JPH078968A - Method of purifying water by rapid flocculation and sedimentation - Google Patents

Method of purifying water by rapid flocculation and sedimentation

Info

Publication number
JPH078968A
JPH078968A JP4006941A JP694192A JPH078968A JP H078968 A JPH078968 A JP H078968A JP 4006941 A JP4006941 A JP 4006941A JP 694192 A JP694192 A JP 694192A JP H078968 A JPH078968 A JP H078968A
Authority
JP
Japan
Prior art keywords
water
ferrite powder
soft magnetic
particles
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4006941A
Other languages
Japanese (ja)
Inventor
Yong-U Park
寧 愚 朴
Jong-Il Lee
鐘 一 李
Bom-Sok Tae
範 錫 太
Taek-Kwan Kang
澤 官 康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Advanced Institute of Science and Technology KAIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Publication of JPH078968A publication Critical patent/JPH078968A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions

Abstract

PURPOSE: To form heavy flocculated particles at a high rate and to immediately settle them by flocculating and settling suspended solids in raw water with ferrite powder as a settling agent.
CONSTITUTION: Soft magnetic ferrite powder having about 5 μm average particle size is treated with a soln. of white alum (KAI(SO4)2), polyaluminum chloride or FeCl3 so that the surface electric charges of the ferrite powder are made neutral or positive, a prescribed amt. of the treated ferrite powder is put in turbid water in accordance with the turbidity and the water is agitated, e.g. at 200-300 r.p.m. for 1-2 min. Particles of suspended solids flocculate on the ferrite powder and grow to about 0.2-1.0 mm size. When agitation is stopped, the flocculated particles settle rapidly at about 5 cm/min setting rate. In order to treat a tap water source, the surface property of ferrite powder is preferably modified with a salt of a trivalent metal, in particular Al.
COPYRIGHT: (C)1995,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、通常の凝集剤と比重が
極く大きい沈降助剤を使用して各種の水資源中の固形浮
遊物微粒子を極く速い速度で凝集と共に沈降させること
により通常広い面積を有する沈降槽を不要とする新規の
浄水方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a coagulant and a settling aid having a very large specific gravity to precipitate solid suspended particles in various water resources together with coagulation at an extremely high speed. The present invention relates to a novel water purification method that does not require a settling tank having a large area.

【0002】[0002]

【従来の技術】地表水を利用した上水原、各種の廃水及
び工業用水等に例外なく存在する微細浮遊物即ち各種の
無機質及び有機質固形物と微生物等は、従来明礬、第2
塩化鉄(FeCl3 ) 又はポリアルミニウムクロリド (Polya
luminum chloride: PAC) のような +3価金属塩又は合
成高分子物質である凝集剤等を使用して浮遊物微粒子等
の表面電荷状態を中和させることにより相互間に凝集が
生じるようにし、凝集した浮遊物の比重と水との比重差
により沈降する方法で除去している。
2. Description of the Related Art Fine suspended solids, that is, various inorganic and organic solids and microorganisms, which exist without exception in surface water-using water sources, various wastewaters, industrial waters, etc.
Iron chloride (FeCl 3 ) or polyaluminum chloride (Polya
+ trivalent metal salt (such as aluminum chloride: PAC) or a coagulant that is a synthetic polymer substance to neutralize the surface charge state of fine particles of suspended solids so that cohesion occurs between them. It is removed by a method of settling due to the difference in specific gravity between the aggregated suspended matter and water.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の方法において、凝集した固形物の見かけの比
重が充分には大くないため、これらの沈降速度は極く緩
慢で通常沈降槽で2−4時間の滞留時間を必要とした。
従って、膨大な面積の沈降槽が必要であるという問題点
があった。 (参考文献 (1) R.S.Ramalho,“Introduction to Wastewater Treat
ment Processes”Academic Press(1983)。 (2) Robert L. Sanks,“Water Treatment Plant Desig
n”Ann Arbor Science(1979) 参照) 本発明は、各種の浮遊物等の表面電荷特性とスピンネル
(spinnel)構造を有し、比重の大きい軟磁性材粉末の表
面電荷特性を綿密に検討し、凝集剤、特に +3価金属塩
の水中においての作用を研究して速い速度で重い凝集粒
子を形成すると共に直ちに沈降する高比重性凝集迅速沈
降法を提供することを目的とする。
However, in such a conventional method, since the apparent specific gravity of the agglomerated solids is not sufficiently large, the settling speed of these is extremely slow, and in the ordinary settling tank, A residence time of -4 hours was required.
Therefore, there is a problem that a settling tank having a huge area is required. (Reference (1) RSRamalho, “Introduction to Wastewater Treat
ment Processes ”Academic Press (1983). (2) Robert L. Sanks,“ Water Treatment Plant Desig
n "Ann Arbor Science (1979)) The present invention is directed to surface charge characteristics and spinner of various floating substances.
The surface charge characteristics of the soft magnetic material powder having a (spinnel) structure and a large specific gravity are carefully investigated, and the action of the aggregating agent, especially +3 valent metal salt in water is studied to remove the heavy agglomerated particles at a high speed. It is an object of the present invention to provide a high-specific-gravity flocculation rapid sedimentation method which forms and immediately sediments.

【0004】地表水中の浮遊物は主として粘土質微粉で
あり、表面電荷が負に帯電されており、これにより粒子
相互間で反発が生じ、凝集しないで水中に安定に浮遊
し、その他の有機質物質等は大部分がこの粘土質粒子に
吸着されることが知られている。このように負に帯電さ
れている粘土質粒子とこれに吸着されている有機質物質
とが相互凝集するためには、表面電荷を中和させること
により粒子相互間の静電反発力を除去せねばならず、こ
の目的で +3価の鉄イオン又はアルミニウムイオンを含
有する化合物を使用することが知られている。即ち、凝
集剤を使用するのである。これらの凝集剤の作用機構に
関しては水処理技術に関する一般の文献に開示されてい
る。 (参考文献(1) R.S.Ramalho,“Introduction to Wa
stewater Treatment Processes", Academic Press(198
3), (2) Robert L. Sanks,“Water Treatment Plant De
sign”Ann Arbor Science(1979) 参照) 。
The suspended matter in the surface water is mainly fine clay powder, and the surface charge is negatively charged, which causes repulsion between the particles and causes stable floating in water without aggregation, and other organic substances. It is known that most of them are adsorbed on the clay particles. In order for the negatively charged clay particles and the organic substance adsorbed to the negative particles to coagulate with each other, the electrostatic repulsion between the particles must be removed by neutralizing the surface charge. Of course, it is known to use compounds containing +3 iron or aluminum ions for this purpose. That is, a flocculant is used. The mechanism of action of these flocculants is disclosed in the general literature on water treatment technology. (Reference (1) RS Ramalho, “Introduction to Wa
stewater Treatment Processes ", Academic Press (198
3), (2) Robert L. Sanks, “Water Treatment Plant De
sign ”Ann Arbor Science (1979)).

【0005】これらの凝集剤の作用で形成した浮遊物の
凝集粒子等は金属水酸化物と共に絡まり沈降するが、そ
の密度が大きくないため、沈降速度が緩慢で実用的な水
処理施設においては2−4時間の沈降のための滞留時間
が必要であり、これにより莫大な面積の沈降槽を必要と
し、又洪水期のような急激な濁度変化に適応能力が不足
だとの問題点もある。
Agglomerated particles of suspended solids formed by the action of these aggregating agents are entangled and settled together with the metal hydroxide, but since the density is not large, the settling rate is slow and it is 2 in a practical water treatment facility. -4 hours of settling time is required for settling, which requires a huge settling tank and lacks adaptability to abrupt turbidity changes such as flood season. .

【0006】[0006]

【課題を解決するための手段】本発明においては、各種
の軟磁性材 (ferrite)、特にスピンネル (spinnel)構造
を有する金属複合酸化物粉末は比重が約4.9前後の高い
価であり、表面電荷特性が水中浮遊微粒子等の表面電荷
と同一な負電荷であるが、極く弱いことに着目し、軟磁
性材粉末に直接浮遊物微粒子を吸着除去する方法を試験
した結果、約70〜80%程度の微粒子だけを極く速い速度
で沈降除去できることを確認しこのような効果を更に向
上させるために浮遊微粒子と軟磁性材粉末の表面電荷を
同時に中和する方法を試験した結果、2−3分間で凝集
が生じ、5cm/分程度の極く速い速度で沈降することを
発見し、本発明を完成するに到った。
In the present invention, various soft magnetic materials (ferrite), particularly metal composite oxide powders having a spinnel structure, have a high specific gravity of about 4.9, Although the surface charge characteristic is the same negative charge as the surface charge of suspended particles in water, it was noted that it was extremely weak, and as a result of testing the method of adsorbing and removing suspended particles directly on the soft magnetic material powder, about 70 ~ It was confirmed that only 80% of the fine particles could be settled and removed at an extremely high speed, and the method to neutralize the surface charge of the suspended fine particles and the soft magnetic material powder at the same time in order to further improve such an effect was tested. It was discovered that aggregation occurred in -3 minutes and sedimentation occurred at an extremely high speed of about 5 cm / minute, and the present invention was completed.

【0007】スピンネル構造を有する各種の軟磁性材
(例えばMu-Zn系, Ni-Zn系, Mg-Mn-Zn系プェライト又はm
agnetite 等) の複合酸化物材料等は軟磁性を有し、化
学的にも極く安定し、比重が4.9以上であることがわか
った。このように比重が大きく安定な物質の粉末と水中
の浮遊微粒子粉末とが凝集するようになれば凝集微粒子
等の沈降速度が速いことは当然であり、本発明の特徴と
なる。
Various soft magnetic materials having a spinnel structure
(For example, Mu-Zn system, Ni-Zn system, Mg-Mn-Zn system Pellite or m
It was found that complex oxide materials such as agnetite) have soft magnetism, are extremely stable chemically, and have a specific gravity of 4.9 or more. When the powder of a stable substance having a large specific gravity and the powder of suspended fine particles in water are aggregated as described above, the sedimentation speed of the aggregated fine particles is naturally high, which is a feature of the present invention.

【0008】即ち、本発明に使用する軟磁性材は粉末粒
度が平均5μ程度のものを選択し、白礬(KAl(SO4 )
2 )又はPAC溶液又はFeCl3 溶液で処理し、軟磁性
材粉の表面電荷が中性又は正電荷になるようにしたのも
のを、濁水の濁度に従って所定の量を投入する。これを
200〜300 rpm で1〜2分間攪拌することにより、各軟
磁性材粉末に浮遊物粒子が凝集しながら粒子が約0.2〜
1.0mmのサイズに成長する現象を肉眼で確認することが
できた。攪拌を停止したところ、約5cm/分の沈降速度
で迅速に沈降し高性能の浄水能力を有することを確認し
た。フェライト粉末はそれ自体が水中の浮遊微細粒子等
に対する吸着能が有り、廃水ないし工業用水の浄水には
フェライトだけで処理しても効果が充分である。しかし
ながら、上水源の処理にはフェライトの表面特性を +3
価金属塩、特にアルミニウム塩を使用して改質させて使
用するのが好ましい。
That is, the soft magnetic material used in the present invention is selected to have a powder particle size of about 5 μm on average, and white soft sand (KAl (SO 4 )
2 ) Or treated with a PAC solution or FeCl 3 solution to make the surface charge of the soft magnetic material powder neutral or positive, and put a predetermined amount according to the turbidity of turbid water. this
By stirring at 200 to 300 rpm for 1 to 2 minutes, the suspended particles are aggregated in each soft magnetic material powder, and the particles are about 0.2 to 2.
The phenomenon of growth to a size of 1.0 mm could be confirmed with the naked eye. When the stirring was stopped, it was confirmed that it rapidly settled at a sedimentation speed of about 5 cm / min and had a high-performance water purification capacity. Ferrite powder itself has an adsorbing ability for suspended fine particles in water, and it is sufficiently effective to treat waste water or industrial water by using ferrite alone. However, the surface characteristics of ferrite should be +3 for the treatment of tap water sources.
It is preferable to modify and use a valent metal salt, particularly an aluminum salt.

【0009】特に従来の明礬又はPAC法においては、
数十分混合及び2〜4時間の沈澱時間を要するのに比べ
て、本発明の場合は、混合と沈澱過程全部を数十分で完
了することができ、本発明は極く迅速で効果的な迅速凝
集沈澱による浄水方法であることがわかる。又軟磁性材
粉末は磁力選別により容易に経済的に回収再使用するこ
とができ、特にスピンネル構造となっていて化学的に極
く安定であることから成分金属の溶出のおそれが全く無
く、また軟磁性材を使用するので、浄水槽下段に沈澱分
離された汚泥状のスラリは磁力選別により磁性材を浮遊
物から容易に分離回収して再使用することができ、分離
された浮遊物は従来の濾過方法により処理可能であると
いう特徴を有している。
Particularly in the conventional alum or PAC method,
In the present invention, the whole mixing and precipitation process can be completed in a few tens of minutes, as compared with the case of requiring a few tens of minutes and a precipitation time of 2 to 4 hours. It can be seen that this is a water purification method by rapid rapid coagulation precipitation. Further, the soft magnetic material powder can be easily and economically recovered and reused by magnetic selection, and in particular, since it has a spinnel structure and is chemically extremely stable, there is no possibility of elution of component metals. Since a soft magnetic material is used, sludge-like slurry that has been settled and separated in the lower part of the water purification tank can be easily separated and recovered from the suspended magnetic material by magnetic separation and reused. It has the feature that it can be processed by the filtration method of.

【0010】前述したように、本発明において使用する
軟磁性材は色々な種類があり、各種の電子機器用コア
(core) 製造用材料と同一のものであるが、軟磁性材成
分金属の溶出による2次的汚染を防止するためにはスピ
ンネル構造となるように充分に高温で長時間反応させて
製造したものが有用である。特に各種コア製造過程で発
生する不良品のコアを微粉砕して使用する場合には化学
的に安定し、かつ極めて経済的である。
As described above, there are various kinds of soft magnetic materials used in the present invention, and various kinds of cores for electronic equipment are used.
(core) Same as the manufacturing material, but manufactured by reacting at a sufficiently high temperature for a long time to have a spinel structure in order to prevent secondary contamination due to elution of the soft magnetic material component metal Is useful. In particular, when a defective core produced during various core manufacturing processes is used after being finely pulverized, it is chemically stable and extremely economical.

【0011】[0011]

【実施例】以下、本発明を実施例により詳細に説明す
る。実施例1 Mg-Mn-Zn系軟磁性材 (ferrite)粉末 (平均粒度5μ) 1
kgに200gのPACを加えてフェライト粉末の表面特性を
改質したもの0.5gを濁度 149である水1Lに加えてフェ
ライト粒子が充分に流動できる程度に3分間攪拌した
後、3分間静置して上澄水から試料を採取して濁度を測
定した結果、0.8を示した。特に静置時間3の間に浮遊
微粒子等はフェライト粉末と共に完全に容器の底に沈澱
した。実施例2 実施例1の改質されたフェライト粉末0.5gを濁度15であ
る水1Lに加えて実施例1のように実施した結果、上澄
水の濁度0.6を示した。実施例3 改質されていないMg-Mn-Zn系フェライト粉末1.0gを濁度
15の水1Lに加え3分間攪拌した後、3分間静置して上
澄水の濁度を測定した結果、2.0を示した。実施例4 マグネタイト粉末100gにPCA20g を加えてマグネタイ
ト粉末の表面特性を改質したもの0.5gを濁度120 の水1
Lに加えて攪拌した後、3分間静置し、上澄水から採取
した試料の濁度は1.1を示した。実施例5 軟磁性材コア製造工場で発生する不良のコア等を収集
し、各種軟磁性材の混合物粉末を平均粒度5μm 程度に
粉砕して用意し、実施例1のような方法により実験を実
施して同様な効果を得た。実施例6 実施例5で使用した軟磁性材混合粉末100gに第2塩化鉄
40g を加えて軟磁性材粉末の表面を改質したもの0.6gを
濁度120 の水1Lに加えて1分間攪拌した後、静置し、
3分後の上澄水試料の濁度を測定した結果、1.05を示し
た。固形浮遊物は軟磁性材粉末と共に凝集し、5分後に
は完全に沈降した。実施例7 実施例5で使用した軟磁性材混合粉末100gにアミン系凝
集剤 (Superfloc)7gを加えて混合したもの0.45g を濁
度95の水1Lに加えて1分間攪拌した後、静置した。5
分30秒後、固形浮遊物は軟磁性材粉末と共に凝集し、完
全に沈降した。上澄水の濁度は0.95を示した。
EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 Mg-Mn-Zn based soft magnetic material (ferrite) powder (average particle size 5μ) 1
200 g of PAC was added to kg to modify the surface characteristics of the ferrite powder, 0.5 g of which was added to 1 L of water with a turbidity of 149, and the mixture was stirred for 3 minutes to allow the ferrite particles to flow sufficiently, then allowed to stand for 3 minutes. Then, a sample was taken from the supernatant water and the turbidity was measured, and the result was 0.8. In particular, during the standing time 3, the suspended fine particles and the like were completely precipitated at the bottom of the container together with the ferrite powder. Example 2 0.5 g of the modified ferrite powder of Example 1 was added to 1 L of water having a turbidity of 15 and the same procedure as in Example 1 was performed. As a result, the turbidity of the supernatant water was 0.6. Example 3 Turbidity of 1.0 g of unmodified Mg-Mn-Zn ferrite powder
The mixture was added to 15 liters of water (1 L), stirred for 3 minutes, and allowed to stand for 3 minutes, and the turbidity of the supernatant water was measured. The result was 2.0. Example 4 100 g of magnetite powder was added with 20 g of PCA to improve the surface characteristics of the magnetite powder, and 0.5 g was added to water 1 with a turbidity of 120.
After adding to L and stirring, the mixture was allowed to stand for 3 minutes and the turbidity of the sample collected from the supernatant water was 1.1. Example 5 Soft magnetic material core A defective core or the like generated in a factory is collected, and a mixture powder of various soft magnetic materials is crushed to an average particle size of about 5 μm and prepared, and an experiment is performed by the method as in Example 1. And obtained the same effect. Example 6 Ferric chloride was added to 100 g of the soft magnetic material mixed powder used in Example 5.
After adding 40 g, the surface of the soft magnetic material powder was modified, 0.6 g was added to 1 L of water with a turbidity of 120, and the mixture was stirred for 1 minute and then allowed to stand.
As a result of measuring the turbidity of the supernatant water sample after 3 minutes, it was 1.05. The solid suspension aggregated with the soft magnetic material powder and completely settled after 5 minutes. Example 7 A mixture of 100 g of the soft magnetic material powder used in Example 5 and 7 g of an amine-based coagulant (Superfloc) was added and 0.45 g was added to 1 L of water having a turbidity of 95, and the mixture was stirred for 1 minute and then left to stand. did. 5
After 30 minutes, the solid suspension aggregated with the soft magnetic material powder and completely settled. The turbidity of the supernatant water was 0.95.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太 範 錫 大韓民国ソウル特別市恩平區葛▲よん▼洞 489−7 (72)発明者 康 澤 官 大韓民国ソウル特別市城北區長位2洞68− 1204 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Tae-Sung, Sung-gu, Seoul, Republic of Korea, Eunpyeong-gul ▲ yon-dong 489-7 (72) Inventor, Yasushi Kan, 2nd dong 68, Seongbuk-jo, Seoul, Korea 1204

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 各種原水中の浮遊物を凝集沈降させて浄
水する方法において、沈降剤として軟磁性材 (ferrite)
粉末を使用することを特徴とする速成凝集沈降浄水方
法。
1. A method of purifying water by flocculating suspended matter in various raw water, wherein a soft magnetic material (ferrite) is used as a sedimentation agent.
A quick-coagulation sedimentation water purification method characterized by using a powder.
【請求項2】 上記軟磁性材を予めアルミニウム塩、第
2鉄塩等の3価金属、又はアミン、アミド系合成高分子
凝集剤と混合して改質させて使用することを特徴とする
請求項1に記載の速成凝集沈降浄水方法。
2. The soft magnetic material is used by being mixed with a trivalent metal such as an aluminum salt or a ferric salt, or an amine or amide-based synthetic polymer flocculant in advance for modification. Item 1. The rapid aggregation sedimentation water purification method according to Item 1.
JP4006941A 1991-02-02 1992-01-17 Method of purifying water by rapid flocculation and sedimentation Pending JPH078968A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019910001802A KR940000550B1 (en) 1991-02-02 1991-02-02 Process for separating suspended solid particles from liquids
KR91-1802 1991-02-02

Publications (1)

Publication Number Publication Date
JPH078968A true JPH078968A (en) 1995-01-13

Family

ID=19310658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4006941A Pending JPH078968A (en) 1991-02-02 1992-01-17 Method of purifying water by rapid flocculation and sedimentation

Country Status (2)

Country Link
JP (1) JPH078968A (en)
KR (1) KR940000550B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6056573A (en) * 1996-07-30 2000-05-02 Alps Electric Co., Ltd. IC card connector
JP2010022888A (en) * 2008-07-15 2010-02-04 Toshiba Corp Water purification material and water purification method using it
JP2010131499A (en) * 2008-12-03 2010-06-17 Sumitomo Heavy Ind Ltd Sludge dewatering method
JP2010131500A (en) * 2008-12-03 2010-06-17 Sumitomo Heavy Ind Ltd Sludge treatment method and sludge treatment apparatus
JP2011083653A (en) * 2009-10-13 2011-04-28 Nagaoka Univ Of Technology Ferrite balloon-polymer composite flocculant, method for manufacturing the same, and flocking settling method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488656A (en) * 1977-12-24 1979-07-13 Miura Eng Internatl Kk Nethod of separating miscellaneous matters contained in waste water
JPS5667584A (en) * 1979-11-02 1981-06-06 Boliden Ab Method of refining water
JPS635122A (en) * 1986-06-24 1988-01-11 Sanshin Ind Co Ltd Throttle opening detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488656A (en) * 1977-12-24 1979-07-13 Miura Eng Internatl Kk Nethod of separating miscellaneous matters contained in waste water
JPS5667584A (en) * 1979-11-02 1981-06-06 Boliden Ab Method of refining water
JPS635122A (en) * 1986-06-24 1988-01-11 Sanshin Ind Co Ltd Throttle opening detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6056573A (en) * 1996-07-30 2000-05-02 Alps Electric Co., Ltd. IC card connector
JP2010022888A (en) * 2008-07-15 2010-02-04 Toshiba Corp Water purification material and water purification method using it
JP2010131499A (en) * 2008-12-03 2010-06-17 Sumitomo Heavy Ind Ltd Sludge dewatering method
JP2010131500A (en) * 2008-12-03 2010-06-17 Sumitomo Heavy Ind Ltd Sludge treatment method and sludge treatment apparatus
JP2011083653A (en) * 2009-10-13 2011-04-28 Nagaoka Univ Of Technology Ferrite balloon-polymer composite flocculant, method for manufacturing the same, and flocking settling method

Also Published As

Publication number Publication date
KR940000550B1 (en) 1994-01-24
KR920016126A (en) 1992-09-24

Similar Documents

Publication Publication Date Title
US3697420A (en) Method and apparatus for treatment of aqueous liquor
US6896815B2 (en) Methods for removing heavy metals from water using chemical precipitation and field separation methods
JP2002525204A (en) High-speed coagulation sedimentation wastewater treatment method
US2232294A (en) Process for treating liquids
CN105540987A (en) Water deep purification method
CN109592759A (en) A kind of board wastewater treatment agent and its preparation, application method
KR101219745B1 (en) Removing apparatus for algae
CN112520934B (en) Method for producing tap water by utilizing magnetic weighting agent coagulation magnetic separation technology
US2232296A (en) Process for treating liquids
JPH078968A (en) Method of purifying water by rapid flocculation and sedimentation
JPH09276604A (en) Flocculant
CN107867743A (en) A kind of sewage-treating agent and preparation method thereof
CA1114080A (en) Method and an agent for chemical purification of water by means of chemical precipitation and magnetic sludge separation
JP3500925B2 (en) Agglomeration treatment method and apparatus
JP2016159210A (en) Treatment method and treatment device of incineration ash
US2232295A (en) Process for treating liquids
JPH1157309A (en) Flocculation treatment and device therefof
JP2003245504A (en) Method and device for treating wastewater
KR101523281B1 (en) Integrated processing system for precipitation, absorption and filtration
Das, B.*, Prakash, S.**, Biswal, SK** & Reddy Settling characteristics of coal washery tailings using synthetic polyelectrolytes with fine magnetite
JPH07100155B2 (en) Organic wastewater treatment method
JPH01104389A (en) Discharged water treatment for iron and steel manufacture
RU2250877C1 (en) Method of natural and industrial wastewater purification
JPH08257553A (en) Waste water treatment method by zeolite
CN107673540A (en) A kind of enterprise's heavy metal wastewater thereby Magneto separate handling process method