JPH0791399B2 - Method for producing film made of polyvinylidene fluoride or vinylidene fluoride copolymer - Google Patents

Method for producing film made of polyvinylidene fluoride or vinylidene fluoride copolymer

Info

Publication number
JPH0791399B2
JPH0791399B2 JP62076144A JP7614487A JPH0791399B2 JP H0791399 B2 JPH0791399 B2 JP H0791399B2 JP 62076144 A JP62076144 A JP 62076144A JP 7614487 A JP7614487 A JP 7614487A JP H0791399 B2 JPH0791399 B2 JP H0791399B2
Authority
JP
Japan
Prior art keywords
film
pvdf
stretched
thermoplastic resin
vinylidene fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62076144A
Other languages
Japanese (ja)
Other versions
JPS63243143A (en
Inventor
克巳 奥山
弘康 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP62076144A priority Critical patent/JPH0791399B2/en
Publication of JPS63243143A publication Critical patent/JPS63243143A/en
Publication of JPH0791399B2 publication Critical patent/JPH0791399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子材料として圧電性、焦電性に優れ、適切な
滑り性を有するポリ弗化ビニリデンもしくは弗化ビニリ
デン共重合体からなるフイルムの製造法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a film made of polyvinylidene fluoride or a vinylidene fluoride copolymer having excellent piezoelectricity, pyroelectricity, and proper sliding property as an electronic material. It relates to the manufacturing method.

(従来の技術) ポリ弗化ビニリデンもしくは弗化ビニリデン共重合体
(以下単にPVDFと称す)は比誘電率が大であり、またPV
DFを延伸してβ型結晶としたものは大なる圧電性、焦電
性に優れるのでコンデンサー素子、圧電素子および焦電
素子とし有望であり、コンデンサー素子としてはフイル
ム厚みに反比例して電気容量が増加すること、圧電素子
としてはより高い周波数の超音波への応用が可能になる
こと、焦電素子としてはフイルム厚みを薄くすることに
より感度、応答速度および分解能の向上が期待できるこ
となどの理由によりPVDF延伸フイルムは広く要望されて
いる。
(Prior Art) Polyvinylidene fluoride or a vinylidene fluoride copolymer (hereinafter simply referred to as PVDF) has a large relative dielectric constant and
A β-type crystal obtained by stretching DF is excellent in piezoelectricity and pyroelectricity, so it is promising as a capacitor element, a piezoelectric element, and a pyroelectric element. For the reasons such as the increase, the piezoelectric element can be applied to higher frequency ultrasonic waves, and the pyroelectric element can be expected to improve sensitivity, response speed and resolution by reducing the film thickness. PVDF stretched film is widely desired.

このような要望に対し、特公昭60−6220号公報におい
て、ポリプロピレン樹脂フイルム等とPVDFフイルムとの
積層フイルムを延伸したのちポリプロピレン樹脂フイル
ムを剥離してPVDF延伸極薄フイルムを得ることが開示さ
れている。
In response to such a demand, Japanese Patent Publication No. 60-6220 discloses that a laminated film of a polypropylene resin film or the like and a PVDF film is stretched, and then the polypropylene resin film is peeled to obtain a PVDF stretched ultrathin film. There is.

しかしながら、この方法で得たPVDF延伸極薄フイルムの
表面は非常に平滑なため、たとえば金属蒸着フイルムコ
ンデンサー素子を製造する場合に、金属蒸着工程、細幅
スリット工程、コンデンサー素子への巻回工程等におい
て、フイルムとフイルムとの間、フイルムと接触する部
材との間における滑りがよすぎるために巻取りが困難と
なり、加工工程でしわが発生したり、あるいはフイルム
が切断してしまう等の不都合が発生し、コンデンサー素
子製造上歩留りが大幅に低下してしまう。
However, since the surface of the PVDF stretched ultrathin film obtained by this method is very smooth, for example, when manufacturing a metal vapor deposition film capacitor element, a metal vapor deposition step, a narrow slit step, a step of winding around the capacitor element, etc. In the above, since there is too much slip between the film and the member in contact with the film, winding becomes difficult, and wrinkles occur in the processing step, or the film is cut. Occurs, and the production yield of the capacitor element is significantly reduced.

一般にフイルムに適切な滑り性を付与する方法として
は、フイルム原料樹脂に無機充填剤を添加してフイルム
表面に適当な凹凸を付与せしめる方法、サンドプラスト
等でフイルムの表面に凹凸を付与させる方法がある。
In general, as a method for imparting appropriate slipperiness to the film, a method of adding an inorganic filler to the film raw material resin to impart appropriate irregularities to the film surface, a method of imparting irregularities to the surface of the film with sandplast, etc. is there.

しかしながら前者の方法は、無機充填剤に含まれる微量
な金属類、分散剤が電気特性に好ましくない影響を与
え、またコンデンサー素子用フイルムとする場合には、
コンデンサーに巻回する工程等においてフイルムの縦方
向に作用する引張力等によってフイルムが伸び、しわが
発生し、さらに無機充填剤の回りにポイドが発生し、フ
イルムの絶縁破壊電圧を低下せしめる原因となる。
However, the former method is such that a trace amount of metals and dispersants contained in the inorganic filler adversely affects the electrical characteristics, and when a film for a capacitor element is used,
When the film is wound around a capacitor, the film stretches due to tensile force acting in the longitudinal direction of the film, causing wrinkles, and voids around the inorganic filler, which may cause the breakdown voltage of the film to decrease. Become.

また後者の方法では、フイルム表面に多量の異物等が付
着するために洗滌等が必要となり、作業性に劣る。
In the latter method, a large amount of foreign matter adheres to the surface of the film, which requires washing and the like, resulting in poor workability.

これに対して特開昭61−123520号公報で開示されるよう
に、無機充填剤を含有する樹脂からなるフイルム状溶融
樹脂を所要原料樹脂からなるフイルム状溶融樹脂に積層
し、延伸して積層フイルムとし、一方の無機充填剤によ
り凹凸形成されたフイルム部を剥離し、他方のフイルム
表面に凹凸を転写させて、適切な滑り性を有するフイル
ムの製造方法が提案されている。
On the other hand, as disclosed in JP-A-61-123520, a film-like molten resin made of a resin containing an inorganic filler is laminated on a film-like molten resin made of a required raw material resin, and stretched and laminated. There has been proposed a method for producing a film having appropriate slidability by forming a film, peeling off a film portion having unevenness formed by one inorganic filler, and transferring the unevenness on the surface of the other film.

この方法によって得られたフイルムは、従来の無機充填
剤を添加する方法、サンドプラスト等で表面に凹凸を付
与する方法に比較して絶縁破壊電圧等において優れてい
るが、フイルムの厚さが数μ以下のように極薄くなれば
なる程、絶縁破壊電圧が大幅に低下するということが判
明した。
The film obtained by this method is superior in dielectric breakdown voltage and the like as compared with the conventional method of adding an inorganic filler and the method of imparting unevenness to the surface with sand plast etc., but the thickness of the film is several. It has been found that the dielectric breakdown voltage is significantly reduced as the thickness becomes extremely thin such as μ or less.

(発明が解決しようとする問題点) フイルムに適切な滑り性を付与する従来手段において
は、電子材料としての性能上、不都合を来たし、特に絶
縁破壊電圧において優れた特性を有せしめながら数μ以
下という極薄フイルムを得ることができなかったという
問題点があった。
(Problems to be solved by the invention) In the conventional means for imparting appropriate slipperiness to the film, the performance as an electronic material is inconvenienced, and in particular, it has excellent characteristics in dielectric breakdown voltage, and is several μ or less. There was a problem that it was not possible to obtain an ultra-thin film.

(問題点を解決するための手段) 本発明は電子材料として好適であり、かつ極薄フイルム
となし得、適切な滑り性を有するPVDFフイルムを提供す
るものであって、ポリ弗化ビニリデンもしくは弗化ビニ
リデン共重合体からなる一方のフイルム状溶融樹脂に、
それぞれ結晶化温度を異にするとともに、マトリック
ス、ドメインを形成する2種以上の熱可塑性樹脂の混合
物からなる他方のフイルム状溶融樹脂を密着積層状に押
出し、冷却固化したのち延伸させたあと、他方のフイル
ム状溶融樹脂からなるフイルム部分を剥離させてなるポ
リ弗化ビニリデンもしくは弗化ビニリデン共重合体から
なるフイルムの製造法である。
(Means for Solving the Problems) The present invention provides a PVDF film which is suitable as an electronic material and can be formed into an ultrathin film, and has suitable slipperiness, and is made of polyvinylidene fluoride or fluorine. One film-like molten resin made of vinylidene chloride copolymer,
The other film-like molten resin composed of a mixture of two or more kinds of thermoplastic resins forming a matrix and a domain is extruded into a close-contact layered form while being crystallized at different temperatures, cooled and solidified, and then stretched. Is a method for producing a film made of a polyvinylidene fluoride or a vinylidene fluoride copolymer obtained by peeling off a film portion made of a film-like molten resin.

(実施例) 本発明法の実施例を図面に示す装置の一例を参照して説
明する。
(Example) An example of the method of the present invention will be described with reference to an example of an apparatus shown in the drawings.

第1図および第2図に示すように、ポリ弗化ビニリデン
もしくは弗化ビニリデン共重合体を押出機1で可塑化混
練し、それぞれ結晶化温度を異にするポリオレフィン系
樹脂の混合物を押出機2で可塑化混練し、押出機1,2に
装着した三層構造のマルチマニホルド型のTダイ3よ
り、押出機1から供給された一方のフイルム状溶融樹脂
4と、押出機2から供給された他方のフイルム状溶融樹
脂5とを密着積層状に押出し、この密着積層物6を冷却
ロール7を回して冷却固化したのち、延伸ロール8,8,
8′,8′によって一軸延伸し、次いで熱処理したのち、
ポリオレフィン系樹脂からなる他方のフイルム状溶融樹
脂5よりなるフイルム部分9,9を剥離させて一方のフイ
ルム状溶融樹脂4、即ち、ポリ弗化ビニリデンもしくは
弗化ビニリデン共重合体からなり、電気材料として好適
な絶縁破壊電圧と、動摩擦係数とを有し厚さ数μのフイ
ルム10を得ることができた。
As shown in FIGS. 1 and 2, a polyvinylidene fluoride or a vinylidene fluoride copolymer is plasticized and kneaded in an extruder 1, and a mixture of polyolefin resins having different crystallization temperatures is used in the extruder 2. The film-like molten resin 4 supplied from the extruder 1 and the film-shaped molten resin 4 supplied from the extruder 1 were supplied from the three-layer structure multi-manifold type T die 3 which was plasticized and kneaded in The other film-like molten resin 5 is extruded into a contact layered form, and the contact layered product 6 is cooled and solidified by rotating a cooling roll 7 and then drawn rolls 8,8,
After being uniaxially stretched by 8 ', 8'and then heat treated,
By peeling off the film portions 9, 9 made of the other film-shaped molten resin 5 made of a polyolefin resin, one film-shaped molten resin 4, that is, made of polyvinylidene fluoride or vinylidene fluoride copolymer, is used as an electric material. It was possible to obtain a film 10 having a suitable dielectric breakdown voltage and a dynamic friction coefficient and having a thickness of several μ.

本発明におけるポリ弗化ビニリデンとしては、弗化ビニ
リデンの単独重合体若しくは弗化ビニリデン単量体と、
弗化ビニリデンと共重合し得る他の単量体、例えば弗化
ビニル、3弗化エチレン、4弗化エチレン、弗化塩化ビ
ニリデン、3弗化塩化エチレン、6弗化プロピレン等と
の共重合体を含むものであり、共重合体中の弗化ビニリ
デンは70モル%以上が好ましい。
As the polyvinylidene fluoride in the present invention, a vinylidene fluoride homopolymer or a vinylidene fluoride monomer,
Copolymers with other monomers copolymerizable with vinylidene fluoride, such as vinyl fluoride, trifluoroethylene, tetrafluoroethylene, vinylidene fluorochloride, trifluoroethylene chloride, propylene hexafluoride, etc. The vinylidene fluoride content in the copolymer is preferably 70 mol% or more.

また、これ等重合体と、ポリメチルメタアクリレート等
の他の重合体とのポリマーブレンド物を用いることもで
きる。
Further, a polymer blend of these polymers and another polymer such as polymethylmethacrylate may also be used.

また、本発明において同一の結晶化温度を示さない2種
以上の熱可塑性樹脂成分の並用の仕方としては、結晶性
熱可塑性樹脂成分同志を併用する場合と、結晶性熱可塑
性樹脂成分と結晶化温度を有しない非結晶性熱可塑性樹
脂成分とを併用する場合とを含む。
Further, in the present invention, two or more kinds of thermoplastic resin components which do not show the same crystallization temperature are commonly used, when the crystalline thermoplastic resin components are used in combination, and the crystalline thermoplastic resin component and the crystallization are used together. And the case of using together with a non-crystalline thermoplastic resin component having no temperature.

このように結晶化温度を異にすることによって熱可塑性
樹脂層に形成された凹凸がPVDF延伸フイルム表面に転写
されて適切な絶縁破壊電圧、動摩擦係数を有する厚さ数
μのフイルムが得られる。
By varying the crystallization temperature in this way, the irregularities formed in the thermoplastic resin layer are transferred to the surface of the PVDF stretched film, and a film having a proper dielectric breakdown voltage and a dynamic friction coefficient and having a thickness of several μ can be obtained.

本発明にいう結晶化温度とは、Perkin Elmer社製DSCに
おいてサンプル量5mgを完全に溶融する温度まで320℃/m
inで昇温後3分間保持したのち、10℃/minで降温して得
た結晶化カーブの開始温度を採用する。
The crystallization temperature referred to in the present invention is 320 ° C./m until the temperature at which a sample amount of 5 mg in Perkin Elmer DSC is completely melted.
After the temperature is raised at in and held for 3 minutes, the temperature is lowered at 10 ° C./min, and the starting temperature of the crystallization curve obtained is adopted.

さらに併用される熱可塑性樹脂成分間の相溶性は、小さ
いものが好ましい。
Further, the compatibility between the thermoplastic resin components used together is preferably small.

さらにまた、熱可塑性樹脂成分のうち少くとも一成分は
ポリオレフィン系樹脂にあることが好ましく、殊に熱可
塑性樹脂成分の混合物において、マトリックス(海)、
ドメイン(島)が形成される本発明においては、マトリ
ックスを構成する成分がポリオレフィンであることが好
ましい。
Furthermore, it is preferable that at least one component of the thermoplastic resin component is a polyolefin resin, and particularly in a mixture of the thermoplastic resin components, a matrix (sea),
In the present invention in which domains (islands) are formed, the component constituting the matrix is preferably polyolefin.

これは、PVDFフイルムの表面に前記混合物を溶融状態で
密着積層した後、延伸する際にポリオレフィンとPVDFと
の延伸挙動が近似することから延伸後のフイルムが均質
に形成できるためである。
This is because the stretching behavior of the polyolefin and PVDF is close to each other when the mixture is closely laminated in the molten state on the surface of the PVDF film and then stretched, so that the stretched film can be formed homogeneously.

なお、マトリックスとドメインとが形成されているか否
かは、位相差顕微鏡、微分干渉顕微鏡、偏光顕微鏡、走
査型電子顕微鏡または透過型電子顕微鏡により判別する
ことができる。必要に応じて適宜、サンプルに表面エッ
チング、染色を施すとよい。
Whether or not the matrix and the domain are formed can be determined by a phase contrast microscope, a differential interference microscope, a polarization microscope, a scanning electron microscope or a transmission electron microscope. The sample may be subjected to surface etching and dyeing as needed.

本発明のブレンド割合は、結晶化温度を有する熱可塑性
樹脂としてのポリオレフィン95〜55重量%と該ポリオレ
フィンとは異なる熱可塑性樹脂5〜45重量%が好ましい
が、より望ましいブレンド割合は、ポリオレフィン90〜
60重量%と異なる熱可塑性樹脂10〜40重量%である。
The blending ratio of the present invention is preferably 95 to 55% by weight of a polyolefin as a thermoplastic resin having a crystallization temperature and 5 to 45% by weight of a thermoplastic resin different from the polyolefin.
It is 10-40% by weight of a thermoplastic resin different from 60% by weight.

ポリオレフィンのブレンド割合が95重量%より多くなる
と、凹凸密度が粗くなり延伸薄膜フイルムへの滑り性付
与の効果がなくなり、ポリオレフィンのブレンド割合が
55重量%より少なくなると均一な凹凸が得られなくなり
滑り性付与の効果がなくなるのでそれぞれ好ましくな
い。
When the blending ratio of the polyolefin is more than 95% by weight, the uneven density becomes coarse and the effect of imparting the slip property to the stretched thin film is lost, and the blending ratio of the polyolefin is
If it is less than 55% by weight, uniform unevenness cannot be obtained and the effect of imparting slipperiness is lost, which is not preferable.

なお、ポリオレフィン系樹脂としては低密度ポリエチレ
ン、高密度ポリエチレン、ポリプロピレン等の重合体お
よび共重合体であって、結晶化温度を有する樹脂であ
り、特に、高密度ポリエチレン、ポリプロピレンが好適
である。
The polyolefin-based resin is a polymer or copolymer such as low-density polyethylene, high-density polyethylene, or polypropylene, and has a crystallization temperature, and high-density polyethylene or polypropylene is particularly preferable.

望ましい高密度ポリエチレンとしては、JIS K6760で測
定したMFR(メルトフローレイト)が6〜0.01g/10分、
好ましくは2〜0.05g/10分である。
As a desirable high density polyethylene, MFR (melt flow rate) measured by JIS K6760 is 6 to 0.01 g / 10 minutes,
It is preferably 2 to 0.05 g / 10 minutes.

望ましいポリプロピレンとしては、JIS K6758で測定し
たMFRが12〜0.5g/10分、好ましくは8〜1g/10分であ
る。
As a desirable polypropylene, MFR measured by JIS K6758 is 12 to 0.5 g / 10 minutes, preferably 8 to 1 g / 10 minutes.

高密度ポリエチレンのMFRが6g/10分を、ポリプロピレン
のMFRが12g/10分をそれぞれ越えるとどちらの場合に
も、積層状態の延伸フイルムが裂け易くなるため生産性
を低下させるとともに、PVDF延伸極薄フイルムへの転写
凹凸の程度が好ましくなく、動摩擦係数の点においても
好ましくない。
If the MFR of high-density polyethylene exceeds 6 g / 10 minutes and the MFR of polypropylene exceeds 12 g / 10 minutes, the stretched film in the laminated state will easily tear, reducing productivity and reducing the PVDF stretched electrode. The degree of unevenness transferred to the thin film is not preferable, and the coefficient of dynamic friction is also not preferable.

また、MFRがそれぞれ0.01g/10分あるいは0.5g/10分より
小となると、均一な厚みを有するフイルムが得られな
い。
If the MFR is less than 0.01 g / 10 minutes or 0.5 g / 10 minutes, a film having a uniform thickness cannot be obtained.

本発明において、所望の結晶化温度を有する熱可塑性樹
脂成分と混合する他の熱可塑性樹脂成分の態様について
説明する。
In the present invention, an aspect of another thermoplastic resin component mixed with the thermoplastic resin component having a desired crystallization temperature will be described.

PVDFからなるフイルム状溶融樹脂の少なくとも片面に密
着積層する他のフイルム状溶融樹脂の成分にポリプロピ
レンがあり、このポリプロピレンと同一の結晶化温度を
有しない他の熱可塑性樹脂としては、高密度ポリエチレ
ン、低密度ポリエチレン、ポリプロピレン等の重合体お
よび共重合体、あるいはポリスチレン、ポリエステルポ
リアミド等の重合体および共重合体、あるいはPVDF以外
のフッ素樹脂の重合体および共重合体があり、他の熱可
塑性樹脂成分としては、結晶性熱可塑性樹脂または非結
晶性熱可塑性樹脂のいずれでもよい。
There is polypropylene as a component of the other film-like molten resin that is adhered and laminated on at least one surface of the film-like molten resin composed of PVDF, and as the other thermoplastic resin that does not have the same crystallization temperature as this polypropylene, high-density polyethylene, There are polymers and copolymers such as low density polyethylene and polypropylene, or polymers and copolymers such as polystyrene and polyester polyamide, or polymers and copolymers of fluororesins other than PVDF, and other thermoplastic resin components. It may be either a crystalline thermoplastic resin or a non-crystalline thermoplastic resin.

望ましい樹脂成分の組合せはポリプロピレンと高密度ポ
リエチレンであり、それぞれのMFRは前記の高密度ポリ
エチレン、ポリプロピレンの範囲が好ましい。
A desirable combination of resin components is polypropylene and high-density polyethylene, and the MFR of each is preferably in the above-mentioned range of high-density polyethylene and polypropylene.

またかかる組合せの場合は、混合割合の大なるポリオレ
フィン系樹脂のMFRが、混合割合の小なるポリオレフィ
ン系樹脂のMFRより大なることが望ましい。
Further, in the case of such a combination, it is desirable that the MFR of the polyolefin resin having a large mixing ratio is larger than the MFR of the polyolefin resin having a small mixing ratio.

混合方法としては、それぞれの樹脂を所定割合で押出機
に投入し溶融混合させてもよいし、あるいはそれぞれの
樹脂を所定割合でスーパーミキサー等で混合するドライ
ブレンドでもよい。
As a mixing method, each resin may be charged into an extruder at a predetermined ratio and melt-mixed, or a dry blend in which each resin is mixed at a predetermined ratio with a super mixer or the like.

本発明における密着積層とは、蒸着工程前後、スリット
工程後等の剥離等にPVDFフイルム部の一部が熱可塑性樹
脂フイルム部によって剥がされ、あるいは逆に熱可塑性
樹脂フイルム部の一部がPVDFフイルム部に残存したりし
ない程度の状態をいう。
Adhesion lamination in the present invention, before and after the vapor deposition step, part of the PVDF film part is peeled off by the thermoplastic resin film part in peeling after the slitting process, or the like, or conversely a part of the thermoplastic resin film part is PVDF film. It means the state that it does not remain in the part.

熱可塑性樹脂成分からなる一方のフイルム状溶融状態は
少なくともPVDFがフイルム状溶融樹脂の片面に積層しな
ければならないが、PVDFからなるフイルム状溶融樹脂の
両面に積層することにより凹凸を転写することができよ
り好適であり、両面に積層する場合には両面の混合熱可
塑性樹脂の種類は同一のもの、異なるものであってもよ
く、異なる場合には両面に異なった凹凸状態を転写する
ことができる。
At least one film-like molten state consisting of a thermoplastic resin component must have PVDF laminated on one side of the film-like molten resin, but unevenness can be transferred by laminating on both sides of the film-like molten resin consisting of PVDF. When it is laminated on both sides, the mixed thermoplastic resins on both sides may be the same or different, and if different, different concavo-convex states can be transferred to both sides. .

さらに、熱可塑性樹脂/PVDF/熱可塑性樹脂/PVDF/熱可塑
性樹脂のように多層にすることにより、PVDF極薄延伸フ
イルムを1度に多数製造することができる。
Furthermore, by forming multiple layers such as thermoplastic resin / PVDF / thermoplastic resin / PVDF / thermoplastic resin, a large number of PVDF ultra-thin stretched films can be manufactured at one time.

本発明における延伸は少なくとも一軸方向に3〜7倍、
好ましくは4〜6倍の延伸倍率の範囲で延伸するとよ
く、延伸倍率が3倍より小なる範囲では延伸極薄フイル
ムの厚み精度に劣り、延伸倍率が7倍以上であるとフイ
ルムの伸びが非常に小となり裂けやすくなるとともに凹
凸が粗く、滑り性の改善効果がなくなる。
Stretching in the present invention is at least 3 to 7 times in the uniaxial direction,
It is preferable to draw in a range of 4 to 6 times the draw ratio. In the range where the draw ratio is less than 3 times, the thickness accuracy of the drawn ultrathin film is poor, and when the draw ratio is 7 times or more, the elongation of the film is extremely high. It becomes small and easy to tear, and the unevenness is rough, and the effect of improving the slipperiness is lost.

延伸温度はポリオレフィンの融点より低く50℃以上と
し、好ましくはポリオレフィンの融点より5℃以上低く
60℃以上であり、延伸されたフイルムは一般的に熱的に
不安定で経時的に収縮するために熱処理を施すのが普通
であり、熱処理によって単に熱的な安定性を増すだけで
なく圧電性や焦電性を高める効果があり、熱処理温度は
PVDFの融点より70℃より以上は低くない温度で行うのが
望ましい。
The stretching temperature is lower than the melting point of polyolefin and is 50 ° C or more, preferably 5 ° C or more lower than the melting point of polyolefin.
The temperature is 60 ° C or higher, and the stretched film is generally thermally unstable and shrinks over time. Therefore, heat treatment is usually performed. Has the effect of increasing the heat resistance and pyroelectricity, and the heat treatment temperature is
It is desirable to carry out at a temperature not lower than 70 ° C below the melting point of PVDF.

PVDF延伸極薄フイルムの剥離は熱処理後剥離してもよい
し、蒸着工程後あるいはスリット後剥離して得てもよ
く、また需要者が使用する際に剥離してもよい。
The PVDF stretched ultrathin film may be peeled off after the heat treatment, may be peeled off after the vapor deposition step or after slitting, or may be peeled off when the consumer uses it.

以下、本発明の実施例を挙げる この場合滑り性はASTM D1894に準拠した動摩擦係数とし
て測定し、また絶縁破壊電圧はJIS C2319に準拠して測
定した。
In the following, examples of the present invention will be given. In this case, the slidability was measured as a dynamic friction coefficient according to ASTM D1894, and the dielectric breakdown voltage was measured according to JIS C2319.

ポリプロピレン(三菱ポリプロ、MFR=5.5g/10分、密度
0.90g/cm3、融点168℃、結晶化温度114℃)と高密度ポ
リエチレン(三菱ポリエチ、MFR=0.8g/10分、密度0.95
2g/cm3、融点136℃、結晶化温度124℃)とを表1に示す
割合で混合し、230℃、50φ押出機で可塑化し、PVDF
(ペンウオルト社製KYNAR、MFR=5.5g/10分〔JIS K6758
に準拠〕密度1.78g/10分、融点171℃)を230℃、20φ押
出機で可塑化し、三層構造のマルチマニホルドタイプの
Tダイより混合物/PVDF/混合物の三層状で押出し、70℃
とした冷却ロールに接触させ冷却固化した後、120℃で
縦方向に5倍一軸延伸し、引続き140℃で熱処理した
後、混合物からなるフイルム部分を剥離し0.9μのPVDF
延伸極薄フイルムを製造した場合を例1、例2、例3と
して示し、評価結果を表1に示す。
Polypropylene (Mitsubishi Polypro, MFR = 5.5g / 10min, density
0.90g / cm 3 , melting point 168 ℃, crystallization temperature 114 ℃, and high density polyethylene (Mitsubishi Polyethylene, MFR = 0.8g / 10min, density 0.95)
2g / cm 3 , melting point 136 ° C, crystallization temperature 124 ° C) were mixed in the proportions shown in Table 1, and were plasticized in a 50φ extruder at 230 ° C and PVDF.
(KYNAR made by Pen Walt Co., MFR = 5.5g / 10min [JIS K6758
The density is 1.78 g / 10 min, melting point 171 ° C.) is plasticized by a 20φ extruder at 230 ° C. and extruded in a three-layer mixture / PVDF / mixture form from a three-layer multi-manifold type T die at 70 ° C.
After contacting with the cooling roll and cooling and solidifying, the film was uniaxially stretched 5 times in the longitudinal direction at 120 ° C, and subsequently heat treated at 140 ° C, the film part consisting of the mixture was peeled off, and 0.9μ PVDF
The case of producing a stretched ultrathin film is shown as Example 1, Example 2 and Example 3, and the evaluation results are shown in Table 1.

なお、本例において使用したポリプロピレンを用いて、
ポリプロピレン/PVDF/ポリプロピレンとして押出した以
外は本例と同じ条件で延伸および熱処理し、0.9μのPVD
F延伸極薄フイルムとした場合を比較例1として表1に
示すとともに、本例で使用したポリプロピレンとして平
均粒数1.2μの白石カルシウム製炭酸カルシウムホワイ
トンSSBを3重量%添加した無機充填剤添加ポリプロピ
レンを使用して、添加ポリプロピレン/PVDF/添加ポリプ
ロピレンのように押出し、本例と同じ条件で延伸および
熱処理して0.9μのPVDF延伸極薄フイルムを得た場合を
比較例2として表1に示す。
In addition, using the polypropylene used in this example,
Stretched and heat treated under the same conditions as this example except extruded as polypropylene / PVDF / polypropylene to give 0.9μ PVD
The case of F-stretched ultra-thin film is shown in Table 1 as Comparative Example 1, and 3% by weight of calcium carbonate whiten SSB made of calcium carbonate Shiraishi with an average particle number of 1.2 μ was added as the polypropylene used in this example. Comparative Example 2 shows a case in which polypropylene is extruded like added polypropylene / PVDF / added polypropylene, stretched and heat treated under the same conditions as in this example to obtain a PVDF stretched ultrathin film of 0.9 μm, as Comparative Example 2. .

(発明の効果) 本発明はそれぞれ結晶化温度を異にする熱可塑性樹脂混
合物からなるフイルム状溶融樹脂をポリ弗化ビニリデ
ン、弗化ビニリデン共重合体のフイルム状溶融樹脂に密
着積層状とし、冷却固化したのち、結晶化温度を異にす
る熱可塑性樹脂の混合物からなるフイルム部分を剥離し
て微細な凹凸をポリ弗化ビニリデンフイルムまたは弗化
ビニリデン共重合体フイルムに転写させることができ適
切な滑り性を有し、圧電性、焦電性に優れ、絶縁破壊電
圧大なる電子材料としての性能を有し、しかも極薄フイ
ルムを能率的に製造することができる。
(Effects of the Invention) The present invention makes a film-like molten resin composed of a thermoplastic resin mixture having different crystallization temperatures adhere to a film-like molten resin of polyvinylidene fluoride or vinylidene fluoride copolymer, and cools it. After solidification, the film part consisting of a mixture of thermoplastic resins with different crystallization temperatures is peeled off and fine irregularities can be transferred to a polyvinylidene fluoride film or a vinylidene fluoride copolymer film to obtain an appropriate sliding property. And has excellent piezoelectricity, pyroelectricity, and performance as an electronic material having a large dielectric breakdown voltage, and an extremely thin film can be efficiently manufactured.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を適用する装置の一例を示す説明図、第
2図は結晶化温度の異なる熱可塑性樹脂混合物を密着積
層状から剥離する状態の説明図である。 1,2…押出機、3…Tダイ、4,5…フイルム状溶融樹脂、
6…密着積層物、7…冷却ロール、8,8…延伸ロール、
9…フイルム部分、10…フイルム。
FIG. 1 is an explanatory view showing an example of an apparatus to which the present invention is applied, and FIG. 2 is an explanatory view showing a state in which a thermoplastic resin mixture having different crystallization temperatures is peeled from a contact laminated state. 1,2 ... Extruder, 3 ... T die, 4,5 ... Film-like molten resin,
6 ... Adhesive laminate, 7 ... Cooling roll, 8, 8 ... Stretching roll,
9 ... film part, 10 ... film.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29K 27:12 B29L 9:00 C08L 27:12 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication B29K 27:12 B29L 9:00 C08L 27:12

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ポリ弗化ビニリデンもしくは弗化ビニリデ
ン共重合体からなる一方のフイルム状溶融樹脂に、それ
ぞれ結晶化温度を異にするとともに、マトリックス、ド
メインを形成する2種以上の熱可塑性樹脂の混合物から
なる他方のフイルム状溶融樹脂を密着積層状に押出し、
冷却固化したのち延伸させたあと、他方のフイルム状溶
融樹脂からなるフイルム部分を剥離させてなるポリ弗化
ビニリデンもしくは弗化ビニリデン共重合体からなるフ
イルムの製造法。
1. A film-like molten resin composed of polyvinylidene fluoride or a vinylidene fluoride copolymer, which comprises two or more kinds of thermoplastic resins having different crystallization temperatures and forming a matrix and a domain. The other film-like molten resin consisting of a mixture is extruded in a contact laminated state,
A method for producing a film made of polyvinylidene fluoride or a vinylidene fluoride copolymer, which is obtained by cooling and solidifying, stretching, and then peeling off the film portion made of the other film-like molten resin.
JP62076144A 1987-03-31 1987-03-31 Method for producing film made of polyvinylidene fluoride or vinylidene fluoride copolymer Expired - Fee Related JPH0791399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62076144A JPH0791399B2 (en) 1987-03-31 1987-03-31 Method for producing film made of polyvinylidene fluoride or vinylidene fluoride copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62076144A JPH0791399B2 (en) 1987-03-31 1987-03-31 Method for producing film made of polyvinylidene fluoride or vinylidene fluoride copolymer

Publications (2)

Publication Number Publication Date
JPS63243143A JPS63243143A (en) 1988-10-11
JPH0791399B2 true JPH0791399B2 (en) 1995-10-04

Family

ID=13596803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62076144A Expired - Fee Related JPH0791399B2 (en) 1987-03-31 1987-03-31 Method for producing film made of polyvinylidene fluoride or vinylidene fluoride copolymer

Country Status (1)

Country Link
JP (1) JPH0791399B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219750A (en) * 2000-11-10 2002-08-06 Asahi Glass Co Ltd Fluororesin film of high mechanical strength
KR100751747B1 (en) * 2001-10-19 2007-08-24 아르끄마 프랑스 Method of producing films by means of coextrusion blow-moulding
JP2005169935A (en) * 2003-12-12 2005-06-30 Sanko Plastics Kk Laminated film, thin poyvinylidene fluoride film, electronic component, and production method for the component
US9368778B2 (en) * 2011-11-15 2016-06-14 Teijin Limited Separator for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery
KR101460477B1 (en) * 2013-06-18 2014-11-10 주식회사 엘지화학 Oriented laminate, preparing method for thin polarizer, thin polarizer manufactured by using the same and polarizing plate comprising the same
KR101575489B1 (en) 2013-06-18 2015-12-07 주식회사 엘지화학 Oriented laminate, preparing method for thin polarizer, thin polarizer manufactured by using the same and polarizing plate comprising the same
US10254458B2 (en) 2013-06-19 2019-04-09 Lg Chem, Ltd. Laminate
JP6164441B2 (en) 2013-06-19 2017-07-19 エルジー・ケム・リミテッド Base film
DE112018000812T5 (en) 2017-02-14 2019-10-24 Idemitsu Unitech Co., Ltd. Laminate, decorative film, process for the production of laminate, process for the production of a molded article and molded article
CN114685916B (en) * 2020-12-31 2023-09-05 浙江蓝天环保高科技股份有限公司 Polymer piezoelectric material and preparation method thereof

Also Published As

Publication number Publication date
JPS63243143A (en) 1988-10-11

Similar Documents

Publication Publication Date Title
JP3100651B2 (en) Process for producing propylene polymer film and laminate and product obtained thereby
EP0131231B1 (en) Process for producing a piezo- and pyro-electric film
DE19653750A1 (en) Sealable biaxially oriented polyester film, process for its production and its use
JPH0791399B2 (en) Method for producing film made of polyvinylidene fluoride or vinylidene fluoride copolymer
JP2003520147A (en) Multilayer metallized polyolefin film
JPS63199742A (en) Production of microporous polypropylene film
JPH1110723A (en) Manufacture of biaxially oriented polyester film
JP2990803B2 (en) Polypropylene film for double-sided deposition
JPH09270361A (en) Polyolefin film for capacitor and capacitor made or the same
JPH034372B2 (en)
JP4032764B2 (en) Easy-release polypropylene film
JPH036896B2 (en)
JPS5850592B2 (en) metal-deposited film
CN114083862B (en) High-interface-binding-force bidirectional-stretching polylactic acid composite film and preparation method and application thereof
JPS5935348B2 (en) Method for manufacturing composite film
JP3148369B2 (en) Multilayer film with improved slip properties
JP2002234958A (en) Polypropylene film for double-side vapor deposition and capaciter comprising the same
JP2024145617A (en) Electret film roll
JPH0533133B2 (en)
JPS61123520A (en) Manufacture of plastic film improved in slip property
JPH0414054B2 (en)
JPH0341347B2 (en)
JP2795301B2 (en) Biaxially oriented polyester film
JP2003311906A (en) Stretched polyester film
JPS5811148A (en) Polyethylene terephthalate composite oriented film and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees