JPH0791317A - Fuel mixing device - Google Patents

Fuel mixing device

Info

Publication number
JPH0791317A
JPH0791317A JP23657593A JP23657593A JPH0791317A JP H0791317 A JPH0791317 A JP H0791317A JP 23657593 A JP23657593 A JP 23657593A JP 23657593 A JP23657593 A JP 23657593A JP H0791317 A JPH0791317 A JP H0791317A
Authority
JP
Japan
Prior art keywords
fuel
mixing device
concave
flow
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23657593A
Other languages
Japanese (ja)
Inventor
Kiyoshi Segawa
瀬川  清
Kuniyoshi Tsubouchi
邦良 坪内
Susumu Nakano
晋 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23657593A priority Critical patent/JPH0791317A/en
Publication of JPH0791317A publication Critical patent/JPH0791317A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To provide a fuel mixing device capable of promoting mixing and enlarging a diffused region while reducing pressure losses. CONSTITUTION:In a fuel mixing device containing fuel struts 2 placed in a gas-passage formed between engine-wall faces 1A arranged on opposite sides, and fuel injection nozzles formed on the fuel struts 2, each of the fuel struts 2 is provided with a concave wall forming a concave face relative to the flow of gas, when the strut is cut by a plane parallel to the flow direction of the passage, and s fuel injection nozzle is formed so that it can discharge fuel in parallel with the tangent at the downstream side end part of the wall face forming cancave face. Thus, since the fuel is injected into longitudinal vortex generated on the concave wall face and discharged from the final end of the concave wall face, oxidizing agent and fuel are efficiently mixed by involving-in action of the vortex. Further, the fuel is injected tangentially at the final end of the concave wall face, the injecting direction of the fuel becomes the same as the direction of gas flow, pressure losses is reduced, and vertical injection and mixing region can be ensured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、亜音速または超音速の
燃焼器等に適用される燃料混合装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel mixing system applied to a subsonic or supersonic combustor.

【0002】[0002]

【従来の技術】従来、超音速空気流中での酸化剤と燃料
との混合及び拡散方法としては、「Combustion Test an
d Thermal Analysis of Fuel Injection Struts of aSc
ramjet Combustor,ISABE 91−7133,(1991)」に記載
されているように、燃料ストラットにおいて、その後部
に設けられた後向きステップから燃料を主流に垂直に噴
射させて、酸化剤と燃料を混合拡散させる方法がある。
2. Description of the Related Art Conventionally, as a method of mixing and diffusing an oxidant and a fuel in a supersonic air flow, there is a "Combustion Test
d Thermal Analysis of Fuel Injection Struts of aSc
ramjet Combustor, ISABE 91-7133, (1991) ”, a fuel strut is used to vertically inject fuel into a mainstream from a rearward facing step provided at the rear of the fuel strut to mix and diffuse the oxidant and the fuel. There is a way to do it.

【0003】[0003]

【発明が解決しようとする課題】図10に、横軸に燃料
噴射位置からの燃焼室の長さ方向距離を、縦軸に燃料と
酸化剤の混合率を示す。図の原点が燃料の噴射位置であ
る。ここでいう混合率は、燃焼室の長手方向に垂直なあ
る断面の断面積Aとその断面での燃料の広がっている面
積Bの比、B/A×100をいう。上記従来技術におい
ては、燃料を酸化剤の気流に対して垂直に噴射するた
め、図10に示すように酸化剤気流への燃料の混合(拡
散)領域は増大するが、圧力損失が大きくなる。したが
って、燃焼器全体としての性能は著しく低下する。一方
燃料を酸化剤の流れに平行に噴射する場合、図10に示
されているように、混合領域は狭くなるが、圧力損失は
抑えられる。また従来はケルビン−ヘルムホルツ型不安
定渦を利用していたので十分な混合が行えなかった。
In FIG. 10, the horizontal axis shows the longitudinal distance of the combustion chamber from the fuel injection position, and the vertical axis shows the mixing ratio of fuel and oxidizer. The origin of the figure is the fuel injection position. The mixing ratio here means B / A × 100, which is the ratio of the cross-sectional area A of a certain section perpendicular to the longitudinal direction of the combustion chamber to the area B of the fuel spreading in that section. In the above-mentioned conventional technique, since the fuel is injected perpendicularly to the oxidant air flow, the mixing (diffusion) region of the fuel into the oxidant air flow increases as shown in FIG. 10, but the pressure loss increases. Therefore, the performance of the combustor as a whole is significantly reduced. On the other hand, when the fuel is injected parallel to the flow of the oxidant, as shown in FIG. 10, the mixing region becomes narrow, but the pressure loss is suppressed. Further, since Kelvin-Helmholtz type unstable vortices have been conventionally used, sufficient mixing cannot be performed.

【0004】本発明の目的は、混合を促進し、拡散領域
を大きくしつつ圧力損失を抑えることができる燃料混合
装置を提供することにある。
It is an object of the present invention to provide a fuel mixing system which can promote mixing and increase the diffusion area while suppressing pressure loss.

【0005】[0005]

【課題を解決するための手段】上記目的は、酸化剤を含
む気体の流路中に設けられた燃料拡散手段と、この燃料
拡散手段により流れを偏向された前記気体に燃料を供給
する燃料供給手段とを備えた燃料混合装置において、前
記燃料拡散手段が前記流路の流れ方向に平行な面で切っ
た断面が前記気体の流れに対して凹面をなす壁面をそな
えていることと、前記燃料供給手段は前記凹面をなす壁
面の下流側端部の接線にほぼ平行に燃料を放出する燃料
噴出口を備えることで達成される。
The above object is to provide a fuel diffusing means provided in a gas flow path containing an oxidant, and a fuel supply for supplying a fuel to the gas whose flow is deflected by the fuel diffusing means. A fuel mixing device including means, wherein the fuel diffusing means has a wall surface whose cross section taken along a plane parallel to the flow direction of the flow path is concave with respect to the flow of the gas; The supply means is achieved by including a fuel injection port that discharges the fuel substantially parallel to the tangent line of the downstream end of the concave wall surface.

【0006】[0006]

【作用】気流の流れ方向に平行な面で切った断面の、該
気流と接する表面のある点に引いた接線と前記気流の流
れ方向のなす角が、前記ある点が前記気流の上流側から
下流側に移動するにつれて大きくなるような面(以下凹
面という)を持つ物体を気流中に配置すると、凹面壁上
には、図8に示すように、流れ方向に軸をもつ縦渦19
が発生する。この縦渦は下流に向かって発達し、最終的
には凹面最終端から主流中に放出される。このとき凹面
最終端での流体の噴出方向は、図9に示す通り他の形状
(例えば断面形状が鈍頭18やくさび17)を採用した
ときに比べて最も横断方向に向く。したがって、酸化剤
気流中にこのような凹面を持つ物体を配置し、該凹面部
分の下流側最終端から凹面の接線方向に燃料を噴射させ
ると、噴射された燃料は前記縦渦に伴われて酸化剤気流
(主流)中へ拡がるので、酸化剤気流(主流)中への燃
料の拡散領域が拡大し、しかも凹面壁から放出された縦
渦中に燃料が巻き込まれるので、この渦の巻き込み運動
により酸化剤と燃料が効率良く混合する。また、凹面最
終端で接線方向に燃料を噴射するので、燃料の噴射方向
が気流の方向と同じになり、平行噴射と同等な効果が得
られる。実際、図10に示すように従来の垂直噴射並み
の混合領域を確保でき、圧力損失も抑えられるという効
果がある。なお、気流の速度は亜音速でも超音速でも良
い。
The angle between the tangent line drawn to a point on the surface in contact with the air flow and the direction of the air flow in a cross section cut by a plane parallel to the air flow direction is such that the point is from the upstream side of the air flow. When an object having a surface that becomes larger as it moves downstream (hereinafter referred to as a concave surface) is placed in the airflow, a vertical vortex 19 having an axis in the flow direction is formed on the concave wall as shown in FIG.
Occurs. This longitudinal vortex develops downstream, and is finally discharged from the final end of the concave surface into the main stream. At this time, the ejection direction of the fluid at the final end of the concave surface is most in the transverse direction as compared with the case where another shape (for example, a blunt section 18 or a wedge 17 in sectional shape) is adopted as shown in FIG. Therefore, when an object having such a concave surface is arranged in the oxidant air flow and fuel is injected in the tangential direction of the concave surface from the downstream end of the concave surface portion, the injected fuel is accompanied by the vertical vortex. Since it spreads into the oxidant air flow (main flow), the diffusion area of the fuel into the oxidant air flow (main flow) expands, and moreover, the fuel is caught in the vertical vortex discharged from the concave wall. The oxidizer and fuel mix efficiently. Further, since the fuel is injected tangentially at the final end of the concave surface, the injection direction of the fuel becomes the same as the direction of the air flow, and the same effect as parallel injection can be obtained. In fact, as shown in FIG. 10, there is an effect that a mixing region equivalent to that of the conventional vertical injection can be secured and the pressure loss can be suppressed. The velocity of the airflow may be subsonic or supersonic.

【0007】[0007]

【実施例】以下本発明の実施例を図面に基づいて説明す
る。図1に、本発明を超音速空気吸込み式エンジンに適
用した第1の実施例を示す。図示のエンジンは、互いに
対向して配置され、その間に酸化剤の流路を形成する互
いに平行な壁面1Aを持つエンジン本体1と、該エンジ
ン本体1の二つの壁面1Aに挟まれた酸化剤の流路に配
置された燃料ストラット本体2とを含んで構成されてい
る。燃料ストラット本体2は、その軸線を前記流路の軸
線にほぼ平行するように2段に配置されている。また、
エンジン本体1の流路を構成する壁面1Aと燃料ストラ
ット本体2の外表面はいずれも紙面に対して垂直となっ
ている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment in which the present invention is applied to a supersonic air suction type engine. The illustrated engine is composed of an engine main body 1 that is arranged opposite to each other and has wall surfaces 1A parallel to each other that form a flow path for the oxidant, and an oxidizer that is sandwiched between two wall surfaces 1A of the engine main body 1. The fuel strut body 2 is disposed in the flow path. The fuel strut body 2 is arranged in two stages so that the axis thereof is substantially parallel to the axis of the flow passage. Also,
The wall surface 1A forming the flow path of the engine body 1 and the outer surface of the fuel strut body 2 are both perpendicular to the paper surface.

【0008】燃料ストラット本体2は、エンジン本体1
の壁面1Aに垂直でかつ流路軸線に平行な面で切った断
面が上流側に向かって尖った形をしており、該尖った断
面のある点に引いた接線と前記流路軸線のなす角が、前
記ある点が前記気流の上流側から下流側に移動するにつ
れて大きくなるような面(以下凹面という)を持ってい
る。燃料ストラット本体2の前記断面は、該燃料ストラ
ット本体2の流路軸線方向の中心線に対して対称になっ
ている。
The fuel strut body 2 is the engine body 1
Has a cross section cut by a plane perpendicular to the wall surface 1A and parallel to the flow channel axis, and has a pointed shape toward the upstream side. The tangent line drawn to a point of the pointed cross section and the flow channel axis form The corner has a surface (hereinafter referred to as a concave surface) such that the certain point increases as it moves from the upstream side to the downstream side of the air flow. The cross section of the fuel strut body 2 is symmetrical with respect to the center line of the fuel strut body 2 in the flow axis direction.

【0009】以上の構成によれば、図の矢印3の方向か
らエンジン本体1に取り入れられた超音速空気流が燃料
ストラット2に到達すると、その壁面が凹面をなしてい
るために図8に示すようにその表面上に縦渦が発生す
る。以下、図2を用いて説明する。図2は燃料ストラッ
ト2の、エンジン本体1の壁面に垂直でかつ流路軸線に
平行な面で切った断面の半分を示している(他の半分は
図示された部分に軸線20に関して線対称)。
According to the above construction, when the supersonic airflow taken into the engine body 1 from the direction of the arrow 3 in the figure reaches the fuel strut 2, the wall surface of the fuel strut 2 has a concave surface, which is shown in FIG. As a result, a vertical vortex is generated on the surface. This will be described below with reference to FIG. FIG. 2 shows a half of a cross section of the fuel strut 2 taken along a plane perpendicular to the wall surface of the engine body 1 and parallel to the flow axis (the other half is line-symmetric with respect to the axis 20 with respect to the illustrated portion). .

【0010】燃料ストラット2は、上流側に凹面壁4を
持ち、凹面壁4の下流側末端に軸線20に垂直でかつ軸
線20に近づく方向に延びる凹面最終端壁5を備え、凹
面最終端壁5の軸線20側端部に接続して該軸線20に
平行でかつエンジン本体1の流路壁面に平行な後向きス
テップ壁6を有し、後向きステップ壁6の下流端は凹面
最終端壁5に平行な後向きステップ最終端壁7に接続さ
れている。後向きステップ最終端壁7が燃料ストラット
2の下流端をなしている。燃料ストラット2の凹面内部
には、外部の燃料供給手段に接続されたチャンバ10が
形成され、該チャンバ10は、凹面最終端壁5の凹面下
流端に近い位置に形成された燃料噴射口8に、凹面末端
部表面に平行する燃料流路10Aで連通されている。
The fuel strut 2 has a concave wall 4 on the upstream side, and a concave final end wall 5 extending at a downstream end of the concave wall 4 in a direction perpendicular to the axis 20 and toward the axis 20. 5 has a rearward facing step wall 6 connected to the end of the rearward facing stepping wall 5 parallel to the axis 20 and parallel to the flow passage wall surface of the engine body 1, and the downstream end of the rearward facing step wall 6 is the concave final end wall 5. It is connected to a parallel rearward facing step end wall 7. The rearward facing step end wall 7 forms the downstream end of the fuel strut 2. A chamber 10 connected to an external fuel supply means is formed inside the concave surface of the fuel strut 2, and the chamber 10 is connected to a fuel injection port 8 formed near a concave downstream end of the concave final end wall 5. The fuel passages 10A parallel to the surface of the concave end portion communicate with each other.

【0011】前記凹面に発生した縦渦は、凹面壁4上を
下流に向い発達し、最終的には凹面最終端から酸化剤流
路に放出される。一方、外部の燃料供給手段から供給さ
れた燃料は、チャンバ10を通り凹面最終端壁5に設け
られた燃料噴射口8から凹面接線方向11に角度αで噴
射される。角度αは凹面接線方向11と軸線20がなす
角である。このとき、燃料は凹面最終端から放出された
縦渦中に噴射されるため、渦の巻き込み運動により、燃
料と主流の酸化剤とは良く混合する。さらに、図9に示
すように燃料の拡散方向が他の形状に比べて横断方向
(エンジン1の壁面1Aに近づく方向)に向くので、燃
料噴射口8後方に形成される混合領域が広くなる。凹面
最終端では、凹面壁4に沿って流れてきた酸化剤と、燃
料噴射口8から放出される燃料とは同一方向に放出され
るので、圧力損失を抑えることができる。
The vertical vortices generated on the concave surface develop downstream on the concave wall 4 and are finally discharged from the final end of the concave surface to the oxidant flow path. On the other hand, the fuel supplied from the external fuel supply means is injected through the chamber 10 from the fuel injection port 8 provided in the concave final end wall 5 in the concave tangential direction 11 at an angle α. The angle α is an angle formed by the concave surface tangential direction 11 and the axis 20. At this time, the fuel is injected into the vertical vortex discharged from the final end of the concave surface, so that the fuel and the mainstream oxidizer are well mixed by the entrainment motion of the vortex. Further, as shown in FIG. 9, the diffusion direction of the fuel is more in the transverse direction (direction closer to the wall surface 1A of the engine 1) than in the other shapes, so that the mixing region formed behind the fuel injection port 8 becomes wider. At the final end of the concave surface, the oxidant flowing along the concave wall 4 and the fuel discharged from the fuel injection port 8 are discharged in the same direction, so that the pressure loss can be suppressed.

【0012】図1に示した例は酸化剤の流路中に配置さ
れる燃料ストラット2に凹面壁4を形成したものである
が、図5に示すようにある壁面の一部として、例えばエ
ンジン本体の壁面1Aに凹面壁4を形成してもよい。こ
のときは、後向きステップ壁6はエンジン本体の壁面1
Aということになる。この場合も凹面壁4上に縦渦が発
生するので燃料を凹面最終端で接線方向に噴射すればよ
い。なお、効果は図2の場合と同様である。
In the example shown in FIG. 1, the concave wall 4 is formed in the fuel strut 2 arranged in the flow path of the oxidant. As shown in FIG. The concave wall 4 may be formed on the wall surface 1A of the main body. At this time, the rearward facing step wall 6 is the wall surface 1 of the engine body.
It will be A. Also in this case, since vertical vortices are generated on the concave wall 4, fuel may be injected tangentially at the final end of the concave surface. The effect is similar to that of the case of FIG.

【0013】次に、本発明に係る第2の実施例を図3を
参照して説明する。同図において、上記第1実施例と同
一符号は同一部材を示すものである。本実施例の前記第
1実施例との相違点は、凹面壁4上に発生する縦渦に沿
って複数のスリットまたは孔12を設け、これらを前記
チャンバ10に連通させて凹面壁4上からも燃料を噴出
させるようにしたことである。すなわち、凹面壁4上に
発達した縦渦中に燃料を矢印13の方向に噴出させる。
噴出された燃料は渦の巻き込み運動により酸化剤と効率
良く混合される。したがって、凹面最終端壁5に設けら
れた燃料噴射口8から燃料を噴射する以前に凹面壁4上
で予め混合気を形成しておくことができる。この場合第
1の実施例と同様な効果が得られ、第1の実施例よりも
十分混合された混合気を形成することができる。孔12
としては、単独の孔を多数もうけてもよいが、該当部分
を多孔質の材料で構成し、多数の孔から噴出させるよう
にしてもよい。また図6に示すようにある壁面の一部と
して凹面壁4を形成した場合でも、凹面壁4上に発生す
る縦渦に沿ってスリットまたは孔12を設け、これらを
前記チャンバ10に連通させて凹面壁4上からも燃料を
噴出させるようにして同様な効果が得ることができる。
Next, a second embodiment according to the present invention will be described with reference to FIG. In the figure, the same reference numerals as those used in the first embodiment denote the same members. The difference of the present embodiment from the first embodiment is that a plurality of slits or holes 12 are provided along the vertical vortex generated on the concave wall 4 and are communicated with the chamber 10 from the concave wall 4 top. It is also that the fuel is jetted out. That is, the fuel is ejected in the direction of the arrow 13 into the vertical vortex developed on the concave wall 4.
The ejected fuel is efficiently mixed with the oxidant by the entrainment motion of the vortex. Therefore, the air-fuel mixture can be formed in advance on the concave wall 4 before injecting the fuel from the fuel injection port 8 provided in the concave final end wall 5. In this case, the same effect as that of the first embodiment can be obtained, and the air-fuel mixture that is more thoroughly mixed than that of the first embodiment can be formed. Hole 12
For this, a large number of single holes may be provided, but the corresponding portion may be made of a porous material and ejected from a large number of holes. Further, even when the concave wall 4 is formed as a part of a certain wall surface as shown in FIG. 6, slits or holes 12 are provided along the vertical vortex generated on the concave wall 4, and these are communicated with the chamber 10. The same effect can be obtained by injecting the fuel also from above the concave wall 4.

【0014】次に、本発明に係る第3の実施例を図4を
参照して説明する。同図において、上記第1実施例と同
一符号は同一部材を示す。本実施例の前記第2実施例と
の相違点は、もう一つ燃料噴射手段を設けたことであ
る。すなわち、外部の燃料供給手段から供給された燃料
は、凹面壁上で噴出する他に、チャンバ10を通り一方
は凹面最終端壁5の燃料噴射口8から接線方向に噴射さ
れ、他方は後向きステップ最終端壁7に設けられた燃料
噴射口9から軸線20に平行な方向14に噴射される。
本実施例でも前記第2実施例と同様な効果が得られる。
また図7に示すようにある壁面の一部として凹面壁4を
形成した場合に、軸線20に平行な方向14に燃料を噴
射する燃料噴射口9を設けても同様な効果が得られる。
図7は、凹面最終端壁7にもう一つ燃料噴射口9を設け
た例である。この燃料噴射口9から燃料を後向きステッ
プ壁6、つまり燃焼室内壁の壁面に沿って矢印14の方
向に噴射させるので、燃焼室内壁のフィルム冷却効果も
合わせて得られる。なお、図4及び図7では燃料噴射口
8と燃料噴射口9とは同じ外部の燃料供給手段に接続さ
れているが、別々の燃料供給手段に接続してもよい。
Next, a third embodiment according to the present invention will be described with reference to FIG. In the figure, the same reference numerals as in the first embodiment indicate the same members. The difference of this embodiment from the second embodiment is that another fuel injection means is provided. That is, the fuel supplied from the external fuel supply means, in addition to being ejected on the concave wall, passes through the chamber 10 and is tangentially injected from the fuel injection port 8 of the concave final end wall 5 on the one side and the rearward step on the other side. Fuel is injected in a direction 14 parallel to the axis 20 from a fuel injection port 9 provided in the final end wall 7.
In this embodiment, the same effect as the second embodiment can be obtained.
Further, when the concave wall 4 is formed as a part of a certain wall surface as shown in FIG. 7, even if the fuel injection port 9 for injecting fuel in the direction 14 parallel to the axis 20 is provided, the same effect can be obtained.
FIG. 7 is an example in which another fuel injection port 9 is provided in the concave final end wall 7. Since the fuel is injected from the fuel injection port 9 in the direction of the arrow 14 along the rearward step wall 6, that is, the wall surface of the inner wall of the combustion chamber, the film cooling effect of the inner wall of the combustion chamber can be obtained together. Although the fuel injection port 8 and the fuel injection port 9 are connected to the same external fuel supply means in FIGS. 4 and 7, they may be connected to different fuel supply means.

【0015】[0015]

【発明の効果】本発明によれば、凹面壁上で発生した縦
渦が凹面最終端から放出された中に燃料が噴射されるの
で、渦の巻き込み運動により酸化剤と燃料を効率良く混
合させることができる。また凹面最終端で接線方向に燃
料を噴射するので、燃料の噴射方向が酸化剤気流の方向
と同じになり、圧力損失を抑え、垂直噴射並みの混合領
域を確保できるという効果が得られる。
According to the present invention, since the fuel is injected while the vertical vortex generated on the concave wall is discharged from the final end of the concave surface, the oxidizer and the fuel are efficiently mixed by the entrainment motion of the vortex. be able to. Further, since the fuel is injected tangentially at the final end of the concave surface, the direction of injection of the fuel becomes the same as the direction of the oxidant air flow, and it is possible to obtain the effect of suppressing the pressure loss and ensuring a mixing region similar to that of vertical injection.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例である超音速空気吸込み
式エンジンの一部を表す断面図である。
FIG. 1 is a sectional view showing a part of a supersonic air suction type engine which is a first embodiment of the present invention.

【図2】図1の要部拡大断面である。FIG. 2 is an enlarged cross-sectional view of a main part of FIG.

【図3】本発明の第2の実施例を示す燃料ストラットの
断面図である。
FIG. 3 is a sectional view of a fuel strut showing a second embodiment of the present invention.

【図4】本発明の第3の実施例を示す燃料ストラットの
断面図である。
FIG. 4 is a sectional view of a fuel strut showing a third embodiment of the present invention.

【図5】本発明の第1の実施例の変形例を示す断面図で
ある。
FIG. 5 is a sectional view showing a modification of the first embodiment of the present invention.

【図6】本発明の第2の実施例の変形例を示す断面図で
ある。
FIG. 6 is a sectional view showing a modification of the second embodiment of the present invention.

【図7】本発明の第3の実施例の変形例を示す断面図で
ある。
FIG. 7 is a sectional view showing a modification of the third embodiment of the present invention.

【図8】縦渦の発生状態を示す斜視図である。FIG. 8 is a perspective view showing a generation state of a vertical vortex.

【図9】壁面の形状に対する終端部での速度ベクトルの
変化を示す説明図である。
FIG. 9 is an explanatory diagram showing changes in the velocity vector at the terminal end with respect to the shape of the wall surface.

【図10】混合率の変化を示す説明図である。FIG. 10 is an explanatory diagram showing changes in the mixing ratio.

【符号の説明】[Explanation of symbols]

1 超音速空気吸い込み式エンジン 1A エンジン
の壁面 2 燃料ストラット 3 空気流の方
向 4 凹面壁 5 凹面最終端
壁 6 後向きステップ壁 7 後向きステ
ップ最終端壁 8 燃料噴射口 9 燃料噴射口 10 チャンバ 10A 燃料流路 11 燃料の噴射方向 12 スリットま
たは孔 13 燃料の噴射方向 14 燃料の噴射
方向 15 くさびの噴射方向 16 鈍頭の噴射
方向 17 くさび形状 18 鈍頭形状 19 縦渦
1 Supersonic Air Suction Engine 1A Engine Wall 2 Fuel Strut 3 Air Flow Direction 4 Concave Wall 5 Concave Final End Wall 6 Rearward Step Wall 7 Rearward Step Final End Wall 8 Fuel Injector 9 Fuel Injector 10 Chamber 10A Fuel Flow Road 11 Fuel injection direction 12 Slit or hole 13 Fuel injection direction 14 Fuel injection direction 15 Wedge injection direction 16 Blunt injection direction 17 Wedge shape 18 Blunt shape 19 Longitudinal vortex

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 酸化剤を含む気体の流路中に設けられた
燃料拡散手段と、この燃料拡散手段により流れを偏向さ
れた前記気体に燃料を供給する燃料供給手段とを備えた
燃料混合装置において、前記燃料拡散手段が前記流路の
流れ方向に平行な面で切った断面が前記気体の流れに対
して凹面をなす壁面をそなえていることと、前記燃料供
給手段は前記凹面をなす壁面の下流側端部の接線にほぼ
平行に燃料を放出する燃料噴出口を備えていることとを
特徴とする燃料混合装置。
1. A fuel mixing device comprising: a fuel diffusing means provided in a flow path of a gas containing an oxidant; and a fuel supplying means for supplying a fuel to the gas whose flow is deflected by the fuel diffusing means. In the above, the fuel diffusion means has a cross section cut by a plane parallel to the flow direction of the flow path, and the fuel supply means has a concave wall surface, and the fuel supply means has the concave wall surface. And a fuel injection port for discharging the fuel substantially parallel to the tangent line of the downstream end of the fuel mixing device.
【請求項2】 酸化剤を含む気体の流路中に設けられた
燃料拡散手段と、この燃料拡散手段により流れを偏向さ
れた前記気体に燃料を供給する燃料供給手段とを備えた
燃料混合装置において、燃料拡散手段は気体の流れ方向
に延びる前記気体の縦渦を発生する壁面を備え、燃料供
給手段は発生した前記縦渦中に燃料を噴射する燃料噴射
口を有することを特徴とする燃料混合装置。
2. A fuel mixing apparatus comprising: a fuel diffusing means provided in a flow path of a gas containing an oxidant; and a fuel supplying means for supplying a fuel to the gas whose flow is deflected by the fuel diffusing means. In the fuel mixture according to the invention, the fuel diffusing means has a wall surface that generates a vertical vortex of the gas extending in the gas flow direction, and the fuel supply means has a fuel injection port for injecting fuel into the generated vertical vortex. apparatus.
【請求項3】 請求項2に記載の燃料混合装置におい
て、燃料拡散手段は前記流路の流れ方向に平行な面で切
った断面が前記気体の流れに対して凹面をなす壁面を有
することを特徴とする燃料混合装置。
3. The fuel mixing device according to claim 2, wherein the fuel diffusing means has a wall surface whose cross section taken along a plane parallel to the flow direction of the flow path is concave with respect to the gas flow. Characteristic fuel mixing device.
【請求項4】 請求項1〜3のいずれかに記載の燃料混
合装置において、燃料を供給する燃料供給手段は、燃料
混合装置内部を通して燃料を凹面部分の下流側最終端か
ら該凹面の接線方向に噴射する噴射口を有することを特
徴とする燃料混合装置。
4. The fuel mixing device according to claim 1, wherein the fuel supply means for supplying fuel supplies the fuel through the inside of the fuel mixing device from the downstream end of the concave portion to the tangential direction of the concave surface. A fuel mixing device having an injection port for injecting into a fuel.
【請求項5】 請求項1〜4のいずれかに記載の燃料混
合装置において、燃料を供給する燃料供給手段は、燃料
混合装置内部を通して燃料を凹面部分の表面上から噴出
する噴出口を有することを特徴とする燃料混合装置。
5. The fuel mixing device according to any one of claims 1 to 4, wherein the fuel supply means for supplying the fuel has an ejection port for ejecting the fuel from the surface of the concave portion through the inside of the fuel mixing device. A fuel mixing device.
【請求項6】 請求項5に記載の燃料混合装置におい
て、凹面部分の表面上から噴出する噴出口が、気流方向
に設けたスリットまたは多孔質状の孔であることを特徴
とする燃料混合装置。
6. The fuel mixing device according to claim 5, wherein the ejection port ejecting from the surface of the concave portion is a slit or a porous hole provided in the air flow direction. .
JP23657593A 1993-09-22 1993-09-22 Fuel mixing device Pending JPH0791317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23657593A JPH0791317A (en) 1993-09-22 1993-09-22 Fuel mixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23657593A JPH0791317A (en) 1993-09-22 1993-09-22 Fuel mixing device

Publications (1)

Publication Number Publication Date
JPH0791317A true JPH0791317A (en) 1995-04-04

Family

ID=17002672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23657593A Pending JPH0791317A (en) 1993-09-22 1993-09-22 Fuel mixing device

Country Status (1)

Country Link
JP (1) JPH0791317A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4522558B2 (en) * 2000-08-11 2010-08-11 実 屋我 Method and apparatus for promoting fuel mixing for a scramjet engine
EP3098515A4 (en) * 2014-03-28 2017-03-22 Mitsubishi Heavy Industries, Ltd. Jet engine, flying body, and method of operating a jet engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4522558B2 (en) * 2000-08-11 2010-08-11 実 屋我 Method and apparatus for promoting fuel mixing for a scramjet engine
EP3098515A4 (en) * 2014-03-28 2017-03-22 Mitsubishi Heavy Industries, Ltd. Jet engine, flying body, and method of operating a jet engine
US10830439B2 (en) 2014-03-28 2020-11-10 Mitsubishi Heavy Industries, Ltd. Jet engine, flying object, and method of operating a jet engine

Similar Documents

Publication Publication Date Title
US4529358A (en) Vortex generating flow passage design for increased film cooling effectiveness
US4332529A (en) Jet diffuser ejector
JPH0692774B2 (en) Scramjet with combustor integral with inlet
US6572366B2 (en) Burner system
JPH06272862A (en) Method and apparatus for mixing fuel into air
US8272219B1 (en) Gas turbine engine combustor having trapped dual vortex cavity
US4899772A (en) Mixing aids for supersonic flows
US5333445A (en) Scramjet engine having improved fuel/air mixing
JP3821048B2 (en) Combustion device
JPH0791317A (en) Fuel mixing device
JP4522558B2 (en) Method and apparatus for promoting fuel mixing for a scramjet engine
JP2998405B2 (en) Scrumjet engine
JPH033776Y2 (en)
KR101954034B1 (en) Supersonic fuel injection apparatus
KR20220138612A (en) Apparatus injecting fuel and engine module comprising the same
JPH08296812A (en) Noise prevention means for premixed type gas burner
JPH074660A (en) Combustion heater
JP3042206B2 (en) Scrumjet engine
JP3994122B2 (en) Boundary layer separation control device, fuel injector, and control method
JP2953160B2 (en) Scrumjet engine
JPH08278008A (en) Premixture type gas burner
JP2998291B2 (en) Combustion equipment
JP2956229B2 (en) Combustion equipment
JP3504013B2 (en) Fuel injection device
JPH06280679A (en) Combustor and method for maintaining flame of the same