JPH0788684A - Welding material for austenitic stainless steel and welding method - Google Patents

Welding material for austenitic stainless steel and welding method

Info

Publication number
JPH0788684A
JPH0788684A JP23204093A JP23204093A JPH0788684A JP H0788684 A JPH0788684 A JP H0788684A JP 23204093 A JP23204093 A JP 23204093A JP 23204093 A JP23204093 A JP 23204093A JP H0788684 A JPH0788684 A JP H0788684A
Authority
JP
Japan
Prior art keywords
less
welding
stainless steel
austenitic stainless
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23204093A
Other languages
Japanese (ja)
Inventor
Satoshi Araki
敏 荒木
Tsunetoshi Takahashi
常利 高橋
Mizuo Sakakibara
瑞夫 榊原
Tadao Ogawa
忠雄 小川
Satoyuki Miyake
聰之 三宅
Masatomo Shinohara
正朝 篠原
Toshiaki Nishio
敏昭 西尾
Makoto Nakamura
誠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nippon Steel Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP23204093A priority Critical patent/JPH0788684A/en
Publication of JPH0788684A publication Critical patent/JPH0788684A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To provide a same metal base welding material and joint welding method excellent in toughness after aging and resistance to high-temp. corrosion in joint welding of austenitic stainless steel tubes, plates or the like which are used in a severe high-temp. corrosive environment. CONSTITUTION:This welding material is used for manufacturing a welded joint of the austenitic stainless steel excellent in resistance to high-temp. corrosion and contains the proper amount of C, Si, Mn, Cr, Ni, Mo, P, S and N, as necessary, either or both of >=1 kind of Nb, Ti and V or >=1 kind of Ca, Y, La and Ce. And, the value of deltaFe that is expressed by deltaFe=3(Cr+Mo+1.5Si+0.5Nb+Ti+0.9V)-2.8(Ni+0.5Mn+30C+30N)-19.8 is <=-7.3 for coated arc welding and <=-21.3 for TIG welding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は400℃以上の高温環境
下で使用されるボイラ、化学プラント機器、加熱炉等に
適用されるオーステナイト系ステンレス鋼の時効後靱性
および耐高温腐食性に優れた溶接材料および継手溶接方
法に関するものである。
BACKGROUND OF THE INVENTION The present invention is excellent in post-aging toughness and high temperature corrosion resistance of austenitic stainless steel applied to boilers, chemical plant equipment, heating furnaces, etc. used in high temperature environments of 400 ° C. or higher. The present invention relates to a welding material and a joint welding method.

【0002】[0002]

【従来の技術】現在、400℃以上で使用されるボイ
ラ、化学プラント機器、加熱炉等はその高温環境中に
S、Cl等を含有して過酷な高温腐食性を有するものが
増加し、既存の高温用オーステナイト系ステンレス鋼、
例えば、SUS304、SUS321、SUS347、
SUS304HTB、SUS321HTBおよびSUS
347HTBでは激しい高温腐食が発生し、使用できな
いか、あるいは耐用年数が短い等の問題が起こってい
る。これらの過酷な高温腐食環境にはオーステナイト系
ステンレス鋼の高Cr、高Ni、低C、高N化が有効で
ある。しかし、その溶接において、従来の溶接材料によ
る溶接継手の特性は既存鋼の溶接継手に比較して溶接高
温割れおよび溶接継手の時効後靱性低下が課題であっ
た。
2. Description of the Related Art At present, the number of boilers, chemical plant equipment, heating furnaces, etc. used at 400 ° C. or higher, which have severe high-temperature corrosiveness due to the inclusion of S, Cl, etc. in their high temperature environment, is increasing. High temperature austenitic stainless steel,
For example, SUS304, SUS321, SUS347,
SUS304HTB, SUS321HTB and SUS
In 347HTB, severe high temperature corrosion occurs, and there are problems such as unusable or short service life. High Cr, high Ni, low C, and high N of austenitic stainless steel are effective in these severe high temperature corrosive environments. However, in the welding, the characteristics of the welded joint made of the conventional welding material were problems such as hot cracking of the welded joint and deterioration of the toughness after aging of the welded joint as compared with the welded joint of the existing steel.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記問題点を
解決するという観点にたって、S、Cl等を含有する過
酷な高温腐食環境で使用される耐高温腐食性に優れたオ
ーステナイト系ステンレス鋼の管、板等の継手溶接にお
いて、耐溶接高温割れ性が良好で、時効後靱性および耐
高温腐食性に優れた共金系の溶接材料および継手溶接方
法を提供することを目的とする。
From the viewpoint of solving the above problems, the present invention is an austenitic stainless steel excellent in high temperature corrosion resistance which is used in a severe high temperature corrosive environment containing S, Cl and the like. It is an object of the present invention to provide a joint metal welding material and a joint welding method, which have good weld hot crack resistance, excellent post-aging toughness and high temperature corrosion resistance in joint welding of pipes, plates and the like.

【0004】[0004]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、耐高温腐食性に優れたオーステナイト系ステンレ
ス鋼の溶接継手製造において、その溶接材料に、C;
0.001〜0.03%、Si;0.5%以下、Mn;
0.1〜5.0%、Cr;23.0〜30.0%、N
i;5.0〜22.0%、Mo;0.1〜6.0%、
P;0.04%以下、S;0.005%以下、N;0.
2〜0.5%を含有し、さらに、必要に応じて、Nb;
0.05〜0.6%、Ti;0.02〜0.3%、V;
0.03〜0.5%のうち1種以上と、Ca;0.00
05〜0.05%、Y;0.001〜0.1%、La;
0.001〜0.1%、Ce:0.001〜0.1%の
うち1種以上のどちらか一方あるいは両方を含み、
(2)式で表されるδFeの値が、被覆アーク溶接用溶
接棒の場合は−7.3以下、TIG溶接用溶接棒の場合
は−21.3以下であり、 δFe=3(Cr+Mo+1.5Si+0.5Nb+Ti+0.9V) −2.8(Ni+0.5Mn+30C+30N)−19.8 (2) 残部がFeおよび不可避的不純物からなるオーステナイ
ト系ステンレス鋼を用いて継手溶接することを特徴とす
るオーステナイト系ステンレス鋼の溶接材料およびその
継手溶接方法にある。
The gist of the present invention is that in the production of austenitic stainless steel weld joints having excellent high-temperature corrosion resistance, the welding material is C;
0.001-0.03%, Si; 0.5% or less, Mn;
0.1-5.0%, Cr; 23.0-30.0%, N
i; 5.0 to 22.0%, Mo; 0.1 to 6.0%,
P; 0.04% or less, S; 0.005% or less, N;
2 to 0.5%, and if necessary, Nb;
0.05-0.6%, Ti; 0.02-0.3%, V;
One or more of 0.03 to 0.5%, and Ca: 0.00
05-0.05%, Y; 0.001-0.1%, La;
0.001 to 0.1%, Ce: 0.001 to 0.1%, including either or both of one or more kinds,
The value of δFe represented by the formula (2) is −7.3 or less for the welding rod for covered arc welding and −21.3 or less for the welding rod for TIG welding, and δFe = 3 (Cr + Mo + 1. 5Si + 0.5Nb + Ti + 0.9V) -2.8 (Ni + 0.5Mn + 30C + 30N) -19.8 (2) Austenitic stainless steel characterized by joint welding using an austenitic stainless steel with the balance being Fe and inevitable impurities. Welding material and its joint welding method.

【0005】[0005]

【作用】以下に溶接材料の成分限定理由について説明す
る。Cは、炭化物形成元素としてクリープ破断強度やク
リープ破断伸びに大きな影響を与えるので、C量はクリ
ープ特性に効果的なCr、Nb、Ti、Vの炭化物を形
成するに必要な量を最少限添加する必要があり、溶接材
料のC量の下限を0.001%と定めた。一方、高温腐
食環境中にClを含有する場合に生じる高温粒界腐食は
粒界のCr炭化物析出によるその周囲のCr欠乏相が原
因であり、耐高温粒界腐食性からは低Cが望ましく、さ
らに、溶接時高温割れを防止するためにもC量をできる
限り下げる必要がある。以上の観点から溶接材料のC量
の上限を0.03%と定めた。
[Function] The reason for limiting the components of the welding material will be described below. Since C has a great effect on creep rupture strength and creep rupture elongation as a carbide forming element, the amount of C is the minimum amount necessary to form carbides of Cr, Nb, Ti and V effective for creep properties. Therefore, the lower limit of the C content of the welding material is set to 0.001%. On the other hand, the high temperature intergranular corrosion that occurs when Cl is contained in the high temperature corrosive environment is caused by the Cr deficient phase around it due to the precipitation of Cr carbide at the grain boundary, and low C is desirable from the high temperature intergranular corrosion resistance. Further, it is necessary to reduce the C content as much as possible in order to prevent hot cracking during welding. From the above viewpoints, the upper limit of the C content of the welding material is set to 0.03%.

【0006】Siは、その含有量低減により、本発明に
おける時効後靱性および高温粒界腐食の抑制に重要な効
果を及ぼす元素である。すなわち、高温用オーステナイ
ト系ステンレス鋼の溶接継手の時効後靱性および耐高温
粒界腐食性は時効あるいは使用時の加熱による粒界Cr
炭化物析出あるいはσ相析出により低下する場合があ
る。Si量を低減することにより粒界Cr炭化物あるい
はσ相の析出が抑制され、前記両特性が向上することか
ら、溶接材料のSi量の上限を0.5%と定めた。
Si is an element which exerts an important effect on the post-aging toughness and the suppression of high temperature intergranular corrosion in the present invention by reducing the content thereof. That is, the post-aging toughness and the high temperature intergranular corrosion resistance of a welded joint of austenitic stainless steel for high temperature are the grain boundary Cr due to aging or heating during use.
It may decrease due to carbide precipitation or σ phase precipitation. By reducing the amount of Si, the precipitation of grain boundary Cr carbide or the σ phase is suppressed, and both properties are improved. Therefore, the upper limit of the amount of Si in the welding material is set to 0.5%.

【0007】Mnは、脱酸を十分行い健全な鋳片を得る
ために必要であり、鋼中に不純物として含有されるS成
分を固定し、熱間脆性を防止し、溶接性、熱間加工性を
向上させるのでその下限を0.1%とした。また、組織
安定性の点から添加されるが、添加量が多過ぎると耐酸
化性を損なうので上限を5.0%とした。Crは、高温
クリープ破断強度、硫酸塩等に対する耐高温腐食性およ
び耐高温酸化性等を向上させるので耐熱合金にとっては
必須の元素であり、特に耐高温腐食性の観点からCr量
の下限を23.0%とした。しかしCr量が多いと長時
間加熱によりσ脆化が起こりやすくなるので、その上限
を30.0%とした。
[0007] Mn is necessary for sufficient deoxidation to obtain a sound slab, fixes the S component contained as an impurity in steel, prevents hot brittleness, weldability, and hot working. Therefore, the lower limit was made 0.1% to improve the property. Further, although it is added from the viewpoint of structural stability, if the addition amount is too large, the oxidation resistance is impaired, so the upper limit was made 5.0%. Cr is an essential element for heat-resistant alloys because it improves high-temperature creep rupture strength, high-temperature corrosion resistance against sulfates, etc. and high-temperature oxidation resistance, and in particular, from the viewpoint of high-temperature corrosion resistance, the lower limit of the Cr content is 23%. It was set to 0.0%. However, if the amount of Cr is large, σ embrittlement easily occurs due to heating for a long time, so the upper limit was made 30.0%.

【0008】Niは、オーステナイト組織を安定化させ
るために添加され、さらには、Clを含有する高温腐食
環境に対し耐高温腐食性を向上させる効果がある。組織
安定化の効果は特にC、N、Mn、Cr、Mo、Si含
有量との相互作用により決まり、5.0%以上のNi量
が必要である。なお、Ni量が多くなると熱間での加工
硬化が起こりやすく熱間加工性が劣化すること、またコ
ストの面でもNi量が多くなると高価になるのでNiの
上限を22.0%とした。したがってNiの量を5.0
〜22.0%と限定した。
[0008] Ni is added to stabilize the austenite structure, and has the effect of improving the high temperature corrosion resistance against the high temperature corrosion environment containing Cl. The effect of stabilizing the structure is determined in particular by the interaction with the contents of C, N, Mn, Cr, Mo and Si, and a Ni content of 5.0% or more is required. The upper limit of Ni is set to 22.0% because if the Ni content increases, hot work hardening easily occurs and the hot workability deteriorates, and in terms of cost, if the Ni content increases, it becomes expensive. Therefore, the amount of Ni should be 5.0
It was limited to ~ 22.0%.

【0009】Moは、固溶体硬化作用や析出硬化作用に
よってクリープ破断強度を高めるのに必要な元素である
ので下限を0.1%とした。しかし多量のMo添加はσ
相の形成を促進し、長時間使用脆化を起こしやすいので
添加量の上限を6.0%とした。Pは、添加量が多いと
溶接割れ感受性が高くなると共に高温クリープ中の析出
を促進しクリープ中脆化を促進させるので上限を0.0
4%とした。
Since Mo is an element necessary for increasing the creep rupture strength by the solid solution hardening action and the precipitation hardening action, the lower limit was made 0.1%. However, adding a large amount of Mo
The upper limit of the amount added is set to 6.0% because it promotes the formation of phases and tends to cause embrittlement during long-term use. If a large amount of P is added, the weld cracking susceptibility becomes high and the precipitation during high temperature creep is promoted to promote embrittlement during creep, so the upper limit is 0.0.
It was 4%.

【0010】Sも、添加量が多いと溶接割れ感受性が高
くなると共に粒界に偏析して高温クリープ中に粒界の脆
化を促進させるので上限を0.005%とした。Nは、
オーステナイト組織安定化元素として重要であり、か
つ、その添加により高価なNiをオーステナイト組織を
安定化したままで低減できる効果も有している。さらに
Nはその固溶効果あるいは窒化物の形成によりクリープ
破断強度を高める。これらの作用のためにはN量を0.
2%以上にする必要がある。しかしNはCr含有量等に
よりその溶解量が決まり、多すぎる添加は鋼材中の気泡
となって鋼の健全性を劣化させることから、N量の上限
を0.5%とした。ただし、溶接材料中のN量は溶接時
の気化による減少を見込んで上記範囲内で母材中のN量
より0.01〜0.1%高めにすることが望ましい。
If S is added in a large amount, the weld cracking susceptibility becomes high and segregates at the grain boundaries to promote embrittlement of the grain boundaries during high temperature creep, so the upper limit was made 0.005%. N is
It is important as an austenite structure stabilizing element, and its addition also has the effect of reducing expensive Ni while stabilizing the austenite structure. Further, N enhances the creep rupture strength by its solid solution effect or the formation of nitrides. For these effects, the N content was set to 0.
It must be 2% or more. However, the amount of dissolved N is determined by the Cr content and the like, and the addition of too much causes bubbles in the steel material to deteriorate the soundness of the steel, so the upper limit of the amount of N was set to 0.5%. However, it is desirable that the N content in the welding material is 0.01 to 0.1% higher than the N content in the base metal within the above range in consideration of a decrease due to vaporization during welding.

【0011】Nb、Ti、Vは、炭、窒化物形成元素で
クリープ破断強度の向上に効果があるので、必要に応じ
て1種以上を添加する。単独あるいは複合添加でその
炭、窒化物が微細分散化する添加量の場合に最もクリー
プ破断強度が高くなる。炭、窒化物の析出量はNb量が
0.05%未満、Ti量が0.02%未満、V量が0.
03%未満では十分でなく、一方、Nb量が0.6%、
Ti量が0.3%、V量が0.5%を超えてのNb、T
iおよびVの単独あるいは複合添加では炭、窒化物が凝
集粗大化し、クリープ破断強度が低下する。以上の点を
考慮して、Nbの量を0.05〜0.6%、Tiの量を
0.02〜0.3%、Vの量を0.03〜0.5%とし
た。
Nb, Ti and V are charcoal and nitride forming elements and are effective in improving the creep rupture strength, so one or more kinds are added if necessary. The creep rupture strength becomes highest when the amount of carbon or nitride is finely dispersed by addition alone or in combination. Regarding the precipitation amount of carbon and nitride, the Nb amount is less than 0.05%, the Ti amount is less than 0.02%, and the V amount is 0.
If it is less than 03%, it is not sufficient, while the amount of Nb is 0.6%,
Nb and T with a Ti content of 0.3% and a V content of more than 0.5%
When i and V are added individually or in combination, carbon and nitride are aggregated and coarsened, and the creep rupture strength is reduced. In consideration of the above points, the amount of Nb is 0.05 to 0.6%, the amount of Ti is 0.02 to 0.3%, and the amount of V is 0.03 to 0.5%.

【0012】Ca、Y、La、Ceは脱酸・脱硫作用を
有し、OおよびSの粒界偏析を減少させることによって
熱間加工性およびクリープ破断強度を向上させるので、
必要に応じて添加する。その効果はCa;0.0005
%未満、Y;0.001%未満、La;0.001%未
満、Ce;0.001%未満では十分でないため、Ca
の下限を0.0005%、Yの下限を0.001%、L
aの下限を0.001%、Ceの下限を0.001%と
した。なお、Caが0.05%、Y、LaおよびCe量
がそれぞれ0.1%を超えると鋼の清浄度が低下し、熱
間加工性が低下するので、Ca量を0.05%以下、Y
量を0.1%以下、La量を0.1%以下、Ce量を
0.1%以下にすることが必要である。これらの理由に
よって、Caの量を0.0005〜0.05%、Yの量
を0.001〜0.1%、Laの量を0.001〜0.
1%、Ceの量を0.001〜0.1%とした。なお、
Ca、Y、LaおよびCeは必要に応じて、その1種以
上を添加することにより上記の効果が得られるが、熱間
加工性確保の観点から、複合添加の場合の上限はCa、
Y、La、Ceの合計0.2%が望ましい。
Ca, Y, La and Ce have a deoxidizing / desulfurizing action, and improve the hot workability and the creep rupture strength by reducing the grain boundary segregation of O and S.
Add as needed. The effect is Ca; 0.0005
%, Y; less than 0.001%, La; less than 0.001%, Ce; less than 0.001% is not sufficient, so Ca
Lower limit of 0.0005%, lower limit of Y 0.001%, L
The lower limit of a was 0.001%, and the lower limit of Ce was 0.001%. If the Ca content exceeds 0.05% and the Y, La, and Ce contents exceed 0.1%, the cleanliness of the steel decreases and the hot workability decreases, so the Ca content is 0.05% or less. Y
It is necessary that the amount be 0.1% or less, the La amount be 0.1% or less, and the Ce amount be 0.1% or less. For these reasons, the amount of Ca is 0.0005 to 0.05%, the amount of Y is 0.001 to 0.1%, and the amount of La is 0.001 to 0.
1% and the amount of Ce were 0.001-0.1%. In addition,
If necessary, one or more of Ca, Y, La, and Ce can be added to obtain the above effects. However, from the viewpoint of ensuring hot workability, the upper limit in the case of combined addition is Ca,
The total of Y, La, and Ce is preferably 0.2%.

【0013】次に、本発明の主要構成である、溶接材料
成分のδ−フェライト量制約について述べる。溶接材料
成分のδFeの値(式(1)あるいは式(2))を、被
覆アーク溶接用溶接材料の場合は−7.3以下、TIG
溶接用溶接材料の場合は−21.3以下に限定すること
により、溶接後の溶着金属中のδ−フェライト量は実測
値で1%以下となる。一方、溶接継手の時効後靱性は溶
着金属中のδ−フェライト量と明瞭な相関を有し、δ−
フェライト量が1%以下の場合に使用上十分な靱性(≧
20J/cm2 )が維持できる(図1)。本発明では、
この理由として溶接後の溶着金属中のδ−フェライトが
時効時に脆化σ相に組織変化するために靱性の低下を引
き起こしたことを見出し、さらにその抑制にはδ−フェ
ライト量を1%以下に低減することが有効であることを
確かめたことに基づくものである。
Next, the restriction of the amount of δ-ferrite in the welding material component, which is the main constitution of the present invention, will be described. The value of δFe of the welding material component (Equation (1) or (2)) is -7.3 or less for the welding material for covered arc welding, TIG
In the case of a welding material for welding, the amount of δ-ferrite in the deposited metal after welding is 1% or less by actual measurement by limiting the content to -21.3 or less. On the other hand, the post-aging toughness of the welded joint has a clear correlation with the amount of δ-ferrite in the deposited metal,
Sufficient toughness (≧) when the ferrite content is less than 1%
20 J / cm 2 ) can be maintained (Fig. 1). In the present invention,
As a reason for this, it was found that the δ-ferrite in the weld metal after welding caused a decrease in toughness due to a structural change to an embrittlement σ phase during aging, and to suppress it, the amount of δ-ferrite was set to 1% or less. It is based on the fact that reducing is effective.

【0014】以上の理由から、溶接材料成分のδFeの
値を、被覆アーク溶接用溶接材料の場合は−7.3以
下、TIG溶接用溶接材料の場合は−21.3以下に限
定した。次に、優れた耐高温腐食性および時効後靱性を
有するオーステナイト系ステンレス鋼の管および板(母
材)については、例えば、本発明者らが提案した特公平
4−30463号公報や特公平4−31020号公報に
記載のものがある。これらの成分系を含む請求項9〜請
求項16に明記した成分系の材料を母材に用いれば、前
述のように溶接部はもとより、母材部でも優れた耐高温
腐食性および時効後靱性を有する溶接継手を得ることが
できる。
For the above reasons, the value of δFe in the welding material component is limited to −7.3 or less for the welding material for covered arc welding and −21.3 or less for the welding material for TIG welding. Next, regarding austenitic stainless steel pipes and plates (base materials) having excellent high-temperature corrosion resistance and toughness after aging, for example, Japanese Patent Publication No. 4-30463 and Japanese Patent Publication No. 430463 proposed by the present inventors. There is one described in JP-A-31020. When the material of the component system specified in claims 9 to 16 containing these component systems is used as the base material, excellent hot corrosion resistance and post-aging toughness not only in the welded portion but also in the base material as described above. It is possible to obtain a welded joint having

【0015】[0015]

【実施例】次に本発明の実施例についてさらに具体的に
述べる。表1、表2(表1のつづき)および表3、表4
(表3のつづき)に本発明例の溶接材料および母材の化
学組成を、また、表5、表6(表5のつづき)および表
7、表8(表7のつづき)に比較例の溶接材料および母
材の化学組成を示す。
EXAMPLES Next, examples of the present invention will be described more specifically. Table 1, Table 2 (continued from Table 1) and Table 3, Table 4
Table 3 (continued) shows the chemical compositions of the welding material and base material of the present invention, and Tables 5 and 6 (continued in Table 5) and Tables 7 and 8 (continued in Table 7) show comparative examples. The chemical composition of the welding material and the base metal is shown.

【0016】また、本発明例の溶接継手の溶着金属部の
溶接ままでのδ−フェライト量実測値、溶着金属部の時
効後靱性および高温粒界腐食深さu(μm)の評点を表
9に、また、比較例の前記各特性を表10に示す。溶接
材料は45kg真空溶製し、熱間押出、冷間伸線、固溶
化熱処理の後、被覆アーク溶接棒およびTIG溶接ワイ
ヤを作製した。なお、被覆アーク溶接棒はφ3.2×L
350mmに線材を切断後、石灰、ホタル石を主成分と
するいわゆるライム系の被覆材を塗布して用いた。母材
は45kg真空溶製し、熱間圧延、固溶化熱処理の後、
前記溶接材料による溶接継手製作および高温腐食試験を
行った。
Table 9 shows the measured values of the amount of δ-ferrite in the weld metal of the welded joint of the present invention as-welded, the toughness after aging of the weld metal and the high temperature intergranular corrosion depth u (μm). Table 10 shows the characteristics of the comparative example. The welding material was vacuum-melted at 45 kg, and after hot extrusion, cold drawing and solution heat treatment, a coated arc welding rod and a TIG welding wire were produced. The coated arc welding rod is φ3.2 x L
After cutting the wire rod to 350 mm, a so-called lime-based coating material containing lime and fluorite as main components was applied and used. The base material is vacuum-melted by 45 kg, and after hot rolling and solution heat treatment,
A welded joint was manufactured using the above welding material and a high temperature corrosion test was performed.

【0017】被覆アーク溶接による継手作製は、初層を
DC100A、10V、溶接速度80mm/minでT
IG溶接した後、2層目以降をAC約80A、23V、
溶接速度約150mm/minで行った。TIGアーク
溶接による継手作製は、DC約150A、10V、溶接
速度約100mm/minで行った。
For the production of joints by covered arc welding, the first layer is DC 100A, 10V, and the welding speed is 80 mm / min.
After IG welding, AC 80A, 23V,
The welding was performed at a welding speed of about 150 mm / min. The joint production by TIG arc welding was performed at a DC of about 150 A and 10 V and a welding speed of about 100 mm / min.

【0018】溶接継手の溶着金属部の溶接ままでのδ−
フェライト量をフェライト・メーターで測定した。溶接
継手の時効後靱性を、650℃、500h時効後、溶着
金属部の0℃シャルピー衝撃試験(試験片;JIS4
号、1/2サイズ)により測定した。耐高温粒界腐食性
評価は、Na2 SO4 +K2 SO4 +NaCl合成灰
(混合モル比;2:2:1)を、溶接継手部および母材
から切り出したw15×L25×t4mm(表面;60
0番エメリ研磨肌)に塗布し、混合ガス(0.2%SO
2 +5%O2 +10%CO2 +bal.N2 )気流中で
550℃×100h加熱し、試験片縦断面の粒界腐食深
さを測定することにより行った。
Δ− of the weld metal of the welded joint as-welded
The amount of ferrite was measured with a ferrite meter. welding
The toughness after aging of the joint is welded after aging at 650 ° C for 500 hours.
0 ° C Charpy impact test of metal part (test piece; JIS4
No., 1/2 size). High temperature intergranular corrosion resistance
Evaluation is Na2SOFour+ K2SOFour+ NaCl synthetic ash
(Mixed molar ratio; 2: 2: 1), welded joint and base metal
W15 x L25 x t4mm cut out from (surface; 60
Apply to No. 0 emery polished skin) and mix gas (0.2% SO
2+ 5% O2+ 10% CO2+ Bal. N2) In airflow
550 ℃ × 100h heating, intergranular corrosion depth of vertical cross section of test piece
It was done by measuring the height.

【0019】表1、表2に示す溶接材料の本発明例のう
ち、S1〜S9は被覆アーク溶接用溶接材料であり、い
ずれの鋼もδFeの値が−7.3以下である。その中で
S1〜S3は請求項1、9に相当する鋼であり、S4、
S5は請求項3、11に相当するNb、TiおよびVを
1種以上含有する鋼であり、S6、S7は請求項5、1
3に相当するCa、LaおよびCeを1種以上含有する
鋼であり、S8、S9は請求項7、15に相当するNb
およびTiの1種以上とCaおよびYの1種以上を含有
する鋼である。また、T1〜T9はTIG溶接用溶接材
料であり、いずれの鋼もδFeの値が−21.3以下で
ある。その中でT1〜T3は請求項2、10に相当する
鋼であり、T4は請求項4、12に相当するNbを含有
する鋼であり、T5〜T7は請求項6、14に相当する
CaおよびYを1種以上含有する鋼であり、T8、T9
は請求項8、16に相当するNbおよびVの1種以上と
Ca、Y、LaおよびCeの1種以上を含有する鋼であ
る。
Among the examples of the welding material of the present invention shown in Tables 1 and 2, S1 to S9 are welding materials for covered arc welding, and all steels have a δFe value of -7.3 or less. Among them, S1 to S3 are steels corresponding to claims 1 and 9, and S4,
S5 is steel containing at least one of Nb, Ti and V corresponding to claims 3 and 11, and S6 and S7 are claims 5 and 1.
A steel containing at least one of Ca, La and Ce corresponding to No. 3, S8 and S9 are Nb corresponding to claims 7 and 15.
And steel containing at least one of Ti and at least one of Ca and Y. Further, T1 to T9 are welding materials for TIG welding, and all steels have a δFe value of −21.3 or less. Among them, T1 to T3 are steels corresponding to claims 2 and 10, T4 is a steel containing Nb corresponding to claims 4 and 12, and T5 to T7 are Ca corresponding to claims 6 and 14. And steel containing at least one of Y, T8, T9
Is a steel containing at least one of Nb and V and at least one of Ca, Y, La and Ce corresponding to claims 8 and 16.

【0020】次に、表3、表4に示す母材の本発明例の
うち、B1〜B3は請求項9、10に相当する鋼であ
り、B4〜B6は請求項11、12に相当するNb、T
iおよびVを1種以上含有する鋼であり、B7〜B10
は請求項13、14に相当するCa、Y、LaおよびC
eを1種以上含有する鋼であり、B11〜B14は請求
項15、16に相当するNb、TiおよびVの1種以上
とCa、Y、LaおよびCeの1種以上を含有する鋼で
ある。
Next, among the examples of the base material of the present invention shown in Tables 3 and 4, B1 to B3 are steels corresponding to claims 9 and 10, and B4 to B6 are claims 11 and 12. Nb, T
Steel containing at least one of i and V, B7 to B10
Is Ca, Y, La and C corresponding to claims 13 and 14.
B is a steel containing at least one e, and B11 to B14 are steels containing at least one of Nb, Ti and V corresponding to claims 15 and 16 and at least one of Ca, Y, La and Ce. .

【0021】一方、表5、表6に示す溶接材料の比較例
のうち、HS1〜HS7は被覆アーク溶接用溶接材料で
あり、その中でHS1〜HS3は請求項1、9の比較例
で、本発明例と比較してHS1は高Si、HS2は高δ
Fe、HS3は高C、高δFeの成分系である。HS4
は請求項3、11の比較例で、本発明例と比較して高δ
Feの成分系である。HS5、HS6は請求項5、13
の比較例で、HS5は高δFe、HS6は低Crの成分
系である。HS7は請求項7、15の比較例で、高δF
eの成分系である。次に、HT1〜HT7はTIG溶接
用溶接材料であり、その中でHT1〜HT3は請求項
2、10の比較例で、本発明例と比較してHT1は高S
i、HT2、HT3は高δFeの成分系である。HT4
は請求項4、12の比較例で、本発明例と比較して高C
の成分系である。HT5、HT6は請求項6、14の比
較例で、HT5は高δFe、HT6は低Crの成分系で
ある。HT7は請求項8、16の比較例で、高δFeの
成分系である。
On the other hand, among the comparative examples of welding materials shown in Tables 5 and 6, HS1 to HS7 are welding materials for covered arc welding, of which HS1 to HS3 are comparative examples of claims 1 and 9. In comparison with the example of the present invention, HS1 has a high Si and HS2 has a high δ.
Fe and HS3 are high C and high δFe component systems. HS4
Is a comparative example of claims 3 and 11 and has a high δ as compared with the examples of the present invention.
It is a component system of Fe. HS5 and HS6 are claims 5 and 13.
In the comparative example, HS5 is a high δFe and HS6 is a low Cr component system. HS7 is a comparative example of claims 7 and 15 and has a high δF.
It is a component system of e. Next, HT1 to HT7 are welding materials for TIG welding, in which HT1 to HT3 are comparative examples of claims 2 and 10, and HT1 has a high S compared to the present invention example.
i, HT2, and HT3 are high δFe component systems. HT4
Is a comparative example of claims 4 and 12, and has a high C as compared with the examples of the present invention.
It is a component system of. HT5 and HT6 are comparative examples of claims 6 and 14, HT5 is a high δFe component, and HT6 is a low Cr component system. HT7 is a comparative example of claims 8 and 16 and is a high δFe component system.

【0022】また、表7、表8に示す母材の比較例のう
ち、HB1〜HB3は請求項9、10の比較例で、本発
明例と比較してHB1は高Si、HB2は高C、HB3
は低Crの成分系である。HB4は請求項11、12の
比較例で、本発明例と比較して高Cの成分系である。H
B5、HB6は請求項13、14の比較例で、HB5は
高Si、HB6は高Cの成分系である。HB7、HB8
は請求項15、16の比較例で、HB7は高Si、HB
8は低Crの成分系である。
Among the comparative examples of the base materials shown in Tables 7 and 8, HB1 to HB3 are comparative examples of claims 9 and 10. Compared with the examples of the present invention, HB1 has high Si and HB2 has high C. , HB3
Is a low Cr component system. HB4 is a comparative example of claims 11 and 12 and is a component system having a high C as compared with the examples of the present invention. H
B5 and HB6 are comparative examples of claims 13 and 14, and HB5 is a high Si and HB6 is a high C component system. HB7, HB8
Is a comparative example of claims 15 and 16, wherein HB7 is high Si, HB
No. 8 is a low Cr component system.

【0023】次に、表9に示す溶接継手の本発明例のう
ち、J1〜J10は被覆アーク溶接法で製作した継手で
ある。この中で、J1〜J3は請求項1、9に、J4、
J5は請求項3、11に、J6、J7は請求項5、13
に、J8、J9は請求項7、15にそれぞれ相当する。
J10は請求項1に相当する溶接材料S1を比較例の母
材HB1の継手溶接に用いた例である。また、J11〜
J20はTIG溶接法で製作した継手である。この中
で、J11〜J13は請求項2、10に、J14は請求
項4、12に、J15〜J17は請求項6、14に、J
18、J19は請求項8、16にそれぞれ相当する。J
20は請求項2に相当する溶接材料T1を比較例の母材
HB1の継手溶接に用いた例である。
Next, among the examples of the present invention of the welded joint shown in Table 9, J1 to J10 are joints manufactured by the covered arc welding method. Among them, J1 to J3 are defined in claims 1 and 9 and J4,
J5 is claims 3 and 11, and J6 and J7 are claims 5 and 13.
In addition, J8 and J9 correspond to claims 7 and 15, respectively.
J10 is an example in which the welding material S1 corresponding to claim 1 is used for joint welding of the base material HB1 of the comparative example. Also, J11 ~
J20 is a joint manufactured by the TIG welding method. Among them, J11 to J13 are in claims 2 and 10, J14 is in claims 4 and 12, J15 to J17 are in claims 6 and 14, and J
18, J19 correspond to claims 8 and 16, respectively. J
20 is an example in which the welding material T1 corresponding to claim 2 is used for joint welding of the base material HB1 of the comparative example.

【0024】表9によると、本発明例の溶接継手J1〜
J20はいずれも、溶着金属部の溶接ままのδ−フェラ
イト量実測値が1%以下であり、溶着金属部の時効後靱
性が20J/cm2 以上であり、かつ、溶着金属部の高
温粒界腐食深さは溶接材料および母材共に本発明例のJ
1〜J9、J11〜J19では0μm、本発明例の溶接
材料を比較例の母材に用いたJ10、J20では5μm
以下である。すなわち、本発明例の溶接継手J1〜J2
0はいずれも、時効後靱性および耐高温粒界腐食性が共
に優れたオーステナイト系ステンレス鋼の溶接継手であ
ると言える。
According to Table 9, the welded joints J1 to J1 of the present invention are shown.
In all of J20, the as-welded δ-ferrite amount measured value of the weld metal part is 1% or less, the toughness after aging of the weld metal part is 20 J / cm 2 or more, and the high temperature grain boundary of the weld metal part is high. Corrosion depth is J of the example of the present invention for both welding material and base material.
1 to J9 and J11 to J19 are 0 μm, and J10 and J20 using the welding material of the present invention as the base material of the comparative example are 5 μm.
It is the following. That is, the welded joints J1 to J2 of the present invention example
It can be said that all of 0 are welded joints of austenitic stainless steel which are excellent in both toughness after aging and high temperature intergranular corrosion resistance.

【0025】これに対し、表10に示す溶接継手の比較
例のうち、HJ1〜HJ7は被覆アーク溶接法で製作し
た継手である。この中で、HJ1〜HJ3は請求項1、
9に、HJ4は請求項3、11に、HJ5、HJ6は請
求項5、13に、HJ7は請求項7、15にそれぞれ対
する比較例である。また、HJ8〜HJ14はTIG溶
接法で製作した継手である。この中で、HJ8〜HJ1
0は請求項2、10に、HJ11は請求項4、12に、
HJ12〜HJ13は請求項6、14に、HJ14は請
求項8、16にそれぞれ対する比較例である。
On the other hand, among the comparative examples of welded joints shown in Table 10, HJ1 to HJ7 are joints manufactured by the covered arc welding method. Of these, HJ1 to HJ3 are claims 1,
9 and HJ4 are comparative examples for claims 3 and 11, HJ5 and HJ6 are claims 5 and 13, and HJ7 is for claims 7 and 15, respectively. HJ8 to HJ14 are joints manufactured by the TIG welding method. Among these, HJ8 to HJ1
0 for claims 2 and 10, HJ11 for claims 4 and 12,
HJ12 to HJ13 are comparative examples for claims 6 and 14, and HJ14 is a comparative example for claims 8 and 16, respectively.

【0026】表10によると、比較例の溶接継手HJ1
〜HJ14はいずれも、溶着金属部の時効後靱性と溶着
金属部および母材の耐高温粒界腐食性の少なくとも1特
性に問題点を有していると言える。図1には本発明例と
比較例の溶接継手の溶着金属部の550℃、500h時
効後の靱性と溶着金属部の溶接ままでのδ−フェライト
量の関係を示すが、δ−フェライト量の実測値が1%超
の比較例では、溶着金属部の時効後靱性が20J/cm
2 未満である。また、δ−フェライト量の実測値が1%
以下でも、溶接材料が高Si系の成分系のHS1および
HT1を用いた溶接継手HJ1およびHJ8の場合は溶
着金属部の時効後靱性が20J/cm2 未満で、かつ、
溶着金属部に5μmを超える高温粒界腐食が生じる。一
方、溶接材料が低Cr系のHJ6、HJ13あるいは高
C系のHJ11は、δ−フェライト量の実測値が1%以
下で溶着金属部の時効後靱性が20J/cm2 以上であ
るが、溶着金属部に10μmを超える高温粒界腐食が生
じる。
According to Table 10, the welded joint HJ1 of the comparative example is shown.
It can be said that all of HJ14 have problems in at least one of the toughness after aging of the deposited metal portion and the high temperature intergranular corrosion resistance of the deposited metal portion and the base material. FIG. 1 shows the relationship between the toughness of the weld metal parts of the welded joints of the present invention example and the comparative example after aging for 500 hours at 550 ° C. and the as-welded δ-ferrite amount of the weld metal part. In the comparative example where the measured value exceeds 1%, the toughness after aging of the weld metal part is 20 J / cm.
It is less than 2 . Moreover, the measured value of the amount of δ-ferrite is 1%.
Even in the following, when the welding material is the weld joints HJ1 and HJ8 using the high Si-based component systems HS1 and HT1, the toughness after aging of the weld metal part is less than 20 J / cm 2 , and
High temperature intergranular corrosion exceeding 5 μm occurs in the deposited metal part. On the other hand, in the case of HJ6 and HJ13 of low Cr system or HJ11 of high C system, the measured value of δ-ferrite amount is 1% or less and the toughness after aging of the weld metal part is 20 J / cm 2 or more. High temperature intergranular corrosion exceeding 10 μm occurs in the metal part.

【0027】また、溶接材料に高P系のHS2、高S系
のHT2および高C系のHS3、HT4を用いた比較例
の溶接継手HJ2、HJ9、HJ3およびHJ11では
溶接高温割れがみられた。
Further, in the comparative weld joints HJ2, HJ9, HJ3 and HJ11 in which high P type HS2, high S type HT2 and high C type HS3 and HT4 were used as welding materials, welding hot cracking was observed. .

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 [Table 4]

【0032】[0032]

【表5】 [Table 5]

【0033】[0033]

【表6】 [Table 6]

【0034】[0034]

【表7】 [Table 7]

【0035】[0035]

【表8】 [Table 8]

【0036】[0036]

【表9】 [Table 9]

【0037】1)δ−フェライト量測定法 ;フェ
ライト・メーターで測定 2)時効後靱性評価条件 ;650℃、500
h時効後、0℃でのシャルピー衝撃試験で評価 3)高温粒界腐食深さ評価条件 ;Na2 SO4 +K
2 SO4 +NaCl合成灰塗布 0.2%SO2 +5%O2 +10%CO2 +bal.N
2 ガス中 550℃×100h加熱後、縦断面を光学顕
微鏡観察 4) 高温粒界腐食深さu(μm) の評点;◎:u=0、○
=0<u≦5、△:5<u≦10、×:10<u
1) Method for measuring δ-ferrite amount; measured by ferrite meter 2) Conditions for evaluating toughness after aging; 650 ° C., 500
h After aging, evaluated by Charpy impact test at 0 ° C 3) High temperature intergranular corrosion depth evaluation condition; Na 2 SO 4 + K
2 SO 4 + NaCl synthetic ash coating 0.2% SO 2 + 5% O 2 + 10% CO 2 + bal. N
After heating in 2 gas at 550 ° C for 100 hours, the vertical cross section is observed with an optical microscope. 4) High temperature intergranular corrosion depth u (μm) rating; ◎: u = 0, ○
= 0 <u ≦ 5, Δ: 5 <u ≦ 10, ×: 10 <u

【0038】[0038]

【表10】 [Table 10]

【0039】1)δ−フェライト量測定法 ;フェ
ライト・メーターで測定 2)時効後靱性評価条件 ;650℃、500
h時効後、0℃でのシャルピー衝撃試験で評価 3)高温粒界腐食深さ評価条件 ;Na2 SO4 +K
2 SO4 +NaCl合成灰塗布 0.2%SO2 +5%O2 +10%CO2 +bal.N
2 ガス中 550℃×100h加熱後、縦断面を光学顕
微鏡観察 4) 高温粒界腐食深さu(μm) の評点;◎:u=0、○
=0<u≦5、△:5<u≦10、×:10<u
1) Method for measuring δ-ferrite amount; measured by ferrite meter 2) Conditions for evaluating toughness after aging; 650 ° C., 500
h After aging, evaluated by Charpy impact test at 0 ° C 3) High temperature intergranular corrosion depth evaluation condition; Na 2 SO 4 + K
2 SO 4 + NaCl synthetic ash coating 0.2% SO 2 + 5% O 2 + 10% CO 2 + bal. N
After heating in 2 gas at 550 ° C for 100 hours, the vertical cross section is observed with an optical microscope. 4) High temperature intergranular corrosion depth u (μm) rating; ◎: u = 0, ○
= 0 <u ≦ 5, Δ: 5 <u ≦ 10, ×: 10 <u

【0040】[0040]

【発明の効果】本発明によれば、S、Cl等を含有する
過酷な高温腐食環境で使用される耐高温腐食性に優れた
オーステナイト系ステンレス鋼の管、板等の継手溶接に
おいて、耐溶接高温割れ性が良好で、時効後靱性および
耐高温腐食性に優れた共金系の溶接材料および継手溶接
方法を供給することが可能になり、産業上に極めて有用
な効果がもたらされる。
INDUSTRIAL APPLICABILITY According to the present invention, when welding austenitic stainless steel pipes, plates and the like having excellent high-temperature corrosion resistance used in a severe high-temperature corrosion environment containing S, Cl, etc., welding resistance It becomes possible to supply a common metal-based welding material and a joint welding method that have good hot cracking properties, excellent toughness after aging and high temperature corrosion resistance, and bring about an extremely useful effect industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】溶着金属部の時効後靱性に及ぼすδ−フェライ
ト量の影響を示す図である。
FIG. 1 is a diagram showing the influence of the amount of δ-ferrite on the toughness after aging of a weld metal part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 榊原 瑞夫 山口県光市大字島田3434番地 新日本製鐵 株式会社光製鐵所内 (72)発明者 小川 忠雄 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 三宅 聰之 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 篠原 正朝 長崎県長崎市深堀町5丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 西尾 敏昭 長崎県長崎市深堀町5丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 中村 誠 長崎県長崎市深堀町5丁目717番1 長菱 エンジニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mizuo Sakakibara 3434 Shimada, Hikari-shi, Yamaguchi Prefecture Nippon Steel Co., Ltd. Hikari Steel Works (72) Inventor Tadao Ogawa 20-1 Shintomi, Futtsu-shi, Chiba Made by Shinnihon Iron & Steel Co., Ltd.Technical Development Headquarters (72) Inventor Toshiyuki Miyake 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Co., Ltd. Technical Development Headquarters (72) Inventor Masanobu Shinohara 717, Fukahori-cho, Nagasaki-shi, Nagasaki Prefecture No. 1 Sanryo Heavy Industries Co., Ltd. Nagasaki Research Institute (72) Inventor Toshiaki Nishio 5-717-1, Fukahori-cho, Nagasaki City, Nagasaki Sanryo Heavy Industry Co., Ltd. Nagasaki Research Institute (72) Makoto Nakamura Fukahori, Nagasaki City, Nagasaki Prefecture 5-717-1 Machi Choryo Engineering Co., Ltd.

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 オーステナイト系ステンレス鋼の継手溶
接用の溶接材料であって、重量%で、 C ;0.001〜0.03%、 Si;0.5%以下、 Mn;0.1〜5.0%、 Cr;23.0〜30.0%、 Ni;5.0〜22.0%、 Mo;0.1〜6.0%、 P ;0.04%以下、 S ;0.005%以下、 N ;0.2〜0.5%を含有し、かつ、(1)式で表
されるδFeの値が−7.3以下であり、 δFe=3(Cr+Mo+1.5Si) −2.8(Ni+0.5Mn+30C+30N)−19.8 (1) 残部がFeおよび不可避的不純物からなることを特徴と
するオーステナイト系ステンレス鋼の被覆アーク溶接用
溶接材料。
1. A welding material for joint welding of austenitic stainless steel, wherein C: 0.001 to 0.03%, Si: 0.5% or less, Mn: 0.1 to 5% by weight. 0.0%, Cr; 23.0 to 30.0%, Ni; 5.0 to 22.0%, Mo; 0.1 to 6.0%, P; 0.04% or less, S; 0.005 % Or less, N: 0.2 to 0.5% is contained, and the value of δFe represented by the formula (1) is −7.3 or less, δFe = 3 (Cr + Mo + 1.5Si) -2. 8 (Ni + 0.5Mn + 30C + 30N) -19.8 (1) A welding material for covered arc welding of austenitic stainless steel, wherein the balance is Fe and inevitable impurities.
【請求項2】 オーステナイト系ステンレス鋼の継手溶
接用の溶接材料であって、重量%で、 C ;0.001〜0.03%、 Si;0.5%以下、 Mn;0.1〜5.0%、 Cr;23.0〜30.0%、 Ni;5.0〜22.0%、 Mo;0.1〜6.0%、 P ;0.04%以下、 S ;0.005%以下、 N :0.2〜0.5%を含有し、かつ、(1)式で表
されるδFeの値が−21.3以下であり、 δFe=3(Cr+Mo+1.5Si) −2.8(Ni+0.5Mn+30C+30N)−19.8 (1) 残部がFeおよび不可避的不純物からなることを特徴と
するオーステナイト系ステンレス鋼のタングステン・イ
ナート・ガス(以下単にTIGと称す)溶接用溶接材
料。
2. A welding material for joint welding of austenitic stainless steel, wherein C: 0.001 to 0.03%, Si: 0.5% or less, Mn: 0.1 to 5% by weight. 0.0%, Cr; 23.0 to 30.0%, Ni; 5.0 to 22.0%, Mo; 0.1 to 6.0%, P; 0.04% or less, S; 0.005 % Or less, N: 0.2 to 0.5% is contained, and the value of δFe represented by the formula (1) is −21.3 or less, and δFe = 3 (Cr + Mo + 1.5Si) -2. 8 (Ni + 0.5Mn + 30C + 30N) -19.8 (1) A welding material for tungsten-inert-gas (hereinafter simply referred to as TIG) welding of austenitic stainless steel, wherein the balance is Fe and inevitable impurities.
【請求項3】 オーステナイト系ステンレス鋼の継手溶
接用の溶接材料であって、重量%で、 C ;0.001〜0.03%、 Si;0.5%以下、 Mn;0.1〜5.0%、 Cr;23.0〜30.0%、 Ni;5.0〜22.0%、 Mo;0.1〜6.0%、 P ;0.04%以下、 S ;0.005%以下、 N ;0.2〜0.5%を含有し、さらに Nb;0.05〜0.6%、 Ti;0.02〜0.3%、 V ;0.03〜0.5%のうち1種以上を含み、か
つ、(2)式で表されるδFeの値が−7.3以下であ
り、 δFe=3(Cr+Mo+1.5Si+0.5Nb+Ti+0.9V) −2.8(Ni+0.5Mn+30C+30N)−19.8 (2) 残部がFeおよび不可避的不純物からなることを特徴と
するオーステナイト系ステンレス鋼の被覆アーク溶接用
溶接材料。
3. A welding material for joint welding of austenitic stainless steel, wherein C: 0.001 to 0.03%, Si: 0.5% or less, Mn: 0.1 to 5% by weight. 0.0%, Cr; 23.0 to 30.0%, Ni; 5.0 to 22.0%, Mo; 0.1 to 6.0%, P; 0.04% or less, S; 0.005 % Or less, N: containing 0.2 to 0.5%, further Nb: 0.05 to 0.6%, Ti: 0.02 to 0.3%, V: 0.03 to 0.5% Including one or more of them, and the value of δFe represented by the formula (2) is −7.3 or less, δFe = 3 (Cr + Mo + 1.5Si + 0.5Nb + Ti + 0.9V) −2.8 (Ni + 0.5Mn + 30C + 30N) ) -19.8 (2) Austenite characterized by the balance being Fe and inevitable impurities Metal arc welding welding systems stainless steel.
【請求項4】 オーステナイト系ステンレス鋼の継手溶
接用の溶接材料であって、重量%で、 C ;0.001〜0.03%、 Si;0.5%以下、 Mn;0.1〜5.0%、 Cr;23.0〜30.0%、 Ni;5.0〜22.0%、 Mo;0.1〜6.0%、 P ;0.04%以下、 S ;0.005%以下、 N ;0.2〜0.5%を含有し、さらに Nb;0.05〜0.6%、 Ti;0.02〜0.3%、 V ;0.03〜0.5%のうち1種以上を含み、か
つ、(2)式で表されるδFeの値が−21.3以下で
あり、 δFe=3(Cr+Mo+1.5Si+0.5Nb+Ti+0.9V) −2.8(Ni+0.5Mn+30C+30N)−19.8 (2) 残部がFeおよび不可避的不純物からなることを特徴と
するオーステナイト系ステンレス鋼のTIG溶接用溶接
材料。
4. A welding material for joint welding of austenitic stainless steel, wherein C: 0.001 to 0.03%, Si: 0.5% or less, Mn: 0.1 to 5% by weight. 0.0%, Cr; 23.0 to 30.0%, Ni; 5.0 to 22.0%, Mo; 0.1 to 6.0%, P; 0.04% or less, S; 0.005 % Or less, N: containing 0.2 to 0.5%, further Nb: 0.05 to 0.6%, Ti: 0.02 to 0.3%, V: 0.03 to 0.5% The value of δFe represented by the formula (2) is −21.3 or less, and δFe = 3 (Cr + Mo + 1.5Si + 0.5Nb + Ti + 0.9V) −2.8 (Ni + 0.5Mn + 30C + 30N) ) -19.8 (2) Austener characterized by the balance being Fe and inevitable impurities Preparative stainless steel welding material for TIG welding.
【請求項5】 オーステナイト系ステンレス鋼の継手溶
接用の溶接材料であって、重量%で、 C ;0.001〜0.03%、 Si;0.5%以下、 Mn;0.1〜5.0%、 Cr;23.0〜30.0%、 Ni;5.0〜22.0%、 Mo;0.1〜6.0%、 P ;0.04%以下、 S ;0.005%以下、 N ;0.2〜0.5%を含有し、さらに Ca;0.0005〜0.05%、 Y ;0.001〜0.1%、 La;0.001〜0.1%、 Ce;0.001〜0.1%のうち1種以上を含み、か
つ(1)式で表されるδFeの値が−7.3以下であ
り、 δFe=3(Cr+Mo+1.5Si) −2.8(Ni+0.5Mn+30C+30N)−19.8 (1) 残部がFeおよび不可避的不純物からなることを特徴と
するオーステナイト系ステンレス鋼の被覆アーク溶接用
溶接材料。
5. A welding material for joint welding of austenitic stainless steel, wherein C: 0.001 to 0.03%, Si: 0.5% or less, Mn: 0.1 to 5% by weight. 0.0%, Cr; 23.0 to 30.0%, Ni; 5.0 to 22.0%, Mo; 0.1 to 6.0%, P; 0.04% or less, S; 0.005 % Or less, N: 0.2 to 0.5% is contained, further Ca: 0.0005 to 0.05%, Y: 0.001 to 0.1%, La; 0.001 to 0.1% , Ce; 0.001 to 0.1% inclusive, and the value of δFe represented by the formula (1) is −7.3 or less, δFe = 3 (Cr + Mo + 1.5Si) −2 .8 (Ni + 0.5Mn + 30C + 30N) -19.8 (1) The balance is Fe and inevitable impurities. Welding material for shielded metal arc welding Tenaito stainless steel.
【請求項6】 オーステナイト系ステンレス鋼の継手溶
接用の溶接材料であって、重量%で、 C ;0.001〜0.03%、 Si;0.5%以下、 Mn;0.1〜5.0%、 Cr;23.0〜30.0%、 Ni;5.0〜22.0%、 Mo;0.1〜6.0%、 P ;0.04%以下、 S ;0.005%以下、 N ;0.2〜0.5%を含有し、さらに Ca;0.0005〜0.05%、 Y ;0.001〜0.1%、 La;0.001〜0.1%、 Ce;0.001〜0.1%のうち1種以上を含み、か
つ(1)式で表されるδFeの値が−21.3以下であ
り、 δFe=3(Cr+Mo+1.5Si) −2.8(Ni+0.5Mn+30C+30N)−19.8 (1) 残部がFeおよび不可避的不純物からなることを特徴と
するオーステナイト系ステンレス鋼のTIG溶接用溶接
材料。
6. A welding material for joint welding of austenitic stainless steel, wherein C: 0.001 to 0.03%, Si: 0.5% or less, Mn: 0.1 to 5% by weight. 0.0%, Cr; 23.0 to 30.0%, Ni; 5.0 to 22.0%, Mo; 0.1 to 6.0%, P; 0.04% or less, S; 0.005 % Or less, N: 0.2 to 0.5% is contained, further Ca: 0.0005 to 0.05%, Y: 0.001 to 0.1%, La; 0.001 to 0.1% , Ce; 0.001 to 0.1% inclusive, and the value of δFe represented by the formula (1) is −21.3 or less, δFe = 3 (Cr + Mo + 1.5Si) −2 .8 (Ni + 0.5Mn + 30C + 30N) -19.8 (1) The balance is Fe and inevitable impurities. Welding for TIG welding of austenitic stainless steel.
【請求項7】 オーステナイト系ステンレス鋼の継手溶
接用の溶接材料であって、重量%で、 C ;0.001〜0.03%、 Si;0.5%以下、 Mn;0.1〜5.0%、 Cr;23.0〜30.0%、 Ni;5.0〜22.0%、 Mo;0.1〜6.0%、 P ;0.04%以下、 S ;0.005%以下、 N ;0.2〜0.5%を含有し、さらに Nb;0.05〜0.6%、 Ti;0.02〜0.3%、 V ;0.03〜0.5%のうち1種以上、かつ、 Ca;0.0005〜0.05%、 Y ;0.001〜0.1%、 La;0.001〜0.1%、 Ce;0.001〜0.1%のうち1種以上を含み、か
つ(2)式で表されるδFeの値が−7.3以下であ
り、 δFe=3(Cr+Mo+1.5Si+0.5Nb+Ti+0.9V) −2.8(Ni+0.5Mn+30C+30N)−19.8 (2) 残部がFeおよび不可避的不純物からなることを特徴と
するオーステナイト系ステンレス鋼の被覆アーク溶接用
溶接材料。
7. A welding material for joint welding of austenitic stainless steel, wherein C: 0.001 to 0.03%, Si: 0.5% or less, Mn: 0.1 to 5% by weight. 0.0%, Cr; 23.0 to 30.0%, Ni; 5.0 to 22.0%, Mo; 0.1 to 6.0%, P; 0.04% or less, S; 0.005 % Or less, N: containing 0.2 to 0.5%, further Nb: 0.05 to 0.6%, Ti: 0.02 to 0.3%, V: 0.03 to 0.5% 1 or more types among them, and Ca; 0.0005-0.05%, Y; 0.001-0.1%, La; 0.001-0.1%, Ce; 0.001-0.1 %, The value of δFe represented by the formula (2) is −7.3 or less, and δFe = 3 (Cr + Mo + 1.5Si + 0.5Nb + Ti + 0. 9V) -2.8 (Ni + 0.5Mn + 30C + 30N) -19.8 (2) A welding material for covered arc welding of austenitic stainless steel, wherein the balance is Fe and inevitable impurities.
【請求項8】 オーステナイト系ステンレス鋼の継手溶
接用の溶接材料であって、重量%で、 C ;0.001〜0.03%、 Si;0.5%以下、 Mn;0.1〜5.0%、 Cr;23.0〜30.0%、 Ni;5.0〜22.0%、 Mo;0.1〜6.0%、 P ;0.04%以下、 S ;0.005%以下、 N ;0.2〜0.5%を含有し、さらに Nb;0.05〜0.6%、 Ti;0.02〜0.3%、 V ;0.03〜0.5%のうち1種以上、かつ、 Ca;0.0005〜0.05%、 Y ;0.001〜0.1%、 La;0.001〜0.1%、 Ce;0.001〜0.1%のうち1種以上を含み、か
つ(2)式で表されるδFeの値が−21.3以下であ
り、 δFe=3(Cr+Mo+1.5Si+0.5Nb+Ti+0.9V) −2.8(Ni+0.5Mn+30C+30N)−19.8 (2) 残部がFeおよび不可避的不純物からなることを特徴と
するオーステナイト系ステンレス鋼のTIG溶接用溶接
材料。
8. A welding material for joint welding of austenitic stainless steel, wherein C: 0.001 to 0.03%, Si: 0.5% or less, Mn: 0.1 to 5% by weight. 0.0%, Cr; 23.0 to 30.0%, Ni; 5.0 to 22.0%, Mo; 0.1 to 6.0%, P; 0.04% or less, S; 0.005 % Or less, N: containing 0.2 to 0.5%, further Nb: 0.05 to 0.6%, Ti: 0.02 to 0.3%, V: 0.03 to 0.5% 1 or more types among them, and Ca; 0.0005-0.05%, Y; 0.001-0.1%, La; 0.001-0.1%, Ce; 0.001-0.1 %, The value of δFe represented by the formula (2) is −21.3 or less, and δFe = 3 (Cr + Mo + 1.5Si + 0.5Nb + Ti + 0). 9.9V) -2.8 (Ni + 0.5Mn + 30C + 30N) -19.8 (2) A welding material for TIG welding of austenitic stainless steel, wherein the balance is Fe and inevitable impurities.
【請求項9】 重量%にて、 C ;0.001〜0.04%、 Si;0.6%以下、 Mn;0.1〜5.0%、 Cr;23.0〜30.0%、 Ni;5.0〜22.0%、 Mo;0.1〜6.0%、 P ;0.04%以下、 S ;0.005%以下、 N ;0.2〜0.5%を含有し、残部がFeおよび不
可避的不純物からなるオーステナイト系ステンレス鋼の
継手溶接を、請求項1記載の溶接材料を用いて被覆アー
ク溶接することを特徴とするオーステナイト系ステンレ
ス鋼の継手溶接方法。
9. In% by weight, C: 0.001 to 0.04%, Si: 0.6% or less, Mn: 0.1 to 5.0%, Cr: 23.0 to 30.0% Ni: 5.0 to 22.0%, Mo: 0.1 to 6.0%, P: 0.04% or less, S: 0.005% or less, N: 0.2 to 0.5% A joint welding method for austenitic stainless steel, characterized in that the joint welding of the austenitic stainless steel containing Fe and inevitable impurities is carried out by covered arc welding using the welding material according to claim 1.
【請求項10】 重量%にて、 C ;0.001〜0.04%、 Si;0.6%以下、 Mn;0.1〜5.0%、 Cr;23.0〜30.0%、 Ni;5.0〜22.0%、 Mo;0.1〜6.0%、 P ;0.04%以下、 S ;0.005%以下、 N ;0.2〜0.5%を含有し、残部がFeおよび不
可避的不純物からなるオーステナイト系ステンレス鋼の
継手溶接を、請求項2記載の溶接材料を用いてTIG溶
接することを特徴とするオーステナイト系ステンレス鋼
の継手溶接方法。
10. In wt%, C: 0.001 to 0.04%, Si: 0.6% or less, Mn: 0.1 to 5.0%, Cr: 23.0 to 30.0% Ni: 5.0 to 22.0%, Mo: 0.1 to 6.0%, P: 0.04% or less, S: 0.005% or less, N: 0.2 to 0.5% A joint welding method for austenitic stainless steel, characterized in that the joint welding of austenitic stainless steel containing Fe and inevitable impurities in the balance is TIG-welded using the welding material according to claim 2.
【請求項11】 重量%にて、 C ;0.001〜0.04%、 Si;0.6%以下、 Mn;0.1〜5.0%、 Cr;23.0〜30.0%、 Ni;5.0〜22.0%、 Mo;0.1〜6.0%、 P ;0.04%以下、 S ;0.005%以下、 N ;0.2〜0.5%を含有し、さらに Nb;0.05〜0.6%、 Ti;0.02〜0.3%、 V ;0.03〜0.5%のうち1種以上を含み、残部
がFeおよび不可避的不純物からなるオーステナイト系
ステンレス鋼の継手溶接を、請求項3記載の溶接材料を
用いて被覆アーク溶接することを特徴とするオーステナ
イト系ステンレス鋼の継手溶接方法。
11. In% by weight, C: 0.001 to 0.04%, Si: 0.6% or less, Mn: 0.1 to 5.0%, Cr: 23.0 to 30.0% Ni: 5.0 to 22.0%, Mo: 0.1 to 6.0%, P: 0.04% or less, S: 0.005% or less, N: 0.2 to 0.5% Contained, and further contains one or more of Nb; 0.05 to 0.6%, Ti; 0.02 to 0.3%, V; 0.03 to 0.5%, the balance being Fe and unavoidable. A joint welding method for austenitic stainless steel, characterized in that covered arc welding of the austenitic stainless steel made of impurities is performed using the welding material according to claim 3.
【請求項12】 重量%にて、 C ;0.001〜0.04%、 Si;0.6%以下、 Mn;0.1〜5.0%、 Cr;23.0〜30.0%、 Ni;5.0〜22.0%、 Mo;0.1〜6.0%、 P ;0.04%以下、 S ;0.005%以下、 N ;0.2〜0.5%を含有し、さらに Nb;0.05〜0.6%、 Ti;0.02〜0.3%、 V ;0.03〜0.5%のうち1種以上を含み、残部
がFeおよび不可避的不純物からなるオーステナイト系
ステンレス鋼の継手溶接を、請求項4記載の溶接材料を
用いてTIG溶接することを特徴とするオーステナイト
系ステンレス鋼の継手溶接方法。
12. In% by weight, C: 0.001-0.04%, Si: 0.6% or less, Mn: 0.1-5.0%, Cr: 23.0-30.0% Ni: 5.0 to 22.0%, Mo: 0.1 to 6.0%, P: 0.04% or less, S: 0.005% or less, N: 0.2 to 0.5% Contained, and further contains one or more of Nb; 0.05 to 0.6%, Ti; 0.02 to 0.3%, V; 0.03 to 0.5%, the balance being Fe and unavoidable. A joint welding method for austenitic stainless steel, characterized in that the joint welding of austenitic stainless steel made of impurities is performed by TIG welding using the welding material according to claim 4.
【請求項13】 重量%にて、 C ;0.001〜0.04%、 Si;0.6%以下、 Mn;0.1〜5.0%、 Cr;23.0〜30.0%、 Ni;5.0〜22.0%、 Mo;0.1〜6.0%、 P ;0.04%以下、 S ;0.005%以下、 N ;0.2〜0.5%を含有し、さらに Ca;0.0005〜0.05%、 Y ;0.001〜0.1%、 La;0.001〜0.1%、 Ce;0.001〜0.1%のうち1種以上を含み、残
部がFeおよび不可避的不純物からなるオーステナイト
系ステンレス鋼の継手溶接を、請求項5記載の溶接材料
を用いて被覆アーク溶接することを特徴とするオーステ
ナイト系ステンレス鋼の継手溶接方法。
13. In% by weight, C: 0.001 to 0.04%, Si: 0.6% or less, Mn: 0.1 to 5.0%, Cr: 23.0 to 30.0% Ni: 5.0 to 22.0%, Mo: 0.1 to 6.0%, P: 0.04% or less, S: 0.005% or less, N: 0.2 to 0.5% In addition, Ca; 0.0005-0.05%, Y; 0.001-0.1%, La; 0.001-0.1%, Ce; 0.001-0.1% A joint welding method for austenitic stainless steel, which comprises performing joint arc welding of the austenitic stainless steel containing at least one kind and the balance consisting of Fe and unavoidable impurities using the welding material according to claim 5. .
【請求項14】 重量%にて、 C ;0.001〜0.04%、 Si;0.6%以下、 Mn;0.1〜5.0%、 Cr;23.0〜30.0%、 Ni;5.0〜22.0%、 Mo;0.1〜6.0%、 P ;0.04%以下、 S ;0.005%以下、 N ;0.2〜0.5%を含有し、さらに Ca;0.0005〜0.05%、 Y ;0.001〜0.1%、 La;0.001〜0.1%、 Ce;0.001〜0.1%のうち1種以上を含み、残
部がFeおよび不可避的不純物からなるオーステナイト
系ステンレス鋼の継手溶接を、請求項6記載の溶接材料
を用いてTIG溶接することを特徴とするオーステナイ
ト系ステンレス鋼の継手溶接方法。
14. In% by weight, C: 0.001 to 0.04%, Si: 0.6% or less, Mn: 0.1 to 5.0%, Cr: 23.0 to 30.0% Ni: 5.0 to 22.0%, Mo: 0.1 to 6.0%, P: 0.04% or less, S: 0.005% or less, N: 0.2 to 0.5% In addition, Ca; 0.0005-0.05%, Y; 0.001-0.1%, La; 0.001-0.1%, Ce; 0.001-0.1% A joint welding method for austenitic stainless steel, characterized in that the joint welding of austenitic stainless steel containing at least one kind and the balance consisting of Fe and unavoidable impurities is TIG-welded using the welding material according to claim 6.
【請求項15】 重量%にて、 C ;0.001〜0.04%、 Si;0.6%以下、 Mn;0.1〜5.0%、 Cr;23.0〜30.0%、 Ni;5.0〜22.0%、 Mo;0.1〜6.0%、 P ;0.04%以下、 S ;0.005%以下、 N ;0.2〜0.5%を含有し、さらに Nb;0.05〜0.6%、 Ti;0.02〜0.3%、 V ;0.03〜0.5%のうち1種以上、かつ、 Ca;0.0005〜0.05%、 Y ;0.001〜0.1%、 La;0.001〜0.1%、 Ce;0.001〜0.1%のうち1種以上を含み、残
部がFeおよび不可避的不純物からなるオーステナイト
系ステンレス鋼の継手溶接を、請求項7記載の溶接材料
を用いて被覆アーク溶接することを特徴とするオーステ
ナイト系ステンレス鋼の継手溶接方法。
15. In% by weight, C: 0.001 to 0.04%, Si: 0.6% or less, Mn: 0.1 to 5.0%, Cr: 23.0 to 30.0% Ni: 5.0 to 22.0%, Mo: 0.1 to 6.0%, P: 0.04% or less, S: 0.005% or less, N: 0.2 to 0.5% Contained, and further Nb; 0.05 to 0.6%, Ti; 0.02 to 0.3%, V; 0.03 to 0.5%, and one or more of Ca; 0.0005 to 0.05%, Y; 0.001 to 0.1%, La; 0.001 to 0.1%, Ce; 0.001 to 0.1%, containing at least one kind, and the balance being Fe and unavoidable. Joint welding of austenitic stainless steel consisting of mechanical impurities is performed by covered arc welding using the welding material according to claim 7. Joint welding method of the scan steel.
【請求項16】 重量%にて、 C ;0.001〜0.04%、 Si;0.6%以下、 Mn;0.1〜5.0%、 Cr;23.0〜30.0%、 Ni;5.0〜22.0%、 Mo;0.1〜6.0%、 P ;0.04%以下、 S ;0.005%以下、 N ;0.2〜0.5%を含有し、さらに Nb;0.05〜0.6%、 Ti;0.02〜0.3%、 V ;0.03〜0.5%のうち1種以上、かつ、 Ca;0.0005〜0.05%、 Y ;0.001〜0.1%、 La;0.001〜0.1%、 Ce;0.001〜0.1%のうち1種以上を含み、残
部がFeおよび不可避的不純物からなるオーステナイト
系ステンレス鋼の継手溶接を、請求項8記載の溶接材料
を用いてTIG溶接することを特徴とするオーステナイ
ト系ステンレス鋼の継手溶接方法。
16. In% by weight, C: 0.001 to 0.04%, Si: 0.6% or less, Mn: 0.1 to 5.0%, Cr: 23.0 to 30.0% Ni: 5.0 to 22.0%, Mo: 0.1 to 6.0%, P: 0.04% or less, S: 0.005% or less, N: 0.2 to 0.5% Contained, and further Nb; 0.05 to 0.6%, Ti; 0.02 to 0.3%, V; 0.03 to 0.5%, and one or more of Ca; 0.0005 to 0.05%, Y; 0.001 to 0.1%, La; 0.001 to 0.1%, Ce; 0.001 to 0.1%, containing at least one kind, and the balance being Fe and unavoidable. Joint welding of austenitic stainless steel consisting of mechanical impurities is performed by TIG welding using the welding material according to claim 8, austenitic stainless steel characterized by the following: Joint welding method.
JP23204093A 1993-09-17 1993-09-17 Welding material for austenitic stainless steel and welding method Withdrawn JPH0788684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23204093A JPH0788684A (en) 1993-09-17 1993-09-17 Welding material for austenitic stainless steel and welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23204093A JPH0788684A (en) 1993-09-17 1993-09-17 Welding material for austenitic stainless steel and welding method

Publications (1)

Publication Number Publication Date
JPH0788684A true JPH0788684A (en) 1995-04-04

Family

ID=16933025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23204093A Withdrawn JPH0788684A (en) 1993-09-17 1993-09-17 Welding material for austenitic stainless steel and welding method

Country Status (1)

Country Link
JP (1) JPH0788684A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315079A (en) * 2005-04-15 2006-11-24 Nippon Steel & Sumikin Stainless Steel Corp Austenitic stainless steel welding wire having excellent low temperature toughness and seawater corrosion resistance
JP2006315080A (en) * 2005-04-15 2006-11-24 Nippon Steel & Sumikin Stainless Steel Corp Austenitic stainless steel welding structure having excellent low temperature toughness and seawater corrosion resistance
WO2007037447A1 (en) * 2005-09-28 2007-04-05 Nippon Steel Corporation Weld joint formed with stainless steel-based weld metal for welding a zinc-based alloy coated steel sheet
JP2007105733A (en) * 2005-10-11 2007-04-26 Nippon Steel & Sumikin Stainless Steel Corp Non-consumable electrode type welding wire for welding austenitic stainless steel having excellent low temperature toughness and sea water corrosion resistance
CN103480975A (en) * 2013-05-15 2014-01-01 丹阳市华龙特钢有限公司 Manufacturing method of nuclear-grade austenitic stainless steel welding wire
JP2016094660A (en) * 2014-11-06 2016-05-26 新日鐵住金株式会社 Method of manufacturing welded joint
CN107214436A (en) * 2017-06-19 2017-09-29 江苏师范大学 A kind of welding wire containing nano-cerium oxide, titanium oxide
KR102402940B1 (en) * 2020-12-21 2022-05-26 재단법인 포항산업과학연구원 Welding method of high nitrogen steel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315079A (en) * 2005-04-15 2006-11-24 Nippon Steel & Sumikin Stainless Steel Corp Austenitic stainless steel welding wire having excellent low temperature toughness and seawater corrosion resistance
JP2006315080A (en) * 2005-04-15 2006-11-24 Nippon Steel & Sumikin Stainless Steel Corp Austenitic stainless steel welding structure having excellent low temperature toughness and seawater corrosion resistance
JP4699162B2 (en) * 2005-04-15 2011-06-08 新日鐵住金ステンレス株式会社 Austenitic stainless steel welded structure with excellent low temperature toughness and seawater corrosion resistance
WO2007037447A1 (en) * 2005-09-28 2007-04-05 Nippon Steel Corporation Weld joint formed with stainless steel-based weld metal for welding a zinc-based alloy coated steel sheet
US7767314B2 (en) 2005-09-28 2010-08-03 Nippon Steel Corporation Weld joint formed with stainless steel-based weld metal for welding a zinc-based alloy coated steel sheet
JP2007105733A (en) * 2005-10-11 2007-04-26 Nippon Steel & Sumikin Stainless Steel Corp Non-consumable electrode type welding wire for welding austenitic stainless steel having excellent low temperature toughness and sea water corrosion resistance
JP4699164B2 (en) * 2005-10-11 2011-06-08 新日鐵住金ステンレス株式会社 Non-consumable electrode welding wire for austenitic stainless steel welding with excellent low temperature toughness and seawater corrosion resistance
CN103480975A (en) * 2013-05-15 2014-01-01 丹阳市华龙特钢有限公司 Manufacturing method of nuclear-grade austenitic stainless steel welding wire
JP2016094660A (en) * 2014-11-06 2016-05-26 新日鐵住金株式会社 Method of manufacturing welded joint
CN107214436A (en) * 2017-06-19 2017-09-29 江苏师范大学 A kind of welding wire containing nano-cerium oxide, titanium oxide
KR102402940B1 (en) * 2020-12-21 2022-05-26 재단법인 포항산업과학연구원 Welding method of high nitrogen steel

Similar Documents

Publication Publication Date Title
JP3271262B2 (en) Duplex stainless steel with excellent corrosion resistance
JP6969666B2 (en) Austenitic stainless steel welded joint
US8163233B2 (en) Martensitic stainless steel for welded structures
EP0867256B1 (en) Welding material for stainless steels
EP0084588B1 (en) Heat-resistant and corrosion-resistant weld metal alloy and welded structure
JPWO2009119630A1 (en) Ni-based alloy
JP4699162B2 (en) Austenitic stainless steel welded structure with excellent low temperature toughness and seawater corrosion resistance
JP4784239B2 (en) Ferritic stainless steel filler rod for TIG welding
JP5111910B2 (en) Ferritic stainless steel with low surface defects and excellent weldability and crevice corrosion resistance
EP0953401A1 (en) Wire for welding high-chromium steel
JPH0788684A (en) Welding material for austenitic stainless steel and welding method
KR100378786B1 (en) Steel for boiler excellent in butt seam weldability and electroseamed steel pipe for boiler using the same
JP3555579B2 (en) High corrosion resistance martensitic stainless steel
JP2002226947A (en) Martensitic stainless steel welded joint having excellent strain aging resistance
KR850001766B1 (en) Phosphirous containing seawater-resistance steel of improved weldability
JPH07204885A (en) Ferrite steel welding material having excellent high-temperature weld crack resistance
JP2607594B2 (en) Coated arc welding rod for Cr-Mo low alloy steel
US20210086314A1 (en) High chromium creep resistant weld metal for arc welding of thin walled steel members
JP3470418B2 (en) High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance
JP2562740B2 (en) Ferrite stainless steel with excellent intergranular corrosion resistance, pipe forming property and high temperature strength
JP2575250B2 (en) Line pipe with excellent corrosion resistance and weldability
JP3422880B2 (en) High corrosion resistance martensitic stainless steel with low weld hardness
RU2437746C1 (en) Composition of wise for automated assembly
JP3412926B2 (en) CO2 corrosion resistant and sulfide stress crack resistant martensitic stainless steel with excellent weldability
JP2024076286A (en) Welded joints and tanks

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001128