine Ltd | Leak detector |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63231402A (en) * | 1987-03-20 | 1988-09-27 | Fujikura Ltd | Sensor for detecting infiltration of water in optical fiber |
-
1989
- 1989-03-03 JP JP1989023841U patent/JPH07913Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02115143U (en) | 1990-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4515435A (en) | Thermally stabilized fiber optic cable | |
US4634217A (en) | High tensile wire provided with light guide sensor | |
EP0157610A2 (en) | Sheated optical fibres | |
US6728431B2 (en) | Fiber optic curvature sensor for towed hydrophone arrays | |
US5915059A (en) | Optical fiber cable and a method for manufacturing the same | |
EP1840609A1 (en) | Optical fiber coil and production method therefor | |
JPH07913Y2 (en) | Infiltration detection fiber | |
EP1637786A1 (en) | Device for monitoring and signalling leaks | |
WO2009034667A1 (en) | Loose tube optical fiber cable | |
JP3329976B2 (en) | Oil leak detection system | |
JPH05322690A (en) | Optical fiber for detecting leaked liquid | |
WO2009034666A1 (en) | Water absorptive optical fiber and method for manufacturing the same | |
JPH07105749A (en) | Optical fiber compound cable | |
KR100301775B1 (en) | Optical sensor for measuring deformation of institution | |
JP2001281077A (en) | Optical fiber strain sensor | |
KR100339978B1 (en) | Optical sensor for measuring deformation of institution | |
JPH07225173A (en) | Housing structure of liquid-leak detection sensor using optical fiber | |
JPH0643056A (en) | Optical fiber cable for pressure sensor | |
KR100301776B1 (en) | Ribbon type optical sensor for measuring deformation of institution | |
JPH0926370A (en) | Pressure sensor | |
JP2556573B2 (en) | Infiltration detector | |
JPH10199345A (en) | Optical fiber element | |
KR20010019197A (en) | Ribbon optical cable | |
JP2554693B2 (en) | Optical fiber flood detection sensor | |
JPH011934A (en) | Oil leak detection sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |