JPH0788532B2 - Method for producing Fe-Co soft magnetic material - Google Patents

Method for producing Fe-Co soft magnetic material

Info

Publication number
JPH0788532B2
JPH0788532B2 JP9187790A JP9187790A JPH0788532B2 JP H0788532 B2 JPH0788532 B2 JP H0788532B2 JP 9187790 A JP9187790 A JP 9187790A JP 9187790 A JP9187790 A JP 9187790A JP H0788532 B2 JPH0788532 B2 JP H0788532B2
Authority
JP
Japan
Prior art keywords
cooling
soft magnetic
temperature range
phase
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9187790A
Other languages
Japanese (ja)
Other versions
JPH03130322A (en
Inventor
穂高 本間
靖雄 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9187790A priority Critical patent/JPH0788532B2/en
Publication of JPH03130322A publication Critical patent/JPH03130322A/en
Publication of JPH0788532B2 publication Critical patent/JPH0788532B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、極めて高い飽和磁束密度を持つFe−Co系軟磁
性材料の、冷間加工性に優れた製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a Fe—Co soft magnetic material having an extremely high saturation magnetic flux density, which is excellent in cold workability.

(従来の技術) 鉄系磁性材料の飽和磁束密度は、原子1個当たりの、磁
気モーメントを担う電子の密度(d電子密度)によって
規定される。スレーター=ポーリング曲線によれば、飽
和磁束密度は、周期律表の中でFeより原子番号の小さい
側で増加し、Coより原子番号の大きい側で減少する。即
ち、Fe−Co合金は最も大きな飽和磁束密度を持つことに
なる。最大となるところはCo:30%の組成のところであ
るが、キュリー温度はCo量が増加するにつれて上昇し、
室温付近での飽和磁束密度はCo:40%で最大となる。
(Prior Art) The saturation magnetic flux density of an iron-based magnetic material is defined by the density of electrons (d electron density) that bear a magnetic moment per atom. According to the Slater-Pauling curve, the saturation magnetic flux density increases on the side having a smaller atomic number than Fe and decreases on the side having a larger atomic number than Co in the periodic table. That is, the Fe-Co alloy has the highest saturation magnetic flux density. The maximum is at the composition of Co: 30%, but the Curie temperature rises as the amount of Co increases,
The saturation magnetic flux density near room temperature is maximum at Co: 40%.

また、Fe−Co合金は室温で、Co:0〜70%で体心立方格子
であるが、Co:50%付近の組成のとき、CsCl型の規則合
金となる。合金が規則化するにつれて透磁率の増大、保
磁力の低下など、軟磁気特性の向上がみられる。
The Fe-Co alloy has a body-centered cubic lattice at 0 to 70% Co at room temperature, but becomes a CsCl type ordered alloy when the composition is about 50% Co. As the alloy is ordered, the soft magnetic properties are improved, such as an increase in magnetic permeability and a decrease in coercive force.

従ってFe−Co系合金は飽和磁束密度の最も高い軟磁性材
料となり、小型モーター、プリンターヘッド等、小さな
体積で大きな出力を必要とする機器のコア等に用いられ
てきた。
Therefore, the Fe-Co alloy has become the soft magnetic material with the highest saturation magnetic flux density, and has been used for the cores of devices such as small motors and printer heads that require a large output in a small volume.

Fe−Co系軟磁性合金は、室温で規則相が安定となり良好
な磁気特性をもたらすが、非常に脆い相であり、冷間加
工が困難となる。そのため、従来は、冷間加工に先立っ
て、規則不規則変態温度である730℃以上の温度域、即
ち、不規則相域、あるいはγ相域から素材を焼入し、規
則相の析出を阻止することによって加工性を良好ならし
めるようにしていた。焼入処理における冷却速度は、73
0℃〜980℃(α:不規則相)から焼入を行う場合は、規
則不規則変態を阻止できる400℃/sec以上の冷却速度
で、また980℃/sec以上の温度域(γ相域)から焼入を
行う場合は、マルテンサイト変態を生じせしめ得る100
℃/sec以上の冷却速度で、規則相が析出不可能となる50
0℃以下の温度まで冷却することが必要となる。(「Jou
rnal of Applied Physics」Vol.32.348s、「日立金属技
報」Vol.13.20、等)即ち、従来の熱間加工終了後、焼
入処理のために再び加熱した後に前記条件の焼入を行っ
ている。そのため熱間加工後、焼入処理を行うまでの間
は材料の曲げ、剪断などの加工が不可能となるので、熱
間加工直後の高温状態でシート状に加工して、以降の焼
入、酸洗、冷間加工等の工程に供する。小量のバッチ生
産となる処から、極めて生産性が低くなる。
The Fe-Co soft magnetic alloy has a stable ordered phase at room temperature and brings good magnetic properties, but it is a very brittle phase and cold working becomes difficult. Therefore, conventionally, prior to cold working, the material is quenched from the temperature range of the ordered disorder transformation temperature of 730 ° C or higher, that is, the disordered phase region or the γ phase region, and the precipitation of the ordered phase is prevented. By doing so, the workability was improved. The cooling rate in the quenching process is 73
When quenching from 0 ° C to 980 ° C (α: disordered phase), at a cooling rate of 400 ° C / sec or more that can prevent ordered disordered transformation, and in a temperature range of 980 ° C / sec or more (γ phase region) ) Quenching can cause martensitic transformation.
At a cooling rate of ℃ / sec or more, ordered phase cannot be precipitated. 50
It is necessary to cool to a temperature below 0 ° C. ("Jou
rnal of Applied Physics "Vol.32.348s," Hitachi Metals Technical Report "Vol.13.20, etc.) That is, after the conventional hot working is finished, the material is reheated for quenching treatment and then the above-mentioned conditions are applied. There is. Therefore, after hot working, bending, shearing, etc. of the material cannot be performed until the quenching process is performed, so it is processed into a sheet at a high temperature immediately after hot working, and subsequent quenching, It is subjected to steps such as pickling and cold working. The productivity is extremely low because of the small batch production.

このため、従来技術による時は、Fe−Co系軟磁性材料の
製造コストは極めて高いものとなっていた。
Therefore, according to the conventional technique, the manufacturing cost of the Fe—Co based soft magnetic material has been extremely high.

(発明が解決しようとする課題) 本発明は、従来技術における生産性の問題を解決し、熱
間加工後の材料を連続的に、多量、迅速、かつ安価に、
冷間加工工程までもちきたすFe−Co系軟磁性材料の製造
プロセスを提供することを目的としてなされた。
(Problems to be Solved by the Invention) The present invention solves the problem of productivity in the prior art, and continuously, in a large amount, quickly and inexpensively after hot working the material,
It was made for the purpose of providing a manufacturing process of an Fe-Co based soft magnetic material that brings even a cold working step.

(課題を解決するための手段) 本発明の要旨とするところは、 (1)重量で、Co:40〜60%、残部:Feおよび不可避的不
純物からなる鋼を、730℃以上の温度域で加工し、加工
終了後加工歪が解放されない時間内に、730℃以上の温
度域から100℃/s以上の冷却速度で300℃以下の温度まで
冷却し、次いで冷間加工することを特徴とするFe−Co系
軟磁性材料の製造方法。
(Means for Solving the Problem) The gist of the present invention is as follows: (1) A steel containing Co: 40 to 60% by weight, the balance: Fe and inevitable impurities, in a temperature range of 730 ° C. or higher. It is characterized in that after processing, within the time when the processing strain is not released after processing, it is cooled from a temperature range of 730 ° C or higher to a temperature of 300 ° C or lower at a cooling rate of 100 ° C / s or higher, and then cold worked. Method for manufacturing Fe-Co soft magnetic material.

(2)重量で、Co:40〜60%、さらにV、Cr、C、Nb、T
i、Mn、Mo、Sn、Pb、Zn、Ta、W、NiおよびAlのうちの
少なくとも1種を合計量で0.01〜3.5%含有し、残部:Fe
および不可避的不純物からなる鋼を、730℃以上の温度
域で加工し、加工終了後加工歪が解放されない時間内
に、730℃以上の温度域から100℃/s以上の冷却速度で30
0℃以下の温度まで冷却し、次いで冷間加工することを
特徴とするFe−Co系軟磁性材料の製造方法にある。
(2) Co: 40-60% by weight, and further V, Cr, C, Nb, T
It contains 0.01 to 3.5% in total of at least one of i, Mn, Mo, Sn, Pb, Zn, Ta, W, Ni and Al, and the balance: Fe
And steel consisting of unavoidable impurities are processed in the temperature range of 730 ° C or higher, and within the time when the processing strain is not released after the processing is completed, from the temperature range of 730 ° C or higher to the cooling rate of 100 ° C / s or higher, 30
A method for producing a Fe—Co soft magnetic material is characterized by cooling to a temperature of 0 ° C. or lower and then cold working.

以下に、本発明を詳細に説明する。The present invention will be described in detail below.

Fe−Co系軟磁性材料は、Co含有量が40〜60%、即ちCo:F
e=1:1近傍で透磁率が最大になる。従って、Co:40〜60
%とした。
The Fe-Co soft magnetic material has a Co content of 40 to 60%, that is, Co: F
The magnetic permeability becomes maximum near e = 1: 1. Therefore, Co: 40-60
%.

特許請求範囲第2項で示した添加元素は、材料の加工性
をさらに向上させるために添加する。0.01%に見たない
添加量では効果が発現せず、一方、3.5%を超えて添加
すると磁性を担うFe、Coの成分比率が低下し、飽和磁束
密度が低下する。
The additive element shown in claim 2 is added to further improve the workability of the material. If the addition amount is not found in 0.01%, no effect is exhibited, while if it is added in excess of 3.5%, the composition ratio of Fe and Co responsible for magnetism is lowered, and the saturation magnetic flux density is lowered.

次に、プロセス条件について説明する。Next, the process conditions will be described.

叙上のように、Fe−Co系軟磁性材料はCo含有量が40〜60
%、即ちCo:Fe=1:1近傍で透磁率が最大となるが、この
成分範囲では、材料は室温において規則相が熱的平衡相
として存在する。本発明が対象とするのは、この規則相
を有する高透磁率合金である。
As mentioned above, the Fe-Co soft magnetic material has a Co content of 40-60.
%, That is, the magnetic permeability becomes maximum in the vicinity of Co: Fe = 1: 1, but in this component range, the material has an ordered phase as a thermal equilibrium phase at room temperature. The object of the present invention is a high magnetic permeability alloy having this ordered phase.

規則相は塑性変形に際して、複数の転移が同時に運動し
なければならないため、一般に変形しがたく、加工が極
めて困難である。本発明の対象とする合金も、規則相の
ままの熱間加工材は、室温で圧延、剪断、打ち抜き等の
冷間加工を施すことが困難である。
The ordered phase is generally hard to deform and extremely difficult to process because a plurality of dislocations must move simultaneously during plastic deformation. It is difficult to apply cold working such as rolling, shearing, punching, etc. at room temperature to a hot-worked material in which the alloy targeted by the present invention is still in the ordered phase.

本発明者らは、冷間加工可能なFe−Co系軟磁性材料を得
るプロセス条件について研究を進めた結果、730℃以上
の温度域での熱間加工の後に、直ちに100℃/sec以上の
冷却速度で300℃以下まで冷却を行えば、冷間加工が可
能になるという知見を得た。即ち、本発明においては、
まず、鋼塊(鋼片)を熱間加工によって熱処理に適した
形状(=板厚)に加工する。熱間加工を730℃以上の温
度域で完了させ、その温度域から直ちに冷却すれば、規
則相の出現を阻止する熱処理を実現でき、再加熱工程を
省くことができる。
The present inventors have conducted research on process conditions for obtaining a cold-workable Fe-Co-based soft magnetic material, and as a result, immediately after hot working in a temperature range of 730 ° C or higher, 100 ° C / sec or higher was immediately obtained. It was found that cold working becomes possible if cooling is performed at a cooling rate of 300 ° C or lower. That is, in the present invention,
First, a steel ingot (steel piece) is hot-worked into a shape (= plate thickness) suitable for heat treatment. If the hot working is completed in the temperature range of 730 ° C or higher and immediately cooled from the temperature range, the heat treatment for preventing the appearance of the ordered phase can be realized and the reheating step can be omitted.

従来の技術のように、再加熱工程を経た場合、730℃以
上980℃以下の温度域から冷却を開始すれば冷間圧延可
能な材料を得ることができるが、400℃/sec以上の冷却
速度が必要となる。熱間加工後の板厚が2〜3mmの場合
熱間加工直後でこれだけの冷却を行うには、巨大な冷却
槽、あるいは強力な冷却水スプレーが必要となる。一般
に設置されている冷却設備の冷却能の限界は、200℃/se
cである。従って、従来技術による場合は、γ単相域で
ある980℃以上の温度域から冷却を開始しなければなら
ない。一部でもα相が存在していると、そこが規則相に
変態し、冷間加工、例えば冷間圧延に際して塑性変形せ
ずに、割れ、傷などを惹起するからである。
When the reheating process is performed as in the conventional technique, a cold-rollable material can be obtained by starting cooling from a temperature range of 730 ° C or higher and 980 ° C or lower, but a cooling rate of 400 ° C / sec or higher. Is required. When the plate thickness after hot working is 2 to 3 mm In order to perform such cooling just after hot working, a huge cooling tank or a powerful cooling water spray is required. The limit of the cooling capacity of the cooling equipment that is generally installed is 200 ℃ / se
c. Therefore, in the case of the conventional technique, the cooling must be started from the temperature range of 980 ° C. or higher which is the γ single phase range. This is because even if a part of the α phase is present, it is transformed into an ordered phase and causes cracks, scratches, etc. without plastic deformation during cold working, for example, cold rolling.

本発明の、熱間加工後再加熱することなしに直ちに冷却
するプロセスによる時は、冷却開始温度は980℃以上の
温度域から冷却を開始しても、冷却加工が可能となる。
According to the process of the present invention of immediately cooling without reheating after hot working, even if cooling is started from a temperature range of 980 ° C. or higher, cooling can be performed.

まず始めに、α単相域で熱間加工を行う時を考える。熱
間加工に際して材料に加工歪が導入されるが、この歪が
解放されない内に冷却を行うと、歪は凍結される。つま
り、材料内は転位密度の非常に高い状態となる。この状
態が保たれたまま規則不規則変態温度以下に冷却される
と、転位が原子の再配列の障害となって規則化変態が阻
止される、あるいは遅れることになる。従って規則不規
則変態温度以下でも不規則相を得ることができるように
なるのである。
First, consider the case where hot working is performed in the α single phase region. A work strain is introduced into a material during hot working, but if cooling is performed before the strain is released, the strain is frozen. That is, the material has a very high dislocation density. If this state is maintained and cooled below the ordered disordered transformation temperature, dislocations hinder the rearrangement of atoms and the ordered transformation is prevented or delayed. Therefore, it becomes possible to obtain a disordered phase even at an ordered disordered transformation temperature or lower.

ところで、この温度域では、熱的には規則相が安定であ
る。冷却終了温度が十分に低くない、あるいは冷却速度
が十分に大きくないと、上記の歪による変態を阻止する
力よりも、変態するための熱的な駆動力が優り、規則相
が析出して材料は、脆化する。この限界の冷却終了温度
が300℃であり、冷却速度が、100℃/secである。
By the way, in this temperature range, the ordered phase is thermally stable. If the cooling end temperature is not low enough or the cooling rate is not high enough, the thermal driving force for transformation is superior to the force that prevents transformation due to the above strain, and the ordered phase precipitates and the material Becomes brittle. The cooling end temperature of this limit is 300 ° C., and the cooling rate is 100 ° C./sec.

熱間加工によって導入された歪が解放されるのに必要な
時間は、730℃以上の温度では5秒である。また、特許
請求範囲の(2)に示した合金添加を行えばさらに10数
秒に延びる。
The time required to release the strain introduced by hot working is 5 seconds at temperatures above 730 ° C. Further, if the alloy addition shown in (2) of the claims is performed, the time is further extended to ten and several seconds.

加工歪が残留しない、即ち動的回復、動的再結晶が生じ
る温度域で加工した場合は本発明による効果は得られな
いことになる。しかし、本合金においては、そのような
高温度域においてγ相戸なるために、100℃/sec以上の
冷却温度で冷却した場合、マルテンサイト相が析出す
る。この相は冷間圧延可能である。従って、加工歪によ
って規則化変態が阻止されなくても、規則相は出現せ
ず、冷間加工が可能となるのである。
When processing strain does not remain, that is, when processing is performed in a temperature range where dynamic recovery and dynamic recrystallization occur, the effect of the present invention cannot be obtained. However, in the present alloy, since it becomes a γ phase door in such a high temperature range, a martensite phase precipitates when cooled at a cooling temperature of 100 ° C./sec or more. This phase is cold rollable. Therefore, even if the ordered transformation is not prevented by the working strain, the ordered phase does not appear and cold working becomes possible.

ただし、この場合でも、熱間加工後冷却開始までの時間
が長いと、温度低下によりα相が出現する。このα相中
には加工歪が導入されていないので、100℃/sec程度の
冷却速度では規則相に変態してしまう。従って、やは
り、熱間加工後直ちに冷却を開始する必要がある。
However, even in this case, if the time from the hot working to the start of cooling is long, the α phase appears due to the temperature decrease. Since no processing strain is introduced into this α phase, it transforms into an ordered phase at a cooling rate of about 100 ° C / sec. Therefore, it is still necessary to start cooling immediately after hot working.

(実施例) 第1表に、本発明の実施例、及び比較例を示す。(Example) Table 1 shows an example of the present invention and a comparative example.

試験No.1〜7より、本発明により、100℃/sec以上の冷
却で、冷間加工性に優れた熱間加工材料が得られた事が
わかる。しかし、冷却速度の遅いNo.10は冷間加工性が
悪い。熱間加工後、冷却開始までの時間は、試験No.8よ
り、添加合金無しの場合は8秒おくと冷間加工不可能と
なるが、添加合金がある場合は、No.5のように12秒おい
ても冷間加工可能であった。しかし、20秒を経過したN
o.11の試料は不可となる。また、試験No.9は、冷却終了
温度が高くて、冷却終了後に延性が劣化した例である。
試験No.2,3のように、300℃以下で終了した場合は、冷
間加工可能であった。
From Test Nos. 1 to 7, it can be seen that according to the present invention, the hot working material excellent in cold workability was obtained by cooling at 100 ° C./sec or more. However, No. 10 with a slow cooling rate has poor cold workability. From the test No.8, the time until the start of cooling after hot working becomes impossible after 8 seconds without the added alloy, but when there is the added alloy, as in No.5. Cold working was possible even after 12 seconds. But after 20 seconds N
The o.11 sample is not allowed. Test No. 9 is an example in which the cooling end temperature was high and the ductility deteriorated after the cooling end.
As in Test Nos. 2 and 3, when it was finished at 300 ° C or lower, cold working was possible.

(発明の効果) 本発明により、飽和磁束密度の非常に高い軟磁性材料で
あるFe−Co系合金の、低コストな大量生産が、可能とな
るのである。
(Effect of the Invention) According to the present invention, it is possible to mass-produce a Fe-Co alloy, which is a soft magnetic material having a very high saturation magnetic flux density, at low cost.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量で、Co:40〜60%、残部:Feおよび不可
避的不純物からなる鋼を、730℃以上の温度域で加工
し、加工終了後加工歪が解放されない時間内に、730℃
以上の温度域から100℃/s以上の冷却速度で300℃以下の
温度まで冷却し、次いで冷間加工することを特徴とする
Fe−Co系軟磁性材料の製造方法。
1. A steel consisting of Co: 40 to 60% by weight, the balance: Fe and unavoidable impurities is processed in a temperature range of 730 ° C. or higher, and 730 ℃
Characterized by cooling from the above temperature range to a temperature of 300 ° C or less at a cooling rate of 100 ° C / s or more, and then cold working
Method for manufacturing Fe-Co soft magnetic material.
【請求項2】重量で、Co:40〜60%、さらにV、Cr、
C、Nb、Ti、Mn、Mo、Sn、Pb、Zn、Ta、W、NiおよびAl
のうちの少なくとも1種を合計量で0.01〜3.5%含有
し、残部:Feおよび不可避的不純物からなる鋼を、730℃
以上の温度域で加工し、加工終了後加工歪が解放されな
い時間内に、730℃以上の温度域から100℃/s以上の冷却
速度で300℃以下の温度まで冷却し、次いで冷間加工す
ることを特徴とするFe−Co系軟磁性材料の製造方法。
2. Co: 40-60% by weight, further V, Cr,
C, Nb, Ti, Mn, Mo, Sn, Pb, Zn, Ta, W, Ni and Al
Steel containing at least one of 0.01 to 3.5% in total, the balance: Fe and unavoidable impurities, at 730 ° C.
After processing in the above temperature range, within the time when the processing strain is not released after processing, cool from the temperature range of 730 ℃ or more to the temperature of 300 ℃ or less at a cooling rate of 100 ℃ / s or more, then cold work A method for producing an Fe-Co based soft magnetic material characterized by the above.
JP9187790A 1989-04-18 1990-04-06 Method for producing Fe-Co soft magnetic material Expired - Lifetime JPH0788532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9187790A JPH0788532B2 (en) 1989-04-18 1990-04-06 Method for producing Fe-Co soft magnetic material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9630089 1989-04-18
JP1-96300 1989-04-18
JP9187790A JPH0788532B2 (en) 1989-04-18 1990-04-06 Method for producing Fe-Co soft magnetic material

Publications (2)

Publication Number Publication Date
JPH03130322A JPH03130322A (en) 1991-06-04
JPH0788532B2 true JPH0788532B2 (en) 1995-09-27

Family

ID=26433302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9187790A Expired - Lifetime JPH0788532B2 (en) 1989-04-18 1990-04-06 Method for producing Fe-Co soft magnetic material

Country Status (1)

Country Link
JP (1) JPH0788532B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4712443B2 (en) * 2005-05-31 2011-06-29 山陽特殊製鋼株式会社 Manufacturing method of high magnetic flux density material with excellent machinability
KR100991906B1 (en) * 2005-10-11 2010-11-04 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 FUNCTIONAL MEMBER FROM Co-BASED ALLOY AND PROCESS FOR PRODUCING THE SAME
JP5144269B2 (en) * 2005-10-11 2013-02-13 独立行政法人科学技術振興機構 High-strength Co-based alloy with improved workability and method for producing the same
US8529710B2 (en) 2006-10-11 2013-09-10 Japan Science And Technology Agency High-strength co-based alloy with enhanced workability and process for producing the same
WO2013087997A1 (en) 2011-12-16 2013-06-20 Aperam Method for producing a thin strip made from soft magnetic alloy, and resulting strip
CN103451504A (en) * 2013-08-27 2013-12-18 苏州长盛机电有限公司 Cobalt-base alloy
CN110438308B (en) * 2019-09-16 2021-04-13 哈尔滨工业大学 Multistage heat treatment method for FeCo-1.1V soft magnetic alloy
CN111471899A (en) * 2020-04-27 2020-07-31 江苏精研科技股份有限公司 High-performance soft magnetic alloy powder and preparation process for preparing complex parts

Also Published As

Publication number Publication date
JPH03130322A (en) 1991-06-04

Similar Documents

Publication Publication Date Title
CN107127212B (en) The method that super rapid heating technique produces manganese cold-rolled steel sheet in high strength and ductility
KR101004051B1 (en) Iron-based alloy having shape-memory property and superelasticity and method for manufacture thereof
CN104662180A (en) Process for producing grain-oriented electromagnetic steel sheet
US4536229A (en) Fe-Ni-Mo magnet alloys and devices
JPH0559429A (en) Production of high strength cold rolled sheet of dual-phase steel excellent in workability
US20210350961A1 (en) Fe-Si Base Alloy and Method of Making Same
CN112899577B (en) Preparation method of Fe-Mn series high-strength high-damping alloy
CN108251753B (en) Fe-Ga-based thin strip with high magnetostriction coefficient and preparation method thereof
JPH0788532B2 (en) Method for producing Fe-Co soft magnetic material
JPS5856731B2 (en) Heat treatment method for Fe↓-Co↓-Cr alloy for permanent magnets
JP2513679B2 (en) Ultra-high coercive force permanent magnet with large maximum energy product and method for manufacturing the same
EP0877825B1 (en) Method of preparing a magnetic article from a duplex ferromagnetic alloy
JP3387980B2 (en) Method for producing non-oriented silicon steel sheet with extremely excellent magnetic properties
JPS60258454A (en) Manufacture of aluminum alloy rigid plate for molding
GB2025460A (en) Fe-Cr-Co permanent magnet alloy
KR910009760B1 (en) Method for manufacturing steel article having high magnetic permeability and low coercive force
JP2763141B2 (en) Manufacturing method of ferritic stainless steel sheet with excellent heat and corrosion resistance
JPS5924177B2 (en) Square hysteresis magnetic alloy
JPS6217125A (en) Manufacture of high strength and ductility steel material
CN114247758B (en) Method for reinforcing plasticization of industrial pure iron
CN101298648B (en) Molybdenum-titanium composite iron-chromium-cobalt permanent magnetic alloy and deformation processing technique
JP2505196B2 (en) Manufacturing method of semi-processed non-oriented electrical steel sheet with excellent magnetic properties
JPH02267219A (en) Production of steel plate excellent in carburizability
JPH01221820A (en) Manufacture of magnetic lead-piece with rectangular hysteresis and lead switch
JPH0258761B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070927

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 15