JPH0787809A - Steering controller of moving agricultural machine - Google Patents

Steering controller of moving agricultural machine

Info

Publication number
JPH0787809A
JPH0787809A JP5261709A JP26170993A JPH0787809A JP H0787809 A JPH0787809 A JP H0787809A JP 5261709 A JP5261709 A JP 5261709A JP 26170993 A JP26170993 A JP 26170993A JP H0787809 A JPH0787809 A JP H0787809A
Authority
JP
Japan
Prior art keywords
steering
rate
change
angular velocity
turned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5261709A
Other languages
Japanese (ja)
Inventor
Taiji Mizukura
倉 泰 治 水
Takashi Yamada
田 隆 史 山
Shiro Taniai
合 史 朗 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Agricultural Equipment Co Ltd filed Critical Yanmar Agricultural Equipment Co Ltd
Priority to JP5261709A priority Critical patent/JPH0787809A/en
Publication of JPH0787809A publication Critical patent/JPH0787809A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To carry out automatic steering control of a moving agricultural machine such as a speed sprayer in high efficiency. CONSTITUTION:Induction sensors (22a) and (22b) for detecting a magnetic field from an induction cable arranged along a traveling passage and calculating deflection from a target of a machine body and the rate of change of the deflection and an angular velocity sensor (57) for detecting an angular velocity in lateral movement of a machine body are equipped in a fuzzy inference steering control means (47) for operating a steering control amount and carrying out steering control of a machine body by a fuzzy rule steering to the left wen the machine body is deflected to the right and the rate of change of the deflection is turned to the right or the rate of change is zero and not steering when the rate of change of the deflection is turned to the left or angular velocity is turned to the left and a fuzzy rule steering to the right when the machine body is deflected to the left and the rate of change of the deflection is turned to the left or the rate of change is zero and not steering when the rate of change of the deflection is turned to the right or the angular velocity is turned to the right.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はりんご・ぶどう・梨など
を栽培する果樹園で薬剤散布の際に使用されるスピード
スプレーヤなど移動農機の操向制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steering control device for a mobile agricultural machine such as a speed sprayer used for spraying chemicals in an orchard for cultivating apples, grapes, pears and the like.

【0002】[0002]

【従来の技術】この種操向制御装置としては、例えば特
開昭62−196709号公報記載の圃場面に敷設した
誘導ワイヤからの磁界を検出して機体を該ワイヤに沿っ
て操向制御するようにした手段がある。
2. Description of the Related Art As a steering control device of this type, for example, a magnetic field from an induction wire laid in a field scene described in Japanese Patent Laid-Open No. 62-196709 is detected to control the airframe along the wire. There is a means to do so.

【0003】[0003]

【発明が解決しようとする課題】しかし乍らこのような
磁界の検出によって操向制御を行う場合、磁界の強さは
変化した距離に比例して、小さな調整でもっても大きく
走行位置がずれるなどして、制御にハンチング或いは遅
れが発生するなどして適正な制御が行えないという問題
があった。
However, when steering control is performed by detecting such a magnetic field, the strength of the magnetic field is proportional to the changed distance, and the traveling position is greatly displaced even with a small adjustment. Then, there is a problem that proper control cannot be performed due to hunting or delay in control.

【0004】[0004]

【課題を解決するための手段】したがって本発明は、走
行路に沿って配設された誘導ケーブルからの磁界を検出
して機体の目標からのずれ及びずれの変化率を算出する
誘導センサと、機体の左右移動時の角速度を検出する角
速度センサとを備え、機体が右にずれていて、ずれの変
化率が右向きか変化率無しのとき左へ操舵し、ずれの変
化率が左向きか角速度が左向きのとき非操舵とするファ
ジィルールと、機体が左にずれていて、ずれの変化率が
左向きか変化率無しのとき右へ操舵し、ずれの変化率が
右向きか角速度が右向きのとき非操舵とするファジィル
ールとによって、操向制御量を演算して機体の操向制御
を行うファジィ推論操向制御手段に設けたもので、最小
必要の8つのルール数によるファジィ推論によって目標
操舵角を決定して実操舵角が等しくなるように操向制御
を行って、前記誘導ケーブルにハンチングなど発生のな
い適正に機体を追従させての作業を可能とさせるもの
で、特に角速度より機体の向きを逸早く検出して直線部
での蛇行量を小さなものに抑制すると共に、回行終端部
での内側への切れ込みを小さなものに抑制して、走行路
に適正に機体を沿わせての走行を可能とさせて散布精度
を向上させることができる。
SUMMARY OF THE INVENTION Therefore, according to the present invention, there is provided an induction sensor for detecting a magnetic field from an induction cable arranged along a traveling path to calculate a deviation of a body from a target and a change rate of the deviation. It is equipped with an angular velocity sensor that detects the angular velocity when the aircraft moves to the left and right, and when the aircraft is displaced to the right and the rate of change of the deviation is to the right or there is no rate of change, steer to the left to determine whether the rate of change of the deviation is to the left or the angular rate. Fuzzy rule that the steering is not performed when the vehicle is facing left, and the aircraft is displaced to the left.When the rate of change of the displacement is left or there is no rate of change, the vehicle is steered to the right, and when the rate of change of the deviation is to the right or the angular velocity is to the right, no steering The target steering angle is determined by fuzzy inference based on the minimum required number of eight rules, which is provided in the fuzzy inference steering control means that calculates the steering control amount by the fuzzy rule do it By controlling the steering so that the steering angles are equal, it is possible to work by appropriately following the aircraft without hunting on the induction cable, especially by detecting the orientation of the aircraft faster than the angular velocity. In addition to suppressing the meandering amount in the straight part to be small, the inward cut at the trailing end part is also suppressed to be small so that the aircraft can travel properly along the traveling path and sprayed. The accuracy can be improved.

【0005】[0005]

【実施例】以下、本発明の一実施例を図面に基づいて詳
述する。図1は制御回路図、図2はスピードスプレーヤ
の全体側面図、図3は同平面図、図4は運転操作部の斜
視説明図であり、図中(1)は移動農機であるスピード
スプレーヤであり、前部ボンネット(2)内に設けるエ
ンジン(3)と、機体の左側略中央に設けて運転席
(4)及び操向ハンドル(5)を有する運転操作部
(6)と、機体後部に設けて薬液を散布する噴霧ノズル
(7)及び送風ファン(8)と、左右の前輪(9)
(9)及び後輪(10)(10)とを備え、走行し乍ら
薬液を周辺に散布するように構成している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a control circuit diagram, FIG. 2 is an overall side view of a speed sprayer, FIG. 3 is a plan view of the same, and FIG. 4 is a perspective explanatory view of a driving operation unit. In the figure, (1) is a speed sprayer which is a mobile agricultural machine. Yes, an engine (3) provided in the front bonnet (2), a driving operation unit (6) provided at the substantially left center of the airframe and having a driver's seat (4) and a steering handle (5), and at the rear of the airframe. A spray nozzle (7) and a blower fan (8) that are provided to spray the chemical liquid, and front left and right wheels (9)
It is provided with (9) and rear wheels (10) and (10), and is configured to spray the chemical liquid to the surroundings while traveling.

【0006】図5にも示す如く、エンジン(3)からの
駆動力をミッション(11)及び駆動軸(12)を介し
て前後輪(9)(10)に伝達してこれらの駆動を行う
と共に、操向ハンドル(5)又は電磁ソレノイド(1
3)によって切換える操舵電磁バルブ(14)と、前輪
(9)及び後輪(10)を操向作動する操向シリンダ
(15)(16)とを備え、エンジン(3)と連動する
油圧ポンプ(17)に前記バルブ(14)を介して各シ
リンダ(15)(16)を油圧接続している。そして前
後輪(9)(10)の操舵角度を検出するポテンショメ
ータ型の操舵角センサ(17)を設けている。
As shown in FIG. 5, the driving force from the engine (3) is transmitted to the front and rear wheels (9) and (10) through the mission (11) and the drive shaft (12) to drive them. , Steering handle (5) or electromagnetic solenoid (1
(3) A steering electromagnetic valve (14) that is switched by a steering wheel, and steering cylinders (15) (16) that steer the front wheels (9) and the rear wheels (10). The hydraulic pump (3) interlocks with the engine (3). Each cylinder (15) (16) is hydraulically connected to 17) via the valve (14). A potentiometer-type steering angle sensor (17) for detecting the steering angle of the front and rear wheels (9, 10) is provided.

【0007】図6にも示す如く、前記噴霧ノズル(7)
は半円弧状の噴霧フレーム(18)に左右及び中央の3
つに分割され配設されるもので、左側ノズル(7a)・
右側ノズル(7b)・中央ノズル(7c)のそれぞれの
散布量を増減調節或いは停止させる左右及び中央薬液バ
ルブ(19)(20)(21)を設けて、薬液ポンプか
ら各ノズル(7a)(7b)(7c)に送給される薬液
量の増減調節を行うように構成している。
As shown in FIG. 6, the spray nozzle (7) is also provided.
Is the left and right and center 3 in the semi-arc shaped spray frame (18).
The left nozzle (7a)
The right and left and central chemical liquid valves (19) (20) (21) for adjusting the amount of spraying of each of the right nozzle (7b) and the central nozzle (7c) to increase or decrease or stopping, are provided, and the nozzles (7a) (7b) are connected from the chemical liquid pump. ) (7c) is configured to increase / decrease the amount of the chemical liquid fed.

【0008】図7にも示す如く、前記スピードスプレー
ヤ(1)前端部の左右両側に左右一対の磁気センサであ
る誘導センサ(22a)(22b)を設けて果樹園内に
敷設される誘導ケーブル(23)を検出するもので、機
体(24)前端上に立設支持するセンサ取付フレーム
(25)に、上下用調節ボルト(26)を介しセンサ台
(27)を上下取付位置調節自在に固定すると共に、セ
ンサ台(27)に傾斜用調節ボルト(28)を介しセン
サ(22a)(22b)を取付姿勢調節自在に固定させ
て、路面上に敷設される誘導ケーブル(23)を中心と
して左右両側に等距離状態にセンサ(22a)(22
b)の検出面を臨まさせ、前記ケーブル(23)に接続
する電源(29)より交番的な電流が印加されて該ケー
ブル(23)に磁界が発生するとき、この磁界の強さを
左右センサ(22a)(22b)でもって検出するよう
に構成している。
As shown in FIG. 7, a pair of left and right induction sensors (22a) and (22b), which are magnetic sensors, are provided on the left and right sides of the front end of the speed sprayer (1), and an induction cable (23) is laid in the orchard. ) Is detected, the sensor base (27) is fixed to the sensor mounting frame (25) which is erected upright on the front end of the machine body (24) through the vertical adjustment bolts (26) so that the vertical mounting position can be adjusted. , The sensors (22a) and (22b) are fixed to the sensor base (27) through the tilt adjusting bolts (28) so that the mounting posture can be adjusted, and the guide cables (23) laid on the road surface can be used as the center of the left and right sides. The sensor (22a) (22
When a magnetic field is generated in the cable (23) by applying an alternating current from a power source (29) connected to the cable (23) with the detection surface of b) facing, the left and right sensors measure the strength of this magnetic field. (22a) and (22b) are used for detection.

【0009】また、前記運転操作部(6)の左及び後部
に配設する薬液タンク(30)内に水の補給を行う補給
ポンプ(31)を前記ボンネット(2)の左側内に設
け、該ポンプ(31)の補給ホース(31a)を機体左
側に臨ませて補給作業を機体左側で行うもので、このポ
ンプ(31)をオン・オフ操作する2つのポンプスイッ
チ(32a)(32b)を、運転席(4)左側の左パネ
ル(33)上と、前記ボンネット(2)の左側面とに設
置して、補給作業での容易化と安全性向上を図るように
構成している。
Further, a replenishment pump (31) for replenishing water is provided in the left side of the bonnet (2) in the chemical liquid tank (30) arranged on the left and the rear of the operation control section (6), The replenishment hose (31a) of the pump (31) is faced to the left side of the machine body to perform the replenishment work on the left side of the machine body. Two pump switches (32a) (32b) for turning the pump (31) on and off, It is installed on the left panel (33) on the left side of the driver's seat (4) and on the left side surface of the hood (2) so as to facilitate refueling work and improve safety.

【0010】さらに、走行作業時に果樹の枝や葉など枝
葉部を検出して散布のタイミングを判断する枝葉センサ
(34)を、噴霧ノズル(7)及び送風ファン(8)よ
り前方位置(噴口に近いほど精度は上る)に設けて、噴
霧や送風の悪影響を回避させるもので、運転席(4)左
側の車体カバー(35)上に、遠隔操作器(36)から
の自動走行用の遠隔操作指令信号を受信機(37)に受
信するアンテナ(37a)と、受信機(37)の受信モ
ニタ状態を確認するモニタランプ(38)と、枝葉セン
サ(34)とを三者一体構造として取付けて、本機から
の突出長さを抑制し、メンテナンスを容易とさせるよう
に構成している。
Further, a branch / leaf sensor (34) for detecting the branches and leaves of fruit trees during traveling work to judge the spraying timing is provided at a position in front of the spray nozzle (7) and the blower fan (8). It is installed on the vehicle body cover (35) on the left side of the driver's seat (4) on the vehicle body cover (35) on the left side of the driver's seat (4) for remote control for automatic driving. An antenna (37a) for receiving a command signal to the receiver (37), a monitor lamp (38) for confirming the reception monitor state of the receiver (37), and a branch and leaf sensor (34) are attached as a three-piece integrated structure. The length of protrusion from the machine is suppressed, and maintenance is facilitated.

【0011】なお前記枝葉センサ(34)は、作業者が
搭乗しての有人運転時には、運転席(4)左側位置より
後方或いは前方位置に回避させて設けるものである。
The branch-and-leaf sensor (34) is provided at a position behind or to the front of the left side position of the driver's seat (4) during manned driving with an operator on board.

【0012】またさらに、作業中の異常作業状態を報知
する警報ランプ(39a)(39b)を、運転席(4)
前方の運転パネル面(40)と、前記ボンネット(2)
の右側面とに設けて、運転操作部(6)を運転席カバー
で覆っての自動走行時には、機体外側の警報ランプ(3
9b)でもって運転席カバーをかけたままでも容易にそ
の確認を可能とさせて安全性を向上させるように構成し
ている。
Furthermore, alarm lamps (39a) (39b) for notifying an abnormal work state during work are provided in the driver's seat (4).
The front driving panel surface (40) and the hood (2)
It is installed on the right side of the vehicle and when the driver operates the cover (6) with the driver's seat cover, the warning lamp (3
9b) makes it possible to easily confirm the condition even with the driver's seat cover put on and improve the safety.

【0013】図8にも示す如く、前記警報ランプ(39
a)(39b)点灯時などの異常作業時にエンジン
(3)の駆動を停止させる全停止スイッチ(41)を、
ボンネット(2)の右側面の警報ランプ(39b)近傍
に設置するもので、キースイッチ(42)のオン時にタ
イマ(43)・リレー(44)・スイッチ(45)を介
し動作させる燃料供給バルブの供給ソレノイド(46)
に全停止スイッチ(41)を接続させて、全停止スイッ
チ(41)の操作時にソレノイド(46)の励磁を解除
させて、ファジィ推論操向制御手段であるコントローラ
(47)などの暴走による異常を機外側より解消するよ
うに構成している。
As shown in FIG. 8, the alarm lamp (39
a) A total stop switch (41) for stopping the drive of the engine (3) during abnormal work such as lighting of (39b),
It is installed near the alarm lamp (39b) on the right side of the bonnet (2), and is a fuel supply valve operated by the timer (43), relay (44) and switch (45) when the key switch (42) is turned on. Supply solenoid (46)
Is connected to a full stop switch (41) to release the excitation of the solenoid (46) at the time of operating the full stop switch (41) so that an abnormality due to a runaway of a controller (47) which is a fuzzy inference steering control means is detected. It is configured to be canceled from the outside of the aircraft.

【0014】そして図1にも示す如く、前記操舵電磁バ
ルブ(14)と、走行クラッチをオン・オフ操作すると
同時に走行ブレーキをオフ・オン作動する走行クラッチ
制御用電動シリンダの電磁バルブ(48)と、前記エン
ジン(3)に供給される燃料を停止させるエンジンスト
ップモータ(49)と、薬液及び水ポンプの駆動をオン
・オフする動力噴霧機用電磁クラッチ(50)と、前記
薬液バルブ(19)(20)(21)のそれぞれの開閉
制御を行うバルブモータ(51)(52)(53)とを
備えると共に、これらを駆動制御するマイクロコンピユ
ータで構成するファジィ推論操向制御手段であるコント
ローラ(47)を備え、前記誘導センサ(22a)(2
2b)と、操舵角センサ(17)と、機体前部に設けて
前方の障害物を検知する超音波形障害物センサ(54)
と、機体前部に設けて障害物との接触を検知するタッチ
センサ(55)と、薬液タンク(30)の薬液残量を検
知する薬剤残量センサ(56)と、機体の左右移動時の
角速度を検出する角速度センサ(57)とを前記コント
ローラ(47)に入力接続させて、前記誘導ケーブル
(23)の誘導による該ケーブル(23)に追従した操
向を行うように構成している。
As shown in FIG. 1, the steering electromagnetic valve (14) and the electromagnetic valve (48) of the electric clutch control electric cylinder for turning on and off the traveling clutch and simultaneously turning the traveling brake on and off. An engine stop motor (49) for stopping the fuel supplied to the engine (3), a power sprayer electromagnetic clutch (50) for turning on and off the drive of a chemical liquid and water pump, and the chemical liquid valve (19) A controller (47) which is a fuzzy inference steering control means including valve motors (51), (52) and (53) for controlling the opening and closing of each of (20) and (21) and configured by a micro computer for driving and controlling these. ), And the inductive sensor (22a) (2
2b), a steering angle sensor (17), and an ultrasonic obstacle sensor (54) provided at the front of the fuselage to detect an obstacle ahead.
A touch sensor (55) provided on the front of the machine body to detect contact with an obstacle, a drug residual quantity sensor (56) to detect the chemical solution residual quantity of the chemical solution tank (30), and a lateral movement of the machine body. An angular velocity sensor (57) for detecting an angular velocity is input and connected to the controller (47) so as to carry out steering following the cable (23) by the guidance of the guidance cable (23).

【0015】また、前記操作器(36)には、走行開始
及び走行停止スイッチと前記動力噴霧機用電磁クラッチ
(50)のオン・オフを行う噴霧切換スイッチと前記バ
ルブモータ(51)(52)(53)を駆動制御して薬
液バルブ(19)(20)(21)を開閉する各バルブ
開閉スイッチなどを備え、前記コントローラ(47)に
入力接続させるラジコン式無線受信機(37)に操作器
(36)を送受信アンテナ(36a)(37a)を介し
双方向通信可能に通信接続させている。
Further, the operation device (36) includes a traveling start and traveling stop switch, a spray changeover switch for turning on and off the electromagnetic clutch (50) for the power sprayer, and the valve motors (51) (52). A radio controlled radio receiver (37) which is provided with various valve opening / closing switches for driving and controlling the chemical liquid valves (19), (20) and (21) by driving (53) and which is connected to the controller (47). (36) is communicatively connected via the transmitting / receiving antennas (36a) and (37a) so that bidirectional communication is possible.

【0016】本実施例は上記の如く構成するものにし
て、この自動走行時の誘導センサ(22a)(22b)
の出力例を図9に示す。
The present embodiment is constructed as described above, and the induction sensors (22a) (22b) for this automatic traveling are used.
FIG. 9 shows an output example of the above.

【0017】ところで、前記誘導センサ(22a)(2
2b)の出力値(Vd)は、左センサ(22a)の出力
値(Va)と右センサ(22b)の出力値(Vb)の差
動出力値(Va−Vb)(Vd=Va−Vb)としたも
ので、実験の結果から機体の横ずれ量Xに対し図10の
如き関係を得るものである。
By the way, the induction sensors (22a) (2
The output value (Vd) of 2b) is the differential output value (Va-Vb) (Vd = Va-Vb) of the output value (Va) of the left sensor (22a) and the output value (Vb) of the right sensor (22b). Therefore, the relationship as shown in FIG. 10 is obtained with respect to the lateral displacement amount X of the machine body from the result of the experiment.

【0018】そして図11に示す如く、前記出力値(V
d)が入力されると、操向基準に対する横方向のずれ
(Vx)、及びこのずれ(Vx)の変化率である機体の
方向(ΔVx)が算出され、これらずれ(Vx)及び機
体の方向(ΔVx)と角速度(ω)とからファジイ推論
によって操舵量(ΔVs)が算出され、その操向制御が
行われるもので、今ケーブル誘導センサ(22a)(2
2b)の出力をVd、Vdの移動平均値をVdm、Vd
mの機体中心方向へのオフセット量をVoff、Vdの
変化率をΔVd、実操舵角をVsr、制御量である操舵
量をΔVs、目標操舵角をVsgとするとき、機体の目
標からのずれ(Vx)を Vx=Vd−(Vdm+Voff) 機体の方向(ずれの変化率)(ΔVx)を ΔVx=ΔVd として次に示すルール1から6までのVx、ΔVxに基
づく6つのファジィルールと、角速度(ω)を用いたル
ール7及び8のVx、ωに基づくファジィルールを用い
てのファジィ推論が行われる。
As shown in FIG. 11, the output value (V
When d) is input, the lateral shift (Vx) with respect to the steering reference, and the aircraft direction (ΔVx), which is the rate of change of this deviation (Vx), are calculated, and the deviation (Vx) and the aircraft direction are calculated. The steering amount (ΔVs) is calculated by fuzzy inference from (ΔVx) and the angular velocity (ω), and the steering control is performed. Now, the cable guidance sensor (22a) (2a) (2)
2b) output is Vd, moving average value of Vd is Vdm, Vd
When the offset amount of m toward the airframe center is Voff, the rate of change of Vd is ΔVd, the actual steering angle is Vsr, the steering amount that is a control amount is ΔVs, and the target steering angle is Vsg, the deviation from the target of the airframe ( Vx) is Vx = Vd− (Vdm + Voff) The direction (rate of change of deviation) (ΔVx) of the body is ΔVx = ΔVd, and six fuzzy rules based on Vx and ΔVx from the following rules 1 to 6 and angular velocity (ω) ) Is used to perform fuzzy inference using fuzzy rules based on Vx and ω of rules 7 and 8.

【0019】ルール1 右にずれていて、かつ、右を向
いていれば、左へ操舵する。 ルール2 右にずれていて、かつ、まっすぐであれば、
左へ操舵する。 ルール3 右にずれていて、かつ、左を向いていれば、
操舵しない。 ルール4 左にずれていて、かつ、右を向いていれば、
操舵しない。 ルール5 左にずれていて、かつ、まっすぐであれば、
右へ操舵する。 ルール6 左にずれていて、かつ、左を向いていれば、
右へ操舵する。 ルール7 右にずれていて、かつ、角速度が左向きなら
ば操舵しない。 ルール8 左にずれていて、かつ、角速度が右向きなら
ば操舵しない。
Rule 1 If the vehicle is deviated to the right and turned to the right, steer to the left. Rule 2 If it is off to the right and straight,
Steer to the left. Rule 3 If it's shifted to the right and it's facing to the left,
Do not steer. Rule 4 If it is offset to the left and faces to the right,
Do not steer. Rule 5 If it is off to the left and straight,
Steer to the right. Rule 6 If it is shifted to the left and is facing the left,
Steer to the right. Rule 7 If the vehicle is off to the right and the angular velocity is to the left, do not steer. Rule 8 If the vehicle is shifted to the left and the angular velocity is to the right, do not steer.

【0020】そして各ルールから得られた出力ファジィ
集合の合成によって操舵量(ΔVs)が算出されると、
該操舵量(ΔVs)より目標操舵角(Vsg)(Vsg
=Vsr+ΔVs)が算出されて、実操舵角(Vsr)
が目標操舵角(Vsg)に等しくなるような操向制御が
行われるものである。
When the steering amount (ΔVs) is calculated by synthesizing the output fuzzy sets obtained from the respective rules,
From the steering amount (ΔVs), the target steering angle (Vsg) (Vsg
= Vsr + ΔVs) is calculated, and the actual steering angle (Vsr)
The steering control is performed so that is equal to the target steering angle (Vsg).

【0021】なおこの場合、Vx=Vd−Vdo Vdo 機体中心と誘導ケーブル(23)が一致したと
きの誘導センサ出力値とせずにVx=Vd−(Vdm+
Voff)としたのは、ファジィ推論の分解能を保ちな
がらルール数を減らしたかったためである。
In this case, Vx = Vd-Vdo Vdo Vx = Vd- (Vdm +) instead of the induction sensor output value when the center of the machine body and the induction cable (23) match.
Voff) is because I wanted to reduce the number of rules while maintaining the resolution of fuzzy inference.

【0022】而して、この自動操向制御は起伏や傾斜地
の多い果樹園で使用されると共に、タンク(30)薬液
量によって機体重量が変化し、しかも薬液の均一散布も
必要とされる作業条件が種々変化するスピードスプレー
ヤ(1)に最適に用いられるものである。
Thus, this automatic steering control is used in an orchard with a lot of ups and downs and sloping land, and the machine weight changes depending on the amount of the liquid chemical in the tank (30), and moreover, the uniform liquid spraying is required. It is optimally used for a speed sprayer (1) under various conditions.

【0023】特にこの場合角速度(ω)より機体の向き
を逸早く検出して、直線部での蛇行量を小さく、また回
行終端部での内側への切れ込みを小さく抑えて、自動走
行可能速度範囲を拡大させて、作業性を向上させること
ができる。
Particularly in this case, the direction of the airframe is detected earlier than the angular velocity (ω), the amount of meandering at the straight line portion is reduced, and the inward cut at the turning end portion is suppressed to be small, thereby enabling the automatic traveling speed range. Can be expanded to improve workability.

【0024】図12は前記誘導センサ(22a)(22
b)のセンサ台(27)を、センサ取付フレーム(2
5)に固設するモータ(58)の回転ネジ軸(59)に
結合体(60)を介し結合させて、モータ(58)でも
ってセンサ(22a)(22b)の上下取付位置の調節
を行うように構成したものである。
FIG. 12 shows the induction sensors (22a) (22)
The sensor base (27) of b) is attached to the sensor mounting frame (2
5) The motor (58) is fixed to the rotary screw shaft (59) of the motor (58) via a connector (60), and the motor (58) adjusts the vertical mounting position of the sensors (22a) (22b). It is configured as follows.

【0025】[0025]

【発明の効果】以上実施例から明らかなように本発明
は、走行路に沿って配設された誘導ケーブル(23)か
らの磁界を検出して機体の目標からのずれ(Vx)及び
ずれの変化率(ΔVx)を算出する誘導センサ(22
a)(22b)と、機体の左右移動時の角速度(ω)を
検出する角速度センサ(57)とを備え、機体が右にず
れていて、ずれの変化率が右向きか変化率無しのとき左
へ操舵し、ずれの変化率が左向きか角速度が左向きのと
き非操舵とするファジィルールと、機体が左にずれてい
て、ずれの変化率が左向きか変化率無しのとき右へ操舵
し、ずれの変化率が右向きか角速度が右向きのとき非操
舵とするファジィルールとによって、操向制御量を演算
して機体の操向制御を行うファジィ推論操向制御手段
(47)に設けたもので、最小必要の8つのルール数に
よってファジィ推論が行われて目標操舵角(Vsg)が
決定され実操舵角(Vsr)が等しくなるように操向制
御が行われて、前記誘導ケーブル(23)にハンチング
など発生させることなく適正に機体を追従させての作業
を可能とさせるもので、特に角速度(ω)より機体の向
きを逸早く検出して直線部での蛇行量を小さなものに抑
制すると共に、回行終端部での内側への切れ込みを小さ
なものに抑制して、走行路に適正に機体を沿わせての走
行を可能とさせて散布精度を向上させることができるな
ど顕著な効果を奏する。
As is apparent from the above embodiments, the present invention detects the magnetic field from the induction cable (23) arranged along the traveling path to detect the deviation (Vx) and deviation of the airframe from the target. Induction sensor (22) for calculating the rate of change (ΔVx)
a) (22b) and an angular velocity sensor (57) that detects the angular velocity (ω) when the aircraft is moving left and right, and the aircraft is displaced to the right, and when the rate of change of the deviation is to the right or there is no rate of change, it is left. Steering to the left and the change rate of deviation to the left or the angular velocity to the left is a non-steering fuzzy rule, and if the aircraft has shifted to the left and the change rate of deviation is to the left or no change rate, steer to the right and shift It is provided in the fuzzy inference steering control means (47) for controlling the steering of the airframe by calculating the steering control amount by the fuzzy rule that the steering is not steered when the rate of change is rightward or the angular velocity is rightward. Fuzzy inference is performed by the minimum required eight rule numbers to determine a target steering angle (Vsg), and steering control is performed so that the actual steering angle (Vsr) becomes equal, and hunting is performed on the induction cable (23). To generate This makes it possible to perform work properly following the aircraft, and in particular it detects the orientation of the aircraft faster than the angular velocity (ω) to suppress the meandering amount in the straight part to a small amount, and at the end of the circulation. It is possible to suppress the inward incision to be small, to allow the vehicle to properly travel along the traveling path, and to improve the spraying accuracy, which is a remarkable effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】制御回路図である。FIG. 1 is a control circuit diagram.

【図2】全体の側面図である。FIG. 2 is an overall side view.

【図3】全体の平面図である。FIG. 3 is an overall plan view.

【図4】運転操作部の斜視説明図である。FIG. 4 is a perspective explanatory view of a driving operation unit.

【図5】全体の平面説明図である。FIG. 5 is an overall plan view.

【図6】薬液散布部の背面説明図である。FIG. 6 is a rear explanatory view of the chemical liquid spraying section.

【図7】誘導センサの取付説明図である。FIG. 7 is an explanatory view of mounting the inductive sensor.

【図8】電気回路図である。FIG. 8 is an electric circuit diagram.

【図9】誘導センサの出力例を示す説明図である。FIG. 9 is an explanatory diagram showing an output example of the inductive sensor.

【図10】誘導センサの出力説明図である。FIG. 10 is an output explanatory diagram of the inductive sensor.

【図11】フローチャートである。FIG. 11 is a flowchart.

【図12】誘導センサの他の取付説明図である。FIG. 12 is another mounting explanatory view of the inductive sensor.

【符号の説明】[Explanation of symbols]

(22a)(22b) 誘導センサ (23) 誘導ケーブル (47) 制御回路(制御手段) (57) 角速度センサ (Vx) ずれ (ΔVx) 方向(ずれの変化率) (ω) 角速度 (22a) (22b) Induction sensor (23) Induction cable (47) Control circuit (control means) (57) Angular velocity sensor (Vx) Deviation (ΔVx) direction (change rate of deviation) (ω) Angular speed

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B62D 1/28 9142−3D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B62D 1/28 9142-3D

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 走行路に沿って配設された誘導ケーブル
からの磁界を検出して機体の目標からのずれ及びずれの
変化率を算出する誘導センサと、機体の左右移動時の角
速度を検出する角速度センサとを備え、機体が右にずれ
ていて、ずれの変化率が右向きか変化率無しのとき左へ
操舵し、ずれの変化率が左向きか角速度が左向きのとき
非操舵とするファジィルールと、機体が左にずれてい
て、ずれの変化率が左向きか変化率無しのとき右へ操舵
し、ずれの変化率が右向きか角速度が右向きのとき非操
舵とするファジィルールとによって、操向制御量を演算
して機体の操向制御を行うファジィ推論操向制御手段に
設けたことを特徴とする移動農機の操向制御装置。
1. An induction sensor for detecting a magnetic field from an induction cable arranged along a traveling path to calculate a deviation of a body from a target and a rate of change of the deviation, and an angular velocity when the body moves left and right. A fuzzy rule that is equipped with an angular velocity sensor and steers to the left when the airframe shifts to the right and the change rate of the shift is to the right or no change rate, and to steer to the left when the change rate of the shift is to the left or the angular velocity is to the left. And the aircraft is shifted to the left and the change rate of the shift is left or there is no change rate, steer to the right, and when the change rate of the shift is to the right or the angular velocity is to the right, no steering is performed. A steering control device for a mobile agricultural machine, which is provided in fuzzy inference steering control means for calculating a control amount to control steering of a machine.
JP5261709A 1993-09-24 1993-09-24 Steering controller of moving agricultural machine Pending JPH0787809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5261709A JPH0787809A (en) 1993-09-24 1993-09-24 Steering controller of moving agricultural machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5261709A JPH0787809A (en) 1993-09-24 1993-09-24 Steering controller of moving agricultural machine

Publications (1)

Publication Number Publication Date
JPH0787809A true JPH0787809A (en) 1995-04-04

Family

ID=17365624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5261709A Pending JPH0787809A (en) 1993-09-24 1993-09-24 Steering controller of moving agricultural machine

Country Status (1)

Country Link
JP (1) JPH0787809A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100854363B1 (en) * 2002-05-25 2008-09-02 주식회사 포스코 Apparatus for controling the center of steel strip in inductive type
JP2015208237A (en) * 2014-04-24 2015-11-24 井関農機株式会社 Self-propelled pest control machine
CN107340770A (en) * 2017-06-15 2017-11-10 惠州市蓝微电子有限公司 A kind of hay mover forward method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100854363B1 (en) * 2002-05-25 2008-09-02 주식회사 포스코 Apparatus for controling the center of steel strip in inductive type
JP2015208237A (en) * 2014-04-24 2015-11-24 井関農機株式会社 Self-propelled pest control machine
CN107340770A (en) * 2017-06-15 2017-11-10 惠州市蓝微电子有限公司 A kind of hay mover forward method
CN107340770B (en) * 2017-06-15 2020-09-15 惠州市蓝微电子有限公司 Mower steering method

Similar Documents

Publication Publication Date Title
US6827176B2 (en) Vehicle with offset extendible axles and independent four-wheel steering control
JP2944814B2 (en) Autonomous vehicle with obstacle sensor
JPH0787809A (en) Steering controller of moving agricultural machine
JP3533575B2 (en) Work vehicle
JP2578457Y2 (en) Spray direction control device for drug sprayer
JPH0630604A (en) Device for controlling steering of movable agricultural machine
JP2989148B2 (en) Agricultural vehicle
JP3205006B2 (en) Automatic steering control device for work vehicle
JPH05173632A (en) Automatic steering guidance device
JPH075023Y2 (en) Steering control device for mobile agricultural machinery
JP2590004Y2 (en) Automatic steering control device for traveling vehicles
JPH0543204U (en) Automatic steering guidance device
JPS637706A (en) Running control apparatus of automatic running working vehicle
JPH0711813Y2 (en) Steering control device for pest control equipment
JP2590015Y2 (en) Guideway device for electromagnetically guided vehicles
JP3005153B2 (en) Travel control device for beam-guided work vehicle
JPH05173633A (en) Electromagnetic guidance controller for traveling vehicle
JP2505356Y2 (en) Steering control device for work vehicle
JP2567179Y2 (en) Remote control device for autonomous vehicles
JP2549168Y2 (en) Spray direction switching control device for electromagnetic induction type drug sprayer
JPH0643707U (en) Guide route device for electromagnetically guided vehicles
JPS62285114A (en) Traveling controller for automatic traveling vehicle
JP2919161B2 (en) Electromagnetic induction vehicle
JPS63204A (en) Running control apparatus of automatic running working vehicle
JPH058613U (en) Steering control device for traveling vehicle