JPH07905Y2 - Heat flow measurement sensor - Google Patents

Heat flow measurement sensor

Info

Publication number
JPH07905Y2
JPH07905Y2 JP1828690U JP1828690U JPH07905Y2 JP H07905 Y2 JPH07905 Y2 JP H07905Y2 JP 1828690 U JP1828690 U JP 1828690U JP 1828690 U JP1828690 U JP 1828690U JP H07905 Y2 JPH07905 Y2 JP H07905Y2
Authority
JP
Japan
Prior art keywords
heat flow
resistance plate
heat
sensor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1828690U
Other languages
Japanese (ja)
Other versions
JPH03110337U (en
Inventor
康弘 宮田
耕一 杉山
桓 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP1828690U priority Critical patent/JPH07905Y2/en
Publication of JPH03110337U publication Critical patent/JPH03110337U/ja
Application granted granted Critical
Publication of JPH07905Y2 publication Critical patent/JPH07905Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、熱流密度を測定するための熱流測定センサに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a heat flow measuring sensor for measuring a heat flow density.

[従来の技術] 熱流測定センサは、熱流の存在する物体表面或いは内部
に熱流方向に直交するよう熱抵抗板を配置し、その熱抵
抗板の両面の温度差より熱流密度あるいは熱流を測定す
るものである。この原理を第4図により説明する。
[Prior Art] A heat flow measuring sensor is one in which a heat resistance plate is arranged on the surface or inside of an object where the heat flow exists so as to be orthogonal to the heat flow direction, and the heat flow density or the heat flow is measured from the temperature difference between both surfaces of the heat resistance plate. Is. This principle will be described with reference to FIG.

第4図において、1は熱流の存在する物体でその内部又
は表面に矢印で示した熱流Qの方向と直交するように薄
層の熱抵抗板2を配置する。この熱抵抗板2は、その熱
定数、すなわち、熱伝導率λ[W/(m℃)]で厚みd
(m)とし、その両面の温度差をΔTとすると、その位
置における熱流密度q(W/m2)は下式となる。
In FIG. 4, reference numeral 1 denotes an object in which a heat flow exists, and a thin layer heat resistance plate 2 is arranged inside or on the surface thereof so as to be orthogonal to the direction of the heat flow Q indicated by an arrow. The thermal resistance plate 2 has a thermal constant, that is, a thermal conductivity λ [W / (m ° C.)] and a thickness d.
(M) and the temperature difference between both surfaces is ΔT, the heat flow density q (W / m 2 ) at that position is given by the following equation.

q=λ/d・ΔT 従って熱定数、すなわちλやdが既知であれば熱抵抗板
2の両面の温度を検出すれば熱流密度qを測定できる。
q = λ / d · ΔT Therefore, if the thermal constants, that is, λ and d are known, the heat flow density q can be measured by detecting the temperatures on both surfaces of the thermal resistance plate 2.

従来この熱抵抗板2の両面の温度検出は差動配線した熱
電対が用いられている。この熱流測定センサを第5図に
より説明する。熱電対3は、銅線4とコンスタンタン線
5を交互に接続して形成され、その各接点6,7が熱抵抗
板2の両面に位置するよう螺旋状に巻かれて設けられ、
その両端がリード線8を介して指示計9に接続され、そ
の指示計9にて熱抵抗板2の両面の温度差が検出できる
ようになっている。
Conventionally, a differentially wired thermocouple has been used for temperature detection on both sides of the thermal resistance plate 2. This heat flow measuring sensor will be described with reference to FIG. The thermocouple 3 is formed by alternately connecting the copper wire 4 and the constantan wire 5, and each of the contacts 6 and 7 is spirally wound so as to be located on both sides of the thermal resistance plate 2,
Both ends thereof are connected to an indicator 9 via a lead wire 8, and the indicator 9 can detect a temperature difference between both surfaces of the thermal resistance plate 2.

[考案が解決しようとする課題] しかしながら上述の熱電対による温度差の検出はスポッ
ト式測定のため、例えば電力ケーブル等の長尺物の熱流
密度の測定には、熱流計のセンサ部(薄層熱抵抗板と熱
電対)が大量に必要となり、膨大なコストがかかる。ま
た温度測定に熱電対を用いているために電場や磁場があ
る所での測定に適さない問題がある。
[Problems to be Solved by the Invention] However, since the temperature difference detection by the thermocouple described above is a spot type measurement, for example, for measuring the heat flow density of a long object such as a power cable, the sensor part (thin layer) of the heat flow meter is used. A large amount of heat resistance plates and thermocouples are required, resulting in enormous cost. Moreover, since a thermocouple is used for temperature measurement, there is a problem that it is not suitable for measurement in a place where there is an electric field or magnetic field.

本考案の目的は、前記した従来技術の欠点を解消し、電
場や磁場の影響を受けずしかも連続した熱流密度分布を
求めることができる熱流測定センサを提供することにあ
る。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art, and to provide a heat flow measuring sensor which can obtain a continuous heat flow density distribution without being affected by an electric field or a magnetic field.

[課題を解決するための手段] 熱流方向に対して、予め熱定数の判った熱抵抗板を直交
するよう配置し、その熱抵抗板の両面の温度差より熱流
密度を求める熱流測定センサにおいて、上記熱抵抗板を
挟んで対称に温度測定用光ファイバを配置したものであ
る。
[Means for Solving the Problem] In a heat flow measurement sensor, a heat resistance plate whose thermal constant is known is arranged orthogonally to the heat flow direction, and the heat flow density is obtained from the temperature difference between both surfaces of the heat resistance plate. The temperature measuring optical fibers are symmetrically arranged with the thermal resistance plate sandwiched therebetween.

[作用] 上記の構成によれば熱抵抗板を挟んで対称に温度測定用
光ファイバを配置することで、その光ファイバの任意の
位置で熱抵抗板の表裏の温度差を求めてその熱流密度分
布を求めることができる。
[Operation] According to the above configuration, by arranging the temperature measurement optical fibers symmetrically with the thermal resistance plate sandwiched therebetween, the temperature difference between the front and back of the thermal resistance plate is obtained at an arbitrary position of the optical fiber, and the heat flow density thereof is obtained. The distribution can be calculated.

[実施例] 以下本考案の好適実施例を添付図面に基づいて説明す
る。
[Embodiment] A preferred embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図において10は予め熱伝導率λ[W/(m℃)」,厚
みd(m)などの熱定数が判ったた薄層熱抵抗板で、そ
の熱抵抗板10を挟んで対称位置に温度測定用光ファイバ
11a,11bが接着剤12にて接着固定されて本考案の熱流測
定センサが構成される。
In FIG. 1, 10 is a thin-layer heat resistance plate whose thermal constants such as thermal conductivity λ [W / (m ° C)] and thickness d (m) are known in advance. Optical fiber for temperature measurement
The heat flow measuring sensor of the present invention is constructed by adhesively fixing 11a and 11b with the adhesive 12.

この温度測定用光ファイバ11a,11bは一端からレーザ光
を入射し、温度で変化する後方散乱光を測定することで
各位置の温度を検出するもので、その両方の光ファイバ
11a,11bの対応した位置の各後方散乱光に基づく温度差
よりその位置の熱流密度を求めることができる。
These temperature measuring optical fibers 11a and 11b detect the temperature at each position by injecting laser light from one end and measuring backscattered light that changes with temperature.
The heat flow density at that position can be obtained from the temperature difference based on the backscattered light at the corresponding positions of 11a and 11b.

次に第1図に示したセンサを用いて被測定物の熱流密度
分布を求める例を第2図により説明する。
Next, an example of obtaining the heat flow density distribution of the object to be measured using the sensor shown in FIG. 1 will be described with reference to FIG.

第2図において、本考案の熱流測定センサは図示してい
ないが被測定物13の熱流方向に対して直交するように配
置されている。このセンサの光ファイバ11a,11bと一体
に接続される光ファイバ14a,14bが光スイッチ15に接続
され、そのスイッチ15が光ファイバ14を介して光ファイ
バ温度測定装置16に接続され、その光ファイバ温度測定
装置16に接続ケーブル17を介して演算器18が接続され
る。光スイッチ15は、光ファイバ温度測定装置16から光
ファイバ14を介し入射されるレーザ光を、いずれかの光
ファイバ14a,14bに切換え、被測定物13内の熱流測定セ
ンサの一方の光ファイバ11a,11bに入射し、その後方散
乱光を同一経路を介して光ファイバ温度測定装置16に戻
す。演算器18は、光ファイバ温度測定装置16で出射した
レーザ光と検出した後方散乱光から熱流測定センサの各
位置における温度を演算すると共にセンサの同一地点で
の温度差を求めて、センサの光ファイバ11a,11bに沿っ
た熱流密度分布を求めるようになっている。
In FIG. 2, the heat flow measuring sensor of the present invention is arranged so as to be orthogonal to the heat flow direction of the DUT 13 although not shown. The optical fibers 14a and 14b integrally connected to the optical fibers 11a and 11b of this sensor are connected to the optical switch 15, and the switch 15 is connected to the optical fiber temperature measuring device 16 via the optical fiber 14 and the optical fiber A calculator 18 is connected to the temperature measuring device 16 via a connection cable 17. The optical switch 15 switches the laser light incident from the optical fiber temperature measuring device 16 through the optical fiber 14 to one of the optical fibers 14a and 14b, and one optical fiber 11a of the heat flow measuring sensor in the DUT 13 is measured. , 11b, and the backscattered light is returned to the optical fiber temperature measuring device 16 via the same path. The calculator 18 calculates the temperature at each position of the heat flow measurement sensor from the laser light emitted by the optical fiber temperature measuring device 16 and the backscattered light detected, and also obtains the temperature difference at the same point of the sensor to obtain the light of the sensor. The heat flow density distribution along the fibers 11a and 11b is obtained.

すなわち、センサの熱抵抗板10の表裏で同一地点の温度
をT1,T2とするとその温度差はΔT=T1−T2であり、従
って光ファイバ11a,11bの長手方向の距離をxとすると
長手方向の熱流密度q(x)は、 q(x)=λ/d・ΔT(x) として求めることができる。
That is, assuming that the temperatures at the same point on the front and back of the thermal resistance plate 10 of the sensor are T 1 and T 2 , the temperature difference is ΔT = T 1 −T 2 , and therefore the distance in the longitudinal direction of the optical fibers 11a and 11b is x. Then, the heat flow density q (x) in the longitudinal direction can be obtained as q (x) = λ / d · ΔT (x).

第3図は本考案の他の実施例を示し、第3図(a)は熱
抵抗板10の表裏に光ファイバ11a,11bを埋め込んだ例を
示し、第3図(b)はさらにその表面に金属テープ19を
設置した例を示し、第3図(c)は光ファイバ11a,11b
を熱抵抗板10に複数本埋め込んだ例を示す。
FIG. 3 shows another embodiment of the present invention, FIG. 3 (a) shows an example in which optical fibers 11a and 11b are embedded in the front and back of the thermal resistance plate 10, and FIG. 3 (b) further shows the surface thereof. An example in which a metal tape 19 is installed on the optical fiber is shown in FIG. 3 (c).
An example in which a plurality of are embedded in the heat resistance plate 10 is shown.

なお、上述の実施例においては熱抵抗板10を挟んで2本
の光ファイバ11a,11bを配置する例で説明したが光ファ
イバを1本とし、熱抵抗板10を挟んで光ファイバを折り
返して対称位置に配置しても同じ機能を発揮できる。ま
た光ファイバ11a,11bを直線状に配置する例で説明した
が熱抵抗板10の面を覆うように折り曲げて設置すれば同
様の原理で面状の熱流分布も計測できる。
In the above-described embodiment, the example in which the two optical fibers 11a and 11b are arranged with the thermal resistance plate 10 sandwiched therebetween has been described, but one optical fiber is provided and the optical fiber is folded back with the thermal resistance plate 10 sandwiched. The same function can be achieved even if they are arranged symmetrically. Although the optical fibers 11a and 11b are linearly arranged, the planar heat flow distribution can be measured by the same principle if the optical fibers 11a and 11b are bent and installed so as to cover the surface of the thermal resistance plate 10.

[考案の効果] 以上説明してきたことから明らかなように本考案によれ
ば次のごとき効果を奏する。
[Effects of the Invention] As is apparent from the above description, the present invention has the following effects.

(1)熱抵抗板の長手方向に沿った熱流密度の測定が容
易に且つ安価に行える。
(1) The heat flow density along the longitudinal direction of the heat resistance plate can be easily measured at low cost.

(2)強電場、強磁場でも正確な測定が可能となる。(2) Accurate measurement is possible even in a strong electric field or strong magnetic field.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例を示す断面図、第2図は本考
案のセンサを用いて熱流密度分布を測定する装置のブロ
ック図、第3図は本考案の他の実施例を示す図、第4図
は熱流測定の原理を説明する図、第5図は従来の熱流測
定センサを示す斜視図である。 図中、10は熱流抵抗板、11a,11bは温度測定用光ファイ
バである。
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a block diagram of an apparatus for measuring a heat flow density distribution using a sensor of the present invention, and FIG. 3 is another embodiment of the present invention. 4 and 5 are diagrams for explaining the principle of heat flow measurement, and FIG. 5 is a perspective view showing a conventional heat flow measurement sensor. In the figure, 10 is a heat flow resistance plate, and 11a and 11b are optical fibers for temperature measurement.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】熱流方向に対して、予め熱定数の判った熱
抵抗板を直交するよう配置し、その熱抵抗板の両面の温
度差より熱流密度を求める熱流測定センサにおいて、上
記熱抵抗板を挟んで対称に温度測定用光ファイバを配置
したことを特徴とする熱流測定センサ。
1. A heat flow measuring sensor in which a heat resistance plate whose thermal constant is known is arranged orthogonally to the heat flow direction and the heat flow density is obtained from the temperature difference between both surfaces of the heat resistance plate. A heat flow measuring sensor characterized in that optical fibers for temperature measurement are symmetrically arranged with a pinch in between.
JP1828690U 1990-02-27 1990-02-27 Heat flow measurement sensor Expired - Fee Related JPH07905Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1828690U JPH07905Y2 (en) 1990-02-27 1990-02-27 Heat flow measurement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1828690U JPH07905Y2 (en) 1990-02-27 1990-02-27 Heat flow measurement sensor

Publications (2)

Publication Number Publication Date
JPH03110337U JPH03110337U (en) 1991-11-12
JPH07905Y2 true JPH07905Y2 (en) 1995-01-11

Family

ID=31521448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1828690U Expired - Fee Related JPH07905Y2 (en) 1990-02-27 1990-02-27 Heat flow measurement sensor

Country Status (1)

Country Link
JP (1) JPH07905Y2 (en)

Also Published As

Publication number Publication date
JPH03110337U (en) 1991-11-12

Similar Documents

Publication Publication Date Title
EP0159438A2 (en) Multi-layered thin film heat transfer gauge
CN106768493B (en) A kind of film thermal resistance heat flow transducer of series-fed
US11169102B2 (en) Method and measurement device for ascertaining the thermal conductivity of a fluid
US5520047A (en) Exothermic resistor element and thermal process air flow meter using the same
US3417617A (en) Fluid stream temperature sensor system
US4050302A (en) Thermoelectric heat flow transducer
JPH07905Y2 (en) Heat flow measurement sensor
KR101662713B1 (en) Thermal properties measurement sensors for thermoelectric thin film in cross-plane direction
CN106918398B (en) A kind of computer CPU temperature thermocouple structure
Klems et al. Large‐area, high‐sensitivity heat‐flow sensor
JPS61296229A (en) Thermocouple and method for mounting the same
JP3477837B2 (en) Magnet position measurement method
US3372587A (en) Heat flow detector head
JP2781269B2 (en) Optical fiber sensor
JP7127613B2 (en) heat transfer sensor
KR100912669B1 (en) Device for measuring heat transfer rate
JPS6010137A (en) Thermopile
JP7032432B2 (en) Heat transfer coefficient measuring element
RU2361184C2 (en) Device for determining heat transfer characteristics
JP2005030797A (en) Heat flux meter
SU428100A1 (en) HEAT FLUID HEAT FLOW METER
JP2000055743A (en) Multi-point mean temp. measuring apparatus
JPH04116464A (en) Fluid velocity sensor
SU708210A1 (en) Condensation gygrometer
KR20230023548A (en) Temperature measurement sensor module and temperature measurement system comprising the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees