JPH0789945B2 - Method for producing 3,3,3-trifluoropropene oxide - Google Patents

Method for producing 3,3,3-trifluoropropene oxide

Info

Publication number
JPH0789945B2
JPH0789945B2 JP2039661A JP3966190A JPH0789945B2 JP H0789945 B2 JPH0789945 B2 JP H0789945B2 JP 2039661 A JP2039661 A JP 2039661A JP 3966190 A JP3966190 A JP 3966190A JP H0789945 B2 JPH0789945 B2 JP H0789945B2
Authority
JP
Japan
Prior art keywords
exhaust gas
trifluoropropene
tfpo
tfp
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2039661A
Other languages
Japanese (ja)
Other versions
JPH03244386A (en
Inventor
恒一 加藤
敬三 古橋
尚史 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP2039661A priority Critical patent/JPH0789945B2/en
Publication of JPH03244386A publication Critical patent/JPH03244386A/en
Publication of JPH0789945B2 publication Critical patent/JPH0789945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、3,3,3−トリフルオロプロペン(以下「TFP」
と略称する)を微生物酸化により3,3,3−トリフルオロ
プロペンオキシド(以下「TFPO」と略称する)の工業的
な製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to 3,3,3-trifluoropropene (hereinafter referred to as “TFP”).
Abbreviated as “)” by microbial oxidation to industrially produce 3,3,3-trifluoropropene oxide (hereinafter abbreviated as “TFPO”).

〔従来の技術〕 TFPOは、合成樹脂、界面活性剤医薬或いは農薬をはじめ
とする種々の有機化学製品の製造原料中間体として広範
囲に利用することができる。
[Prior Art] TFPO can be widely used as a raw material intermediate for the production of various organic chemical products such as synthetic resins, surfactant drugs or agricultural chemicals.

これらの製造方法として、本発明者は、TFPを微生物に
より酸化してエポキシ化する方法を提案した(特公昭61
−14798号公報、同63−50996号公報)。これらの方法で
は、TFPを微生物と作用させ、反応後の混合ガスをドラ
イアイス−メタノールで冷却したトラップ管に導き、凝
縮させてTFPOを分離し、精製していた。
As a method for producing these, the present inventor has proposed a method in which TFP is oxidized by a microorganism to be epoxidized (Japanese Patent Publication Sho 61).
-14798 and 63-50996). In these methods, TFP was allowed to react with microorganisms, the mixed gas after the reaction was introduced into a trap tube cooled with dry ice-methanol, and condensed to separate and purify TFPO.

しかし、この方法は、大量生産するためには、あまりに
もコストがかかりすぎ、好ましいものではなかった。
However, this method is too costly and not preferable for mass production.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明者は、上記問題点を解決すべく、鋭意検討した結
果、微生物を含む反応培地にTFPをガス状態で連続的に
導入するとともに、反応生成物をガス状態で抜き出し、
有機溶媒で吸収させることにより、安定的に、連続し
て、容易に、分離、精製できることが分かった。
The present inventor, in order to solve the above problems, as a result of diligent studies, while continuously introducing TFP in a gas state into a reaction medium containing microorganisms, withdrawing the reaction product in a gas state,
It was found that by absorbing with an organic solvent, it is possible to stably and continuously separate and purify.

本発明は、このような知見に基づきなされたもので、本
発明の目的は、TFPOを、大量に、安価に製造する方法を
提供することにある。
The present invention has been made based on such findings, and an object of the present invention is to provide a method for producing TFPO in large quantities at low cost.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、TFPをガス状態で菌体と好気的条件下に接触
し、転化されたTFPOをガス状態で他の排出ガスとともに
取り出し、当該排出ガスを、前記TFPOを優先的に溶解す
る有機溶剤と接触させて前記TFPOを当該有機溶剤に吸収
し、この吸収液を加熱して前記TFPOを脱離、回収するこ
とから構成されるものであり、更には、TFPOを有機溶剤
で吸収、除去した排ガスを、アルカリ溶液と接触させ
て、当該排ガス中の炭酸ガスを吸収除去し、ついで、こ
の排ガスに、反応で消費されたTFP及び酸素を補充し
て、再度菌体と接触、反応させる構成をとるものであ
る。
In the present invention, TFP is brought into contact with bacteria in a gas state under aerobic conditions, converted TFPO is taken out together with other exhaust gas in a gas state, and the exhaust gas is an organic substance that preferentially dissolves the TFPO. It consists of contacting with a solvent to absorb the TFPO into the organic solvent, heating the absorbing solution to remove and recover the TFPO, and further absorbs and removes TFPO with the organic solvent. The exhaust gas is brought into contact with an alkaline solution to absorb and remove carbon dioxide gas in the exhaust gas, and then the exhaust gas is supplemented with TFP and oxygen consumed in the reaction, and again contacted with and reacted with bacterial cells. Is taken.

本発明の上記菌体は、ノカルデイア属(Nocardia)、ミ
クロコッカス属(Micrococcus)、アスロバクター属(A
rthrobacter)、コリネバクテリウム属(Corynebacteri
um)、マイコバクテリウム(Mycobacterium)、ロドコ
ッカス属(Rhodococcus)ブレビバクテリウム属(Brevi
bacterium)等から選択されるエポキシド生産能を有す
る微生物を用いることが好適であり、これらの菌体の性
質については、特公昭61−14798号公報或いは特公昭63
−50996号公報に詳細に記載されている。
The above-mentioned bacterial cells of the present invention include Nocardia, Micrococcus, and Astrobacter (A).
rthrobacter), Corynebacteri
um), Mycobacterium, Rhodococcus, Brevibacterium
It is preferable to use a microorganism having an epoxide-producing ability selected from bacterium) and the like, and the characteristics of these cells are described in JP-B-61-14798 or JP-B-63.
It is described in detail in Japanese Patent Publication No. 50996.

本発明においては、上記菌体にTFPをガス状態で好気的
条件下に接触させてTFPOに転化させる。すなわち、上記
菌体を含む培養液に、ガス状のTFPを空気等の酸素含有
ガスとともに供給して、菌体と接触させ、TFPOへ変換さ
せる。この場合、培養液中の菌体の濃度としては、乾燥
菌体重量で5〜100g/lで行うことが好ましい。菌体濃度
が5g/l以下だとTFPをTFPOへの転化効率が悪く、エポキ
シドの生産量が低くなり、また逆に、100g/l以上とする
と、好気的条件を保つための撹拌に負荷がかかりすぎ
て、コストアップにつながり、好ましくない。この転化
反応は、pH5〜9、好ましくは6〜8の領域で、20〜50
℃、好ましくは25〜45℃の温度下に行なわれる。
In the present invention, the above-mentioned bacterial cells are contacted with TFP in a gas state under aerobic conditions to be converted into TFPO. That is, a gaseous TFP is supplied together with an oxygen-containing gas such as air to a culture solution containing the above-mentioned microbial cells, and brought into contact with the microbial cells to be converted into TFPO. In this case, the concentration of the bacterial cells in the culture solution is preferably 5 to 100 g / l in terms of dry bacterial cell weight. When the cell concentration is 5 g / l or less, the conversion efficiency of TFP to TFPO is poor, and the production of epoxide is low. Conversely, when it is 100 g / l or more, agitation is required to maintain aerobic conditions. It is not preferable because it costs too much and leads to an increase in cost. This conversion reaction is carried out in the range of pH 5-9, preferably 6-8, at 20-50
C., preferably 25 to 45.degree. C.

また、TFPの供給は、酸素含有ガスが空気のように酸素
濃度が20%程度のものを用いるときは、当該ガスに対
し、0.5〜4.5%或いは20%以上とし、爆発限界の範囲に
入らないようなTFPの濃度にすることが安全上好まし
い。この場合、TFPと菌の接触時間が、0.1〜10分となる
ように供給量を調整すると良い。また、この反応は、常
圧下で行なっても良いが、減圧下でも、加圧下でも、0.
1〜10kg/cm2圧力範囲であれば、何ら支障がない。
Also, when using an oxygen-containing gas with an oxygen concentration of about 20%, such as air, the TFP supply should be 0.5-4.5% or 20% or more of that gas, and not within the explosion limit range. It is preferable from the safety point of view that the concentration of TFP is as described above. In this case, it is advisable to adjust the supply amount so that the contact time between TFP and bacteria is 0.1 to 10 minutes. Further, this reaction may be carried out under normal pressure, but also under reduced pressure or under pressure.
There is no problem in the pressure range of 1 to 10 kg / cm 2 .

この反応において、培養液として炭素源、窒素源その他
の塩類等の成分を適宜添加した液を用いると菌体の反応
活性を長時間保持でき、さらには活性を高めることがで
き好ましい。この場合、前記炭素源としては糖質、例え
ばグルコース、シュクロース、糖蜜、澱粉加水分解物或
いはセルローズ加水分解物、炭化水素、例えばプロパ
ン、ブタン、ドデカン、テトラデカン及び酢酸等を好適
に用いることができる。また、上記窒素源としては塩化
アンモニウム、硫酸アンモニウム、リン酸アンモニウ
ム、硝酸アンモニウム、尿素、アンモニア水、アミノ酸
及びその他の資化性有機窒素化合物等が、さらに他の塩
類としてはリン酸カリウム、リン酸ナトリウム、硫酸マ
グネシウム、硫酸マンガン、硫酸第1鉄、塩化第1鉄、
塩化カルシウム、塩化マグネシウム等が好適である。更
には、この培養液には、必要に応じてビタミン類、酵母
エキス、コーンスティープリカーのような菌体の成長を
促進するような物質を添加しても良い。
In this reaction, it is preferable to use a liquid in which components such as a carbon source, a nitrogen source and other salts are appropriately added as the culture liquid because the reaction activity of the bacterial cells can be maintained for a long time and the activity can be further enhanced. In this case, as the carbon source, sugars such as glucose, sucrose, molasses, starch hydrolyzate or cellulose hydrolyzate, hydrocarbons such as propane, butane, dodecane, tetradecane and acetic acid can be preferably used. . As the nitrogen source, ammonium chloride, ammonium sulfate, ammonium phosphate, ammonium nitrate, urea, aqueous ammonia, amino acids and other assimilable organic nitrogen compounds and the like, potassium phosphate, sodium phosphate as other salts, Magnesium sulfate, manganese sulfate, ferrous sulfate, ferrous chloride,
Calcium chloride, magnesium chloride and the like are preferable. Further, substances such as vitamins, yeast extract and corn steep liquor that promote the growth of bacterial cells may be added to the culture solution, if necessary.

次に、この排出ガスをTFPOを優先的に溶解する有機溶剤
と接触させる。TFPOを優先的に溶解する有機溶剤とは、
当該排出ガス中に含有される各種成分中で、他の成分に
比べてTFPOを溶解する能力が優れているものをいい、ジ
エチレングリコールジメチルエーテル(ジグリム)、ト
リエチレングリコールジメチルエーテル(トリグリ
ム)、テトラエチレングリコールジメチルエーテル(テ
トラグリム)、イソプロパノール、エチレングリコー
ル、n−ブタノール、トリエチルアミン、n−ヘキサ
ン、n−ヘプタン、ジメチルスルホキシド、N,N−ジメ
チルホルムアミド等を例示することができるが、特に
は、ジグリム、トリグリム又はテトラグリムがTFPOの溶
解選択性が高いため好ましい。この排出ガス中には、TF
POの他、未反応のTFP、二酸化炭素及び残存酸素、水分
等が含まれているが、TFPOが優先的に、またTFPも同時
に吸収される。この吸収は、−40〜80℃の温度で行うの
が最も吸収の効率がよく、また圧力は、0.1〜10kg/cm2
の範囲において適宜選択するとよい。また吸収液の使用
量は、排出ガスの量及び当該排出ガス中の各成分の量を
勘案して決められるが、特には、TFPOの生成速度(流
量)の10〜2000倍の流量(重量比)範囲で、適宜選定す
ると良い。
The exhaust gas is then contacted with an organic solvent that preferentially dissolves TFPO. What is an organic solvent that preferentially dissolves TFPO?
Of the various components contained in the exhaust gas, those that have a better ability to dissolve TFPO than other components, such as diethylene glycol dimethyl ether (diglyme), triethylene glycol dimethyl ether (triglyme), tetraethylene glycol dimethyl ether. (Tetraglyme), isopropanol, ethylene glycol, n-butanol, triethylamine, n-hexane, n-heptane, dimethyl sulfoxide, N, N-dimethylformamide and the like can be exemplified, but in particular, diglyme, triglyme or tetra Glyme is preferred because of its high TFPO dissolution selectivity. In this exhaust gas, TF
In addition to PO, unreacted TFP, carbon dioxide and residual oxygen, water, etc. are contained, but TFPO is absorbed preferentially and TFP is also absorbed at the same time. This absorption is most efficiently performed at a temperature of −40 to 80 ° C., and the pressure is 0.1 to 10 kg / cm 2
It may be appropriately selected within the range. The amount of absorption liquid used is determined by considering the amount of exhaust gas and the amount of each component in the exhaust gas, but especially the flow rate (weight ratio) of 10 to 2000 times the production rate (flow rate) of TFPO. ) It is advisable to select as appropriate within the range.

このようにしてTFPOを吸収した吸収液は、一般には、使
用する吸収溶剤の沸点まで加熱することにより、TFPOを
回収することができる。この場合、同時に吸収されたTF
Pは、蒸留によりTFPOから簡便に分離、除去できる。
The absorbing liquid thus absorbing TFPO can generally recover TFPO by heating it to the boiling point of the absorbing solvent used. In this case, TF absorbed at the same time
P can be easily separated and removed from TFPO by distillation.

尚、上記TFPOの吸収においては、吸収条件を調節するこ
とによりTFPOとともにTFPのほとんど全量を吸収させる
ことも当然にでき、この場合は、上述の最終工程のTFPO
とTFPとの分離の蒸留装置の能力を大きくすることが対
処でき、当然に、かかる方法も本発明に包含されるもの
である。
Incidentally, in the above-mentioned absorption of TFPO, it is naturally possible to absorb almost all the amount of TFP together with TFPO by adjusting the absorption conditions. In this case, TFPO in the final step described above is absorbed.
Increasing the capacity of the distillation apparatus for separation of TFP and TFP can be addressed and, of course, such methods are also included in the present invention.

[実施例] 以下に本発明の実施例を図に基づいて述べる。図は、本
発明を実施したプロセスのフローを示すものである。
[Examples] Examples of the present invention will be described below with reference to the drawings. The figure shows the flow of the process implementing the invention.

このプロセスは、種菌を増殖させる前培養装置1、前培
養装置1で培養された菌をさらに増殖させるための本培
養装置2、本培養装置2の培養液の菌体を濃縮するため
の遠心分離器3、前記濃縮菌体液を用いてTFPをTFPOに
転化する反応槽4、当該反応槽4から排出されるガス中
のTFPOを回収するための吸収塔5、当該吸収塔5でTFPO
を吸収した吸収液からTFPOを離脱させる溶剤回収塔6、
溶剤回収塔6で回収されたガス中のTFPOとTFPとを分離
するTFP回収塔7、吸収塔5から排出されるTFPO回収残
ガス中の二酸化炭素を回収する二酸化炭素吸収塔8及び
溶剤回収等6で回収された溶剤から水を除去する溶剤脱
水塔9等の装置からなり、反応工程以降のプロセスは連
続的に行われ、反応排出ガス系はクローズドシステムと
なっている。このプロセスを用いて、次の条件のもとに
反応、回収等を行った。
This process includes a pre-culture apparatus 1 for growing inoculum, a main culture apparatus 2 for further growing the bacteria cultured in the pre-culture apparatus 1, and a centrifugal separation for concentrating the cells of the culture solution of the main culture apparatus 2. Vessel 3, reaction tank 4 for converting TFP to TFPO using the concentrated bacterial cell liquid, absorption tower 5 for collecting TFPO in the gas discharged from the reaction tank 4, TFPO in the absorption tower 5
Solvent recovery tower 6 for separating TFPO from the absorbing liquid that has absorbed
TFP recovery tower 7 for separating TFPO and TFP in the gas recovered in solvent recovery tower 6, carbon dioxide absorption tower 8 for recovering carbon dioxide in the TFPO recovery residual gas discharged from absorption tower 5, and solvent recovery, etc. It is composed of a device such as a solvent dehydration tower 9 for removing water from the solvent recovered in 6, and the processes after the reaction process are continuously performed, and the reaction exhaust gas system is a closed system. Using this process, reaction, recovery, etc. were performed under the following conditions.

20の前培養装置1に、KH2PO4,43重量部、Na2HPO4・12
H2O,67重量部、MgSO4・7H2O,15重量部、FeSO4・7H2O,1
重量部の組成からなる塩類118g、コーンスティープリカ
ー50g、消泡剤10ml、水道水10を入れ、121℃で30分間
滅菌し、これに、別途121℃で20分間殺菌した50%グル
コース水溶液800ml、20%尿素水溶液200mlを加え、これ
にフラスコで培養したノカルディア・コラリーナB−27
6(工業技術院微生物工業技術研究所寄託番号FERM−P
−4094)の種菌0.5を入れ、30℃の温度で、空気5/
minを供給しながら24時間培養した。この培養液を、上
記組成の塩類12.6kg、コーンスティープリカー5kg、消
泡剤1を水道水800に溶解して121℃で30分間殺菌
し、これに、グルコース75kgを300の水道水、尿素7.5
kgを100の水道水にそれぞれ溶解して140℃で2分間殺
菌した後加えて、2m2の本培養装置2に移し、30℃の温
度で、空気500/minの通気量で48時間培養を行った。
この培養液を遠心分離器3で約3倍に濃縮し、この濃縮
液を2m3の反応槽4に移し、これにKH2PO4,1.74kg、MgSO
4・7H2O,1.5kgを溶解した水道水を加え、1000とし
た。この反応槽4に、50%グルコース溶液を2.7kg/hrの
速度で加えながら、原料ガスを179.1kg/hrの速度で通気
し、35℃で反応を行った。反応槽4に供給する原料ガス
は、二酸化炭素吸収塔8からの排ガスおよびTFP回収塔
7から回収されたTFPに、酸素及びTFPを添加したもので
ある。
KH 2 PO 4 , 43 parts by weight, Na 2 HPO 4
H 2 O, 67 parts by weight, MgSO 4 · 7H 2 O, 15 parts by weight, FeSO 4 · 7H 2 O, 1
Salt consisting of parts by weight of 118g, corn steep liquor 50g, defoaming agent 10ml, tap water 10 sterilized, sterilized at 121 ℃ for 30 minutes, this, separately sterilized at 121 ℃ 20 minutes 50% glucose aqueous solution 800ml, Nocardia coralina B-27 cultured in a flask to which 200 ml of 20% urea aqueous solution was added
6 (Deposit No. FERM-P, Institute of Microbial Science and Technology, AIST)
-4094) inoculate 0.5, at a temperature of 30 ° C, air 5 /
Culture was performed for 24 hours while supplying min. This culture solution was prepared by dissolving 12.6 kg of the salt having the above composition, 5 kg of corn steep liquor and defoaming agent 1 in 800 tap water and sterilizing at 121 ° C. for 30 minutes, and adding 75 kg of glucose to 300 tap water and 7.5 urea.
Dissolve each kg in 100 tap water and sterilize at 140 ℃ for 2 minutes, then add and transfer to a 2m 2 main culturing device 2 and incubate at a temperature of 30 ℃ and air aeration of 500 / min for 48 hours. went.
This culture solution was concentrated about 3 times in a centrifuge 3, and this concentrated solution was transferred to a 2 m 3 reaction tank 4 in which KH 2 PO 4 , 1.74 kg and MgSO 4 .
4 · 7H 2 O, tap water having dissolved therein 1.5kg was added and 1000. While adding a 50% glucose solution at a rate of 2.7 kg / hr to this reaction tank 4, a raw material gas was aerated at a rate of 179.1 kg / hr, and the reaction was carried out at 35 ° C. The raw material gas supplied to the reaction tank 4 is the exhaust gas from the carbon dioxide absorption tower 8 and the TFP recovered from the TFP recovery tower 7, to which oxygen and TFP are added.

この反応槽4に供給していたガスは系の平衡が成立した
時点(以下は全てこの平衡時の値を示す)で、窒素68.4
重量%、酸素20.8重量%、二酸化炭素0.0重量%、TFP1
0.8重量%、TFPO0.0重量%で、排出ガス中の組成は、窒
素68.1重量%、酸素19.8重量%、二酸化炭素0.9重量
%、TFP10.1重量%、TFPO0.6重量%、水分0.4重量%あ
った。この排出ガスは吸収塔5の下部から導入され、上
部からは、トリグリム274kg/hrを供給する。この吸収塔
5の吸収液の温度は上部で−20℃、下部で5℃であっ
た。この吸収塔5の上部からの排ガスの組成は、窒素6
9.5重量%、酸素20.3重量%、二酸化炭素0.9重量%、TF
P9.4重量%、TFPO0.0重量%であった。この排ガスは、
水酸化ナトリウムを充填した二酸化炭素吸収塔8に供給
され、二酸化炭素を吸収、除去した後、反応槽4に循環
される。
The gas supplied to the reaction tank 4 was replaced with nitrogen 68.4 at the time when the equilibrium of the system was established (all values below are at this equilibrium).
Wt%, oxygen 20.8 wt%, carbon dioxide 0.0 wt%, TFP1
0.8 wt%, TFPO 0.0 wt%, composition in exhaust gas is nitrogen 68.1 wt%, oxygen 19.8 wt%, carbon dioxide 0.9 wt%, TFP 10.1 wt%, TFPO 0.6 wt%, moisture 0.4 wt% there were. This exhaust gas is introduced from the lower part of the absorption tower 5, and 274 kg / hr of triglyme is supplied from the upper part. The temperature of the absorbing solution in the absorption tower 5 was -20 ° C in the upper part and 5 ° C in the lower part. The composition of the exhaust gas from the upper part of this absorption tower 5 is nitrogen 6
9.5% by weight, oxygen 20.3% by weight, carbon dioxide 0.9% by weight, TF
The P content was 9.4% by weight and the TFPO content was 0.0% by weight. This exhaust gas is
It is supplied to a carbon dioxide absorption tower 8 filled with sodium hydroxide, absorbs and removes carbon dioxide, and then circulates in the reaction tank 4.

一方、この吸収塔5の下部から抜き出された液は加熱さ
れて溶剤回収塔6へ供給される。この溶剤回収塔6は、
塔頂温度を170℃、塔底温度を240℃とした。回収された
トリグリムは、ロス分を補充して吸収塔に循環される。
尚、このトリグリムは水分を溶解するため、溶剤脱水塔
9で脱水される。また、溶剤回収塔6の上部から排出さ
れるガスの組成は、窒素3.3重量%、TFP60.0重量%、TF
PO36.7重量%であった。このガスを冷却し、TFP回収塔
7に供給して、TFPOとTFPとを蒸留、分離する。TFPOは
1.1kg/hrで生産された。回収されたTFPは原料として反
応槽4に循環、再使用される。
On the other hand, the liquid extracted from the lower part of the absorption tower 5 is heated and supplied to the solvent recovery tower 6. This solvent recovery tower 6
The tower top temperature was 170 ° C and the tower bottom temperature was 240 ° C. The collected triglyme is replenished with loss and circulated to the absorption tower.
Since this triglyme dissolves water, it is dehydrated in the solvent dehydration tower 9. The composition of the gas discharged from the upper part of the solvent recovery tower 6 is 3.3% by weight of nitrogen, 60.0% by weight of TFP, TF
It was PO36.7% by weight. This gas is cooled and supplied to the TFP recovery tower 7 to distill and separate TFPO and TFP. TFPO
It was produced at 1.1 kg / hr. The recovered TFP is circulated and reused as a raw material in the reaction tank 4.

[発明の効果] 以上のような本発明は、TFPOを安定的に連続して大量
に、しかも安価に製造できるという効果を奏する。
[Effects of the Invention] The present invention as described above has an effect that TFPO can be stably and continuously produced in a large amount at low cost.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の実施例に用いたプロセスのフロー図であ
る。図中4は反応槽、5は吸収塔、6は溶剤回収塔、7
はTPF回収塔、8は二酸化炭素吸収塔、9は溶剤脱水塔
を示す。
The figure is a flow diagram of the process used in an embodiment of the present invention. In the figure, 4 is a reaction tank, 5 is an absorption tower, 6 is a solvent recovery tower, and 7
Is a TPF recovery tower, 8 is a carbon dioxide absorption tower, and 9 is a solvent dehydration tower.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】3,3,3−トリフルオロプロペンをガス状態
で菌体と好気的条件下に接触、反応させ、転化された3,
3,3−トリフルオロプロペンオキシドをガス状態で他の
排出ガスとともに取り出し、当該排出ガスを、前記3,3,
3−トリフルオロプロペンオキシドを優先的に溶解する
有機溶剤と接触させて前記3,3,3−トリフルオロプロペ
ンオキシドを当該有機溶剤に吸収させ、この吸収後の有
機溶剤から前記3,3,3−トリフルオロプロペンオキシド
を脱離、回収するとともに、前記3,3,3−トリフルオロ
プロペンオキシドを有機溶剤で吸収、除去した排ガス
を、アルカリ溶液と接触させて、当該排ガス中の炭酸ガ
スを吸収除去し、ついで、この排ガスに、反応で消費さ
れた3,3,3−トリフルオロプロペン及び酸素を補充し
て、再度菌体と接触、反応させることを特徴とする3,3,
3−トリフルオロプロペンオキシドの製造方法。
1. A converted 3,3,3-trifluoropropene is converted into a gas state by contacting and reacting with bacterial cells under aerobic conditions.
3,3-trifluoropropene oxide is taken out in a gas state together with other exhaust gas, and the exhaust gas is replaced with the above 3,3,
The 3,3,3-trifluoropropene oxide is contacted with an organic solvent that preferentially dissolves the 3,3,3-trifluoropropene oxide to be absorbed by the organic solvent, and the 3,3,3 from the organic solvent after the absorption. -Desorption and recovery of trifluoropropene oxide, and the exhaust gas from which the 3,3,3-trifluoropropene oxide is absorbed and removed with an organic solvent is contacted with an alkaline solution to absorb carbon dioxide gas in the exhaust gas. Then, the exhaust gas is supplemented with 3,3,3-trifluoropropene consumed in the reaction and oxygen, and the exhaust gas is again contacted with and reacted with the bacterial cells 3,3,
Process for producing 3-trifluoropropene oxide.
【請求項2】請求項(1)の3,3,3−トリフルオロプロ
ペンオキシドを優先的に溶解する有機溶剤がジエチレン
グリコールジメチルエーテル、トリエチレングリコール
ジメチルエーテル、テトラエチレングリコールジメチル
エーテルのいずれか、或いはこれらの2種以上からなる
混合物であることを特徴とする3,3,3−トリフルオロプ
ロペンオキシドの製造方法。
2. The organic solvent which preferentially dissolves 3,3,3-trifluoropropene oxide according to claim 1 is any one of diethylene glycol dimethyl ether, triethylene glycol dimethyl ether and tetraethylene glycol dimethyl ether, or two of these. A method for producing 3,3,3-trifluoropropene oxide, which is a mixture of at least one species.
JP2039661A 1990-02-22 1990-02-22 Method for producing 3,3,3-trifluoropropene oxide Expired - Fee Related JPH0789945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2039661A JPH0789945B2 (en) 1990-02-22 1990-02-22 Method for producing 3,3,3-trifluoropropene oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2039661A JPH0789945B2 (en) 1990-02-22 1990-02-22 Method for producing 3,3,3-trifluoropropene oxide

Publications (2)

Publication Number Publication Date
JPH03244386A JPH03244386A (en) 1991-10-31
JPH0789945B2 true JPH0789945B2 (en) 1995-10-04

Family

ID=12559270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2039661A Expired - Fee Related JPH0789945B2 (en) 1990-02-22 1990-02-22 Method for producing 3,3,3-trifluoropropene oxide

Country Status (1)

Country Link
JP (1) JPH0789945B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60259195A (en) * 1984-06-04 1985-12-21 Nippon Mining Co Ltd Preparation of epoxide by microorganism
US4611746A (en) * 1984-06-28 1986-09-16 International Business Machines Corporation Process for forming improved solder connections for semiconductor devices with enhanced fatigue life

Also Published As

Publication number Publication date
JPH03244386A (en) 1991-10-31

Similar Documents

Publication Publication Date Title
JP4242558B2 (en) Method for producing and purifying succinic acid
US4425313A (en) Removal and recovery of nitrogen and sulfur oxides from gaseous mixtures containing them
EP0019326B1 (en) Process for purifying urea-containing waste water and process for preparing melamine
JP2664648B2 (en) Method for producing L-aspartic acid
IE860387L (en) L-carnitine
HU203786B (en) Process and apparatus for continuous fermenting carbohydrate-containing media with bacteria
EP2681182A1 (en) Production of carboxylic acid and salt co-products
US4874700A (en) Process for the production of L-malic acid
US7238837B1 (en) Process for the recovery of lactic acid from aqueous lactate salt solutions, involving the use of ion exchangers
CN105612257A (en) Purification of cadaverine using high boiling point solvent
JPH0789945B2 (en) Method for producing 3,3,3-trifluoropropene oxide
JPH11243985A (en) Recovery of carbon dioxide in fermentation of l-glutamic acid
EP0941220B1 (en) A process for recovery of ascorbic acid
JP4158396B2 (en) Method and apparatus for producing lactate ester
US6169187B1 (en) Process for recovery of ascorbic acid
JP4544695B2 (en) Microbial production of glycine
JP4497659B2 (en) Method for microbiologically producing glycine
JP4647059B2 (en) Microbiological production method that prevents coloring of glycine
US6071728A (en) Process for the production of crystalline aspartic acid
JPS606636A (en) Recovery of useful component from exhaust gas
JP4497638B2 (en) Microbiological production method of glycine using reaction separation of ammonia
JPH048297A (en) Production of d-aspartic acid
JPH0728750B2 (en) Method for producing hydroxide of pyrazinic acid by microorganism
JP3859272B2 (en) Method for producing L-aspartic acid
JP2001508300A (en) Method for producing crystalline aspartic acid

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees