JPH079041U - Zero-phase voltage detector connected to an insulator capacitor - Google Patents

Zero-phase voltage detector connected to an insulator capacitor

Info

Publication number
JPH079041U
JPH079041U JP3717393U JP3717393U JPH079041U JP H079041 U JPH079041 U JP H079041U JP 3717393 U JP3717393 U JP 3717393U JP 3717393 U JP3717393 U JP 3717393U JP H079041 U JPH079041 U JP H079041U
Authority
JP
Japan
Prior art keywords
capacitor
voltage
insulator
zero
voltage dividing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3717393U
Other languages
Japanese (ja)
Other versions
JP2602299Y2 (en
Inventor
龍美 池田
Original Assignee
株式会社戸上電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社戸上電機製作所 filed Critical 株式会社戸上電機製作所
Priority to JP1993037173U priority Critical patent/JP2602299Y2/en
Publication of JPH079041U publication Critical patent/JPH079041U/en
Application granted granted Critical
Publication of JP2602299Y2 publication Critical patent/JP2602299Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】 【構成】配電線路に接続された碍子コンデンサ(1)
(2)(3)とアース(E)間に設けられる零相電圧検
出器において、碍子コンデンサ(1)(2)(3)と直
列接続される分圧用コンデンサ(6)と、分圧用コンデ
ンサ(6)の分圧電圧を取り出す一次側に中間タップを
設けたマッチングトランス(8)と、マッチングトラン
ス(8)の中間タップに接続される模擬分圧コンデンサ
(7)と、マッチングトランス(8)の中間タップに碍
子コンデンサ(1)(2)(3)を模擬した模擬コンデ
ンサ(5)を設ける。 【効果】一般の高圧配電線の6600Vに設置された地
絡方向継電器において、一般の商用電源を昇圧、降圧し
て得られる600V未満の低電圧領域で大電流地絡特性
試験および他の試験ができる。また特別な試験要員を要
せず、一般の電気技術知識を有する者なら誰でも容易に
試験を行うことができる。
(57) [Abstract] [Structure] Insulator capacitor connected to distribution line (1)
(2) In the zero-phase voltage detector provided between (3) and the ground (E), a voltage dividing capacitor (6) connected in series with the insulator capacitors (1), (2) and (3) and a voltage dividing capacitor ( The matching transformer (8) provided with an intermediate tap on the primary side for extracting the divided voltage of 6), the simulated voltage dividing capacitor (7) connected to the intermediate tap of the matching transformer (8), and the matching transformer (8). A simulation capacitor (5) simulating the insulator capacitors (1), (2) and (3) is provided on the intermediate tap. [Effect] In a ground fault direction relay installed at 6600V of a general high voltage distribution line, a large current ground fault characteristic test and other tests can be performed in a low voltage region of less than 600V obtained by stepping up / down a general commercial power source. it can. In addition, no special test personnel are required, and anyone having general electrical engineering knowledge can easily perform the test.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、設置された地絡方向継電器に零相電圧を与える零相電圧検出器に関 し、特に、地絡方向継電器の試験等に模擬的な零相電圧を発生し得るようにし、 また大電流地絡特性試験が、低電圧領域で実施でき得るようにした此種零相電圧 検出器に関する。 The present invention relates to a zero-phase voltage detector that applies a zero-phase voltage to an installed ground fault direction relay, and in particular, to enable generation of a simulated zero phase voltage for testing of a ground fault direction relay, and The present invention relates to a zero-phase voltage detector of this kind which enables a high current ground fault characteristic test to be carried out in a low voltage region.

【0002】[0002]

【従来の技術】[Prior art]

配電線に設置された地絡方向継電器DGRは、図4に示すように配電線の電路 に設けた零相変流器ZCTと零相電圧検出器4による零相電流信号IZ と零相電 圧信号EZ により地絡事故時に零相変流器ZCTを境に地絡事故が電源側か負荷 側かを判別して負荷側の場合、保護動作を行わせるものである。Earth fault directional relay DGR installed in distribution line, zero-phase current signal I Z and the zero-phase electricity by the ZCT and the zero-phase voltage detector 4 provided in the path of the distribution line, as shown in FIG. 4 The pressure signal E Z determines whether the ground fault is on the power supply side or the load side at the boundary of the zero-phase current transformer ZCT at the time of the ground fault, and when the ground fault is on the load side, the protection operation is performed.

【0003】 通常、この地絡方向継電器は、年に1回以上の定期試験が実施される。 この試験において、従来、零相電圧検出器への印加電圧が600Vを超える高 圧域でなされていた。このため電源の入手性、試験作業の簡易化を目的として低 電圧領域で試験ができる解決策として実開昭62−111740号公報に記載さ れた零相検出器がある。 これは、模擬コンデンサの容量を碍子コンデンサ容量の1.3〜10倍とする ことにより、試験端子に600V未満の低電圧を印加することで試験ができるも のである。Usually, this ground fault direction relay is subjected to a periodic test once or more a year. In this test, conventionally, the applied voltage to the zero-phase voltage detector has been made in a high voltage range exceeding 600V. For this reason, there is a zero-phase detector disclosed in Japanese Utility Model Laid-Open No. 62-111740 as a solution capable of performing a test in a low voltage region for the purpose of availability of power source and simplification of test work. This can be tested by applying a low voltage of less than 600 V to the test terminal by setting the capacity of the simulated capacitor to 1.3 to 10 times the capacity of the insulator capacitor.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the device]

本装置に関する規格としては、日本工業規格JISC4609高圧受電用地絡 方向継電装置があり、この中には種々の動作確認項目が設定されている。 該規格に大電流地絡特性試験という項目があり、これは1線完全地絡を考慮し 碍子コンデンサの高圧側三相一括で3810V(個々の相では11430V)を 印加するように規定されている。 As a standard relating to this device, there is a Japanese Industrial Standard JISC4609 high voltage power receiving ground fault direction relay device, in which various operation confirmation items are set. There is an item called a large current ground fault characteristic test in this standard, and it is specified that 3810V (11430V for each phase) is applied collectively to the high voltage side three phases of the insulator capacitor in consideration of the one-wire complete ground fault. .

【0005】 ここで実開昭62−111740号公報に記載された装置では、前記の大電流 地絡特性試験では、試験端子Tに1143Vの電圧を印加することになる。この ため600Vを超えることになり、高電圧の取扱いとなり、試験装置、使用電線 等、高圧用を用いることになるので、作業性が悪くなる問題があった。In the device disclosed in Japanese Utility Model Laid-Open No. 62-111740, a voltage of 1143 V is applied to the test terminal T in the large current ground fault characteristic test. For this reason, the voltage exceeds 600 V, which means that high voltage is handled, and a high-voltage product such as a test device and an electric wire to be used is used, resulting in a problem that workability is deteriorated.

【0006】 本考案が解決すべき課題は、大電流地絡特性試験においても、600V以下の 低圧を印加して試験を行うことのできる零相電圧検出器を提供することにある。The problem to be solved by the present invention is to provide a zero-phase voltage detector capable of applying a low voltage of 600 V or less even in a large current ground fault characteristic test.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

前記課題を解決するため、本考案は、配電線路に接続された碍子コンデンサと アース間に設けられる零相電圧検出器において、前記碍子コンデンサと直列接続 される分圧用コンデンサと、該分圧用コンデンサの分圧電圧を取り出す一次側に 中間タップを設けたマッチングトランスと、該マッチングトランスの中間タップ に接続される模擬分圧コンデンサと、該マッチングトランスの中間タップに前記 碍子コンデンサを模擬した模擬コンデンサを設けたものである。 In order to solve the above-mentioned problems, the present invention provides a zero-phase voltage detector provided between an insulator capacitor connected to a distribution line and ground, and a voltage dividing capacitor connected in series with the insulator capacitor, and a voltage dividing capacitor of the voltage dividing capacitor. A matching transformer with an intermediate tap on the primary side for extracting the divided voltage, a simulated voltage dividing capacitor connected to the intermediate tap of the matching transformer, and a simulated capacitor simulating the insulator capacitor are provided on the intermediate tap of the matching transformer. It is a thing.

【0008】 この零相電圧検出器において、マッチングトランスの中間タップの巻数比を全 巻数の1/3以下とし、模擬コンデンサの容量を碍子コンデンサの容量の1.2 倍以下としたものとすることができる。In this zero-phase voltage detector, the winding ratio of the center tap of the matching transformer is set to 1/3 or less of the total number of turns, and the capacity of the simulated capacitor is set to 1.2 times or less of the capacity of the insulator capacitor. You can

【0009】 また、前記課題を解決するための他の手段は、配電線路に接続された碍子コン デンサとアース間に設けられる零相電圧検出器において、前記碍子コンデンサと 直列接続される分圧用コンデンサおよび模擬分圧コンデンサと、該分圧用コンデ ンサと模擬分圧コンデンサの分圧電圧を取り出すマッチングトランスと、前記分 圧用コンデンサと模擬分圧コンデンサとの接続点に前記碍子コンデンサを模擬し た模擬コンデンサを設けたものである。Another means for solving the above-mentioned problems is a zero-phase voltage detector provided between an insulator capacitor connected to a power distribution line and ground, and a voltage dividing capacitor connected in series with the insulator capacitor. And a simulated voltage dividing capacitor, a matching transformer for extracting the divided voltage of the voltage dividing capacitor and the simulated voltage dividing capacitor, and a simulated capacitor simulating the insulator capacitor at the connection point of the voltage dividing capacitor and the simulated voltage dividing capacitor. Is provided.

【0010】 この零相電圧検出器においては、模擬コンデンサの容量を碍子コンデンサ容量 の20倍以上としたものとすることができる。In this zero-phase voltage detector, the capacity of the simulated capacitor can be set to 20 times or more the capacity of the insulator capacitor.

【0011】[0011]

【作用】[Action]

第1の手段では中間タップ付のマッチングトランスを使用して試験電圧を昇圧 することにより、低電圧の試験電圧で、規定の大電流地絡特性試験が行える。 In the first method, a matching transformer with an intermediate tap is used to boost the test voltage, so that a specified large-current ground fault characteristic test can be performed at a low test voltage.

【0012】 また、第2の手段ではマッチングトランスに分圧用コンデンサと模擬分圧コン デンサを並列に設けることにより、コンデンサ昇圧を行い、第1の手段と同様に 、低電圧の試験電圧で、規定の大電流地絡特性試験が行える。Further, in the second means, the matching transformer is provided with the voltage dividing capacitor and the simulated voltage dividing capacitor in parallel to boost the capacitor, and similarly to the first means, the test voltage of the low voltage is used for the regulation. The large current ground fault characteristic test can be performed.

【0013】[0013]

【実施例】【Example】

以下、本考案を図面に示す実施例を参照しながら具体的に説明する。 図1は本考案の実施例を示すものであり、図中1,2,3は碍子コンデンサ、 4は零相電圧検出器、5は模擬コンデンサ、6は分圧用コンデンサ、7は模擬分 圧コンデンサ、8はマッチングトランス、Tは試験端子、y1 ,y2 は出力端子 、Eはアース部、DGRは地絡方向継電器、ZCTは零相変流器である。Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. FIG. 1 shows an embodiment of the present invention, in which 1,2,3 are insulator capacitors, 4 is a zero-phase voltage detector, 5 is a simulated capacitor, 6 is a voltage dividing capacitor, and 7 is a simulated voltage dividing capacitor. , 8 is a matching transformer, T is a test terminal, y 1 and y 2 are output terminals, E is a ground part, DGR is a ground fault direction relay, and ZCT is a zero-phase current transformer.

【0014】 本実施例では、マッチングトランス8の一次側にアース側より見て全巻数の1 /3以下の個所に中間タップを設け、この中間タップに模擬分圧コンデンサ7お よび模擬コンデンサ5を接続する。ここで、模擬コンデンサ5の容量を碍子コン デンサ容量の1.2倍とし、かつ分圧コンデンサ6と模擬分圧コンデンサ7を同 じ容量とし、中間タップを全巻数の1/17とすると、1線完全地絡に対し10 0%の電圧でも試験端子Tとアース部間に、6600×√3/1.2×17=5 60Vを印加すれば、マッチングトランス8の端子y1 ,y2 に規定の電圧信号 Vt が得られる。 このとき、マッチングトランス8の一次側には約24Vの電圧が出力される。In this embodiment, an intermediate tap is provided on the primary side of the matching transformer 8 at a position of 1/3 or less of the total number of turns as viewed from the ground side, and the simulated voltage dividing capacitor 7 and the simulated capacitor 5 are provided on this intermediate tap. Connecting. Here, assuming that the capacity of the simulated capacitor 5 is 1.2 times the capacity of the insulator capacitor, the voltage dividing capacitor 6 and the simulated voltage dividing capacitor 7 have the same capacity, and the intermediate tap is 1/17 of the total number of turns, 1 If 6600 × √3 / 1.2 × 17 = 560V is applied between the test terminal T and the ground even if the voltage is 100% with respect to the line complete ground fault, it is applied to the terminals y 1 and y 2 of the matching transformer 8. specified voltage signal V t is obtained. At this time, a voltage of about 24 V is output to the primary side of the matching transformer 8.

【0015】 また、他の実施例としては、模擬コンデンサ5の容量を碍子コンデンサ容量の 1.2倍とし、かつ模擬分圧コンデンサ7の容量を模擬コンデンサ5の容量の6 7倍とし、マッチングトランス8の中間タップを全巻数の1/3としたとき、試 験端子Tとアース部間に約540Vを印加すればマッチングトランス8の一次側 に約24Vの電圧が出力され、マッチングトランス8の二次側端子y1 ,y2 に 規定の電圧信号Vt が得られる。In another embodiment, the capacity of the simulated capacitor 5 is 1.2 times the capacity of the insulator capacitor, and the capacity of the simulated voltage dividing capacitor 7 is 67 times the capacity of the simulated capacitor 5, and the matching transformer is used. When the intermediate tap of 8 is 1/3 of the total number of turns, if a voltage of about 540V is applied between the test terminal T and the ground part, a voltage of about 24V is output to the primary side of the matching transformer 8, and the voltage of the matching transformer 8 is reduced. The specified voltage signal V t is obtained at the secondary terminals y 1 and y 2 .

【0016】 図2は本考案の他の実施例を示すものである。本実施例では、マッチングトラ ンス8の一次側に分圧コンデンサ6および模擬分圧コンデンサ7を設け、その接 続部に模擬コンデンサ5を接続する。模擬コンデンサ5と模擬分圧コンデンサ7 の容量比を、碍子コンデンサ1〜3と〔分圧用コンデンサ6+模擬分圧コンデン サ7〕との容量比に対し、20倍とし、マッチングトランス8の一次側インピー ダンス+分圧用コンデンサインピーダンスを模擬分圧コンデンサインピーダンス と比べはるかに大きくすると、完全地絡電圧に対し、100%の電圧でも、端子 Tとアース部間に570Vを印加すれば、マッチングトランス8の端子y1 ,y2 に規定の電圧Vt が得られる。FIG. 2 shows another embodiment of the present invention. In this embodiment, the voltage dividing capacitor 6 and the simulated voltage dividing capacitor 7 are provided on the primary side of the matching transformer 8, and the simulated capacitor 5 is connected to the connecting portion. The capacitance ratio of the simulated capacitor 5 and the simulated voltage dividing capacitor 7 is set to 20 times the capacitance ratio of the insulator capacitors 1 to 3 and the [voltage dividing capacitor 6 + simulated voltage dividing capacitor 7], and the impedance of the primary side of the matching transformer 8 is increased. If the impedance of the dance + voltage dividing capacitor is made much larger than the simulated voltage dividing capacitor impedance, if 570V is applied between the terminal T and the ground even if the voltage is 100% of the complete ground fault voltage, the terminal of the matching transformer 8 The specified voltage V t is obtained for y 1 and y 2 .

【0017】 図3は図2の回路の各コンデンサの容量から模擬コンデンサ5の容量C4 を計 算するための回路図であり、C1 は碍子コンデンサの三相一括の合成容量、C2 は分圧用コンデンサ6の容量、C3 は模擬分圧コンデンサ7の容量を示している 。なお、マッチングトランス8の一次側のインピーダンスは各容量に対して充分 大きいものとする。FIG. 3 is a circuit diagram for calculating the capacity C 4 of the simulated capacitor 5 from the capacity of each capacitor in the circuit of FIG. 2, where C 1 is the combined capacity of the three-phase insulator capacitors, and C 2 is The capacity of the voltage dividing capacitor 6 and C 3 indicate the capacity of the simulated voltage dividing capacitor 7. The impedance of the primary side of the matching transformer 8 is sufficiently large for each capacitance.

【0018】 U〜W端子とE端子間にV1 を印加すると、マッチングトランス8の一次側電 圧V4 は次のようになる。 V4 =V1 [C1 /{(C2 3 )/(C2 +C3 )+C1 }]When V 1 is applied between the U and W terminals and the E terminal, the primary side voltage V 4 of the matching transformer 8 becomes as follows. V 4 = V 1 [C 1 / {(C 2 C 3 ) / (C 2 + C 3 ) + C 1 }]

【0019】 一方、端子TとE間にV2 を印加すると、マッチングトランス8の一次側電圧 V4 は次のようになる。 V4 =V2 {C4 /(C3 +C4 )}On the other hand, when V 2 is applied between the terminals T and E, the primary side voltage V 4 of the matching transformer 8 becomes as follows. V 4 = V 2 {C 4 / (C 3 + C 4 )}

【0020】 実際にV1 を印加した場合と試験端子に印加する電圧V2 とで、V4 が同じに なるようにするためには、 V1[C1/{(C2 3)/(C2+C3)+C1}]=V2{C4/(C3+C4)}In order to make V 4 the same when V 1 is actually applied and when the voltage V 2 is applied to the test terminal, V 1 [C 1 / {(C 2 C 3 ) / (C 2 + C 3 ) + C 1 }] = V 2 {C 4 / (C 3 + C 4 )}

【0021】 また、大電流地絡特性試験時のV1 =11432V(=6600√3)のとき 、V2 ≦600Vとしたいのであるから、 C1/{(C2 3)/(C2+C3)+C1}/{C4/(C3+C4)}≧20 この式に、現行のC1 ,C2 +C3 の値を代入し、C3 とC4 の容量の比を設 定すると、C4 の値が求められる。Further, when V 1 = 11432V (= 6600√3) in the high current ground fault characteristic test, it is desired to set V 2 ≦ 600V. Therefore, C 1 / {(C 2 C 3 ) / (C 2 + C 3 ) + C 1 } / {C 4 / (C 3 + C 4 )} ≧ 20 By substituting the current values of C 1 , C 2 + C 3 into this formula, the capacity ratio of C 3 and C 4 is set. Then, the value of C 4 is obtained.

【0022】[0022]

【考案の効果】[Effect of device]

上述したように、本考案によれば、一般の高圧配電線の6600Vに設置され た地絡方向継電器において、一般の商用電源を昇圧、降圧して得られる600V 未満の低電圧領域で大電流地絡特性試験および他の試験ができる。このため、試 験装置も、特別な試験要員を要せず、一般の電気技術知識を有する者なら誰でも 容易に試験を行うことができる等、優れた効果を発揮する。 As described above, according to the present invention, in a ground fault direction relay installed at 6600V of a general high-voltage distribution line, a large current ground in a low voltage region of less than 600V obtained by stepping up / down a general commercial power source. It is possible to conduct a tangential property test and other tests. For this reason, the test apparatus does not require special test personnel, and anyone having general electrical technology knowledge can easily carry out the test, thus exhibiting excellent effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本考案の第1の手段の実施例を示す回路図で
ある。
FIG. 1 is a circuit diagram showing an embodiment of the first means of the present invention.

【図2】 本考案の第2の手段の実施例を示す回路図で
ある。
FIG. 2 is a circuit diagram showing an embodiment of the second means of the present invention.

【図3】 図2の実施例における容量を計算するための
回路図である。
FIG. 3 is a circuit diagram for calculating a capacitance in the embodiment of FIG.

【図4】 従来例の回路図である。FIG. 4 is a circuit diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1,2,3 碍子コンデンサ、4 零相電圧検出器、5
模擬コンデンサ、6分圧用コンデンサ、7 模擬分圧
コンデンサ、8 マッチングトランス、T 試験端子、
1 ,y2 出力端子、E アース部、DGR 地絡方
向継電器、ZCT 零相変流器、U,V,W 充電部、
N 中性点端子
1,2,3 Insulator capacitors, 4 Zero phase voltage detector, 5
Simulated capacitor, 6 voltage dividing capacitor, 7 simulated voltage dividing capacitor, 8 matching transformer, T test terminal,
y 1 and y 2 output terminals, E ground section, DGR ground fault direction relay, ZCT zero phase current transformer, U, V, W charging section,
N Neutral point terminal

Claims (4)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 配電線路に接続された碍子コンデンサと
アース間に設けられる零相電圧検出器において、前記碍
子コンデンサと直列接続される分圧用コンデンサと、該
分圧用コンデンサの分圧電圧を取り出す一次側に中間タ
ップを設けたマッチングトランスと、該マッチングトラ
ンスの中間タップに接続される模擬分圧コンデンサと、
該マッチングトランスの中間タップに前記碍子コンデン
サを模擬した模擬コンデンサを設けたことを特徴とする
碍子コンデンサに接続される零相電圧検出器。
1. A zero-phase voltage detector provided between an insulator capacitor connected to a power distribution line and a ground, wherein a voltage dividing capacitor connected in series with the insulator capacitor and a primary voltage for extracting a divided voltage of the voltage dividing capacitor. A matching transformer provided with an intermediate tap on the side, and a simulated voltage dividing capacitor connected to the intermediate tap of the matching transformer,
A zero-phase voltage detector connected to an insulator capacitor, wherein the intermediate tap of the matching transformer is provided with a simulated capacitor simulating the insulator capacitor.
【請求項2】 マッチングトランスの中間タップの巻数
比を全巻数の1/3以下とし、模擬コンデンサの容量を
碍子コンデンサの容量の1.2倍以下としたことを特徴
とする請求項1記載の碍子コンデンサに接続される零相
電圧検出器。
2. The winding ratio of the intermediate tap of the matching transformer is set to 1/3 or less of the total number of turns, and the capacity of the simulated capacitor is set to 1.2 times or less of the capacity of the insulator capacitor. Zero-phase voltage detector connected to an insulator capacitor.
【請求項3】 配電線路に接続された碍子コンデンサと
アース間に設けられる零相電圧検出器において、前記碍
子コンデンサと直列接続される分圧用コンデンサおよび
模擬分圧コンデンサと、該分圧用コンデンサと模擬分圧
コンデンサの分圧電圧を取り出すマッチングトランス
と、前記分圧用コンデンサと模擬分圧コンデンサとの接
続点に前記碍子コンデンサを模擬した模擬コンデンサを
設けたことを特徴とする碍子コンデンサに接続される零
相電圧検出器。
3. A zero-phase voltage detector provided between an insulator capacitor connected to a power distribution line and a ground, wherein a voltage dividing capacitor and a simulated voltage dividing capacitor are connected in series with the insulator capacitor, and the voltage dividing capacitor and the capacitor. A matching transformer for extracting a divided voltage of the voltage dividing capacitor, and a simulation capacitor simulating the insulator capacitor is provided at a connection point between the voltage dividing capacitor and the simulated voltage dividing capacitor. Zero connected to the insulator capacitor. Phase voltage detector.
【請求項4】 模擬コンデンサの容量を碍子コンデンサ
容量の20倍以上としたことを特徴とする請求項3記載
の碍子コンデンサに接続される零相電圧検出器。
4. The zero-phase voltage detector connected to an insulator capacitor according to claim 3, wherein the capacity of the simulated capacitor is 20 times or more the capacity of the insulator capacitor.
JP1993037173U 1993-07-07 1993-07-07 Zero-phase voltage detector connected to insulator capacitor Expired - Fee Related JP2602299Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1993037173U JP2602299Y2 (en) 1993-07-07 1993-07-07 Zero-phase voltage detector connected to insulator capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1993037173U JP2602299Y2 (en) 1993-07-07 1993-07-07 Zero-phase voltage detector connected to insulator capacitor

Publications (2)

Publication Number Publication Date
JPH079041U true JPH079041U (en) 1995-02-07
JP2602299Y2 JP2602299Y2 (en) 2000-01-11

Family

ID=12490210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1993037173U Expired - Fee Related JP2602299Y2 (en) 1993-07-07 1993-07-07 Zero-phase voltage detector connected to insulator capacitor

Country Status (1)

Country Link
JP (1) JP2602299Y2 (en)

Also Published As

Publication number Publication date
JP2602299Y2 (en) 2000-01-11

Similar Documents

Publication Publication Date Title
RU2489724C1 (en) Method of identifying type of short-circuiting in electric power line
Kersting et al. A new approach to modeling three-phase transformer connections
CN108802531B (en) High-low voltage ride through testing device with ground short circuit function
Sidhu et al. A power transformer protection technique with stability during current transformer saturation and ratio-mismatch conditions
YALÇIN et al. A study of symmetrical and unsymmetrical short circuit fault analyses in power systems
Acha et al. General frame of reference for analysis of harmonic distortion in systems with multiple transformer nonlinearities
CN107748311B (en) Short circuit bearing capacity verification system of power transformer
Kustov et al. Analysis of the highest harmonic component in networks with isolated neutral in single-phase short circuit
CN215599288U (en) Distribution intelligent terminal grounding performance testing device
Bellan et al. Circuit representation of voltage unbalance emission due to line asymmetry
CN108459233B (en) Equivalent circuit of main transformer high-voltage two-phase disconnection fault and identification method
JPH079041U (en) Zero-phase voltage detector connected to an insulator capacitor
Kersting et al. Modeling and analysis of unsymmetrical transformer banks serving unbalanced loads
Schurig A Miniature AC. Transmission System For the Practical Solution of Network and Transmission-System Problems
RU2050660C1 (en) Method for detecting defective phases in power transmission line or feeder
Charalambous et al. Validation of a power transformer model for ferroresonance with system tests on a 400 kV circuit
Lin et al. Transient model and simulation in three-phase three-limb transformers
Kersting Center tapped transformer and 120/240 volt secondary models
Stewart et al. Transformer winding selection associated with reconfiguration of existing double circuit line to six-phase operation
CN219695263U (en) 400V factory system bus voltage-loss switching verification device
Chen Complex short circuit MVA method for power system studies
CN212160056U (en) Current transformer and current loop test device
Chhetija et al. Negative Sequence Power based Fault Detection Scheme for Power Islands during Unbalanced Faults
Phyu Study and Analysis of Double-Line-To-Ground Fault
Dougherty et al. The EEI ac/dc transmission model

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees