JPH0787684A - Power failure compensation circuit for electronic equipment - Google Patents

Power failure compensation circuit for electronic equipment

Info

Publication number
JPH0787684A
JPH0787684A JP5192482A JP19248293A JPH0787684A JP H0787684 A JPH0787684 A JP H0787684A JP 5192482 A JP5192482 A JP 5192482A JP 19248293 A JP19248293 A JP 19248293A JP H0787684 A JPH0787684 A JP H0787684A
Authority
JP
Japan
Prior art keywords
cpu
power failure
output
power supply
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5192482A
Other languages
Japanese (ja)
Inventor
Noboru Yoshida
昇 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Funai Electric Co Ltd
Original Assignee
Funai Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Funai Electric Co Ltd filed Critical Funai Electric Co Ltd
Priority to JP5192482A priority Critical patent/JPH0787684A/en
Publication of JPH0787684A publication Critical patent/JPH0787684A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Landscapes

  • Stand-By Power Supply Arrangements (AREA)

Abstract

PURPOSE:To extend backup time by inputting the output of a generator for outputting pulses according to a commercial power supply frequency which is connected to the primary side of a power supply transformer in parallel, judging that power failed when a pulse period is abnormal, and then switching to a low power consumption operation. CONSTITUTION:A commercial power supply voltage is transformed to, for example, 10V and 5V by a transformer 1, is rectified by diodes 2 and 4, is smoothed by capacitors 3 an 5, and then is supplied to each load, a backup capacitor 9, and a CPU 8. The series circuit of a resistor 11, a diode 12, and a photocoupler 10 is connected to the primary side of the transformer 1 in parallel to generate pulses according to a power supply frequency. The output of the photo coupler 10 is inputted to the CPU 8 for monitoring the powersupply state. When power fails, the output of the photocoupler 10 is interrupted immediately and the CPU 8 switches the load side to a low power consumption operation, thus operating only a parallel required circuit of the CPU 8 according to the output of the capacitor 9 for backup and hence positively extending backup time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子機器の停電補償回路
に関し、詳しくは商用電源等の停電に対して、迅速に検
出し、該電子機器を長時間バックアップする停電補償回
路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power failure compensating circuit for electronic equipment, and more particularly to a power failure compensating circuit for quickly detecting a power failure such as a commercial power source and backing up the electronic equipment for a long time.

【0002】[0002]

【従来の技術】従来の電子機器の電源回路を図3に示
す。(31)は商用電源を12Vあるいは5Vなどの所
望の電圧に降圧させるトランスで、2次側に2つの巻線
を備え、各巻線からの出力を電流する為のダイオード
(32)(34)と、該整流された電圧を平滑するコン
デンサ(33)(35)とにより、2種類の直流電圧を
出力する。該直流電圧の一方5Vは定電圧IC(37)
により5Vに安定化され、ICその他の電子回路の電源
として供給されると共に、CPU(38)の電源として
も供給される。また該CPU(38)の電源端子Vcc
には容量の大きなバックアップ用コンデンサ(39)が
並列に接続されている。他方12Vの直流電圧は、その
まま、あるいは、図示しない定電圧回路を経て、電子回
路へ供給されると共に、停電検出回路(36)にも供給
され、該停電検出回路(36)の検出出力がCPU(3
8)の動作モード切換端子MODに接続されている。
2. Description of the Related Art A conventional power supply circuit for electronic equipment is shown in FIG. (31) is a transformer for stepping down the commercial power supply to a desired voltage such as 12V or 5V. It has two windings on the secondary side, and diodes (32) (34) for current output from each winding. , Two types of DC voltage are output by the capacitors (33) and (35) that smooth the rectified voltage. One of the DC voltage of 5V is a constant voltage IC (37)
It is stabilized to 5V by the power supply, and is supplied as the power supply for the IC and other electronic circuits as well as the power supply for the CPU (38). Further, the power supply terminal Vcc of the CPU (38)
A backup capacitor (39) having a large capacity is connected in parallel with. On the other hand, the DC voltage of 12 V is supplied to the electronic circuit as it is or after passing through a constant voltage circuit (not shown), and is also supplied to the power failure detection circuit (36), and the detection output of the power failure detection circuit (36) is the CPU. (3
It is connected to the operation mode switching terminal MOD of 8).

【0003】該停電検出回路(36)は入力が設定され
た停電検出電圧よりも高ければHレベルを出力するよう
構成されており、CPU(38)は、上記切換端子MO
Dの入力がHレベル時には通常動作を行い、Lレベルが
入力されると、該CPU(38)は通常動作から、、C
PU(38)内部回路一部の動作を休止させ、低消費電
力動作のモードに切換えるようになっている。上記回路
において、通電中CPU(38)には安定化された5V
電圧が供給されると同時にバックアップ用コンデンサ
(39)を充電し、停電検出回路(36)はHレベルを
CPU(38)に入力し続けるので、通常動作を行う。
The power failure detection circuit (36) is configured to output an H level if the input is higher than the set power failure detection voltage, and the CPU (38) has the switching terminal MO.
When the D input is at the H level, normal operation is performed, and when the L level is input, the CPU (38) changes from the normal operation to C
The operation of a part of the internal circuit of the PU (38) is suspended and the mode is switched to the low power consumption operation mode. In the above circuit, the regulated 5V is applied to the CPU (38) during energization.
At the same time as the voltage is supplied, the backup capacitor (39) is charged, and the power failure detection circuit (36) continues to input the H level to the CPU (38), so that the normal operation is performed.

【0004】一方、停電状態になると、CPU(38)
は定電圧IC(37)からではなく、バックアップ用コ
ンデンサ(39)から放電される電流により、電源供給
を受け始める。この時点では平滑コンデンサ(33)の
作用により、12Vラインの電圧は停電検出電圧Vdよ
り高く、CPU(38)は通常動作を継続する。そして
上記平滑コンデンサ(33)からの放電電圧が低下し、
停電検出電圧Vd以下になると停電検出回路(36)は
出力をHからLとし、CPU(38)の切換端子MOD
がLレベルとなり、該CPU(38)は低消費電力動作
のモードに切換わるものである。
On the other hand, when a power failure occurs, the CPU (38)
Starts to be supplied with power by the current discharged from the backup capacitor (39), not from the constant voltage IC (37). At this point, the voltage of the 12V line is higher than the power failure detection voltage Vd due to the action of the smoothing capacitor (33), and the CPU (38) continues the normal operation. Then, the discharge voltage from the smoothing capacitor (33) decreases,
When the power failure detection voltage becomes equal to or lower than Vd, the power failure detection circuit (36) changes its output from H to L, and the switching terminal MOD of the CPU (38).
Goes to the L level, and the CPU (38) switches to the low power consumption operation mode.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記従
来の停電補償回路では、平滑後の直流電圧の変動率を小
さく、リップルを少なくする為に、平滑コンデンサ(3
3)の放電時定数を大きく、すなわち該コンデンサ(3
3)の容量を大きく設計するのが通常である。その為、
停電後12Vラインの電圧はゆるやかに低下し、停電か
ら停電検出までの時間が長くかかっていた。その間CP
U(38)はバックアップ用コンデンサ(39)からの
電流のみで通常動作を行う為、図4のタイミングチャー
トに示す様に、電力Aの部分を無駄に消費し、その結果
バックアップ時間が短くなり、長時間のバックアップを
行う為には大容量のバックアップ用コンデンサが必要で
あった。本発明は上記問題点を解決する為に、迅速に停
電を検出しCPUを低消費電力動作に切換え、長時間の
バックアップを行なう電子機器の停電補償回路を提供す
る事を目的とする。
However, in the conventional power failure compensating circuit, the smoothing capacitor (3) is used in order to reduce the fluctuation rate of the smoothed DC voltage and the ripple.
The discharge time constant of 3) is large, that is, the capacitor (3
It is usual to design the capacity of 3) to be large. For that reason,
After the power failure, the voltage of the 12V line dropped gradually, and it took a long time from the power failure to the detection of the power failure. Meanwhile CP
Since U (38) normally operates only with the current from the backup capacitor (39), as shown in the timing chart of FIG. 4, the power A is wasted, resulting in a shorter backup time. To back up for a long time, a large capacity backup capacitor was needed. SUMMARY OF THE INVENTION In order to solve the above problems, it is an object of the present invention to provide a power failure compensation circuit for an electronic device that quickly detects a power failure, switches the CPU to a low power consumption operation, and backs up for a long time.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する為に
本発明は電源トランスを介して電源に接続される電子機
器の停電補償回路において該電源の周波数に応じたパル
スを出力するパルス出力器と、該電源トランスの二次側
に接続されるCPUとを備え、上記パルス出力器の出力
を該CPUに入力し、上記出力されるパルスの有無に応
じて、該CPUの動作モードを切換える事を特徴とす
る。
In order to achieve the above object, the present invention provides a pulse output device for outputting a pulse corresponding to the frequency of a power source in a power failure compensating circuit for electronic equipment connected to a power source via a power transformer. And a CPU connected to the secondary side of the power transformer, inputting the output of the pulse output device to the CPU, and switching the operation mode of the CPU according to the presence or absence of the output pulse. Is characterized by.

【0007】[0007]

【実施例】以下、本発明の一実施例を図1に基づいて説
明する。 (1)は商用電源を12Vあるいは5Vなど所望の電圧
に降圧させるトランスで2次側には2つの巻線を備え、
各巻線からの出力を整流する為のダイオード(2)
(4)と、該整流された電圧を平滑するコンデンサ
(3)(5)とにより2種類の直流電圧を出力する。該
直流電圧の一方5Vは定電圧IC(7)により、5Vに
安定化され、ICなどの電源として供給されると共に、
CPU(8)の電源としても供給される。また該CPU
(8)の電源端子Vccには、容量の大きなバックアッ
プ用コンデンサ(9)が並列に接続されており、停電時
に該CPU(8)のバックアップ電源として作用する。
他方12Vの直流電圧は、そのままあるいは図示しない
定電圧回路を経て、電子回路等へ供給される。また、ト
ランス(1)の一次側両端には、過電流保護の抵抗(1
1)とダイオード(12)とを介して、パルス出力器と
して作用するフォトカプラー(10)の入力端子が並列
に接続されており、更に該フォトカプラー(10)の出
力端子は上記CPU(8)のパルス計測端子CNTに接
続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. (1) is a transformer that steps down the commercial power supply to a desired voltage such as 12V or 5V, and has two windings on the secondary side,
Diodes (2) for rectifying the output from each winding
Two types of DC voltage are output by (4) and the capacitors (3) and (5) that smooth the rectified voltage. One of the DC voltage, 5V, is stabilized to 5V by a constant voltage IC (7) and supplied as a power source for the IC and the like.
It is also supplied as a power source for the CPU (8). Also the CPU
A large-capacity backup capacitor (9) is connected in parallel to the power supply terminal Vcc of (8), and acts as a backup power supply of the CPU (8) at the time of power failure.
On the other hand, the DC voltage of 12 V is supplied to an electronic circuit or the like as it is or through a constant voltage circuit (not shown). In addition, a resistor (1
The input terminal of the photocoupler (10) acting as a pulse output device is connected in parallel via 1) and the diode (12), and the output terminal of the photocoupler (10) is the CPU (8). Is connected to the pulse measurement terminal CNT.

【0008】次に動作について説明する。本案回路を備
えた電子機器を商用電源に接続すると、60Hzあるい
は50Hzの交流電圧100Vがトランス(1)で降圧
され、ダイオード(2)(4)とコンデンサ(3)
(5)とにより整流平滑された所定の直流電圧がCPU
(8)を含む電子回路に供給され、該電子機器は通常の
動作を行う。該通電中、トランス(1)の一次側には図
2に示す、タイミングチャート(a)の60Hzあるい
は50Hzの正弦波交流が入力されており、フォトカプ
ラー(10)にはダイオード(12)のスイッチングに
より、上記正弦波の正電圧部分のみが入力されている。
Next, the operation will be described. When an electronic device equipped with the circuit of the present invention is connected to a commercial power source, an AC voltage of 100 V at 60 Hz or 50 Hz is stepped down by a transformer (1), and a diode (2) (4) and a capacitor (3).
The predetermined DC voltage rectified and smoothed by (5) and the CPU
It is supplied to the electronic circuit including (8), and the electronic device operates normally. During the energization, the sine wave alternating current of 60 Hz or 50 Hz of the timing chart (a) shown in FIG. 2 is input to the primary side of the transformer (1), and the photo coupler (10) switches the diode (12). Therefore, only the positive voltage portion of the sine wave is input.

【0009】従ってフォトカプラー(10)の出力は該
正電圧部分に対応した矩形波パルスがタイミングチャー
ト(b)に示す如く出力される。該パルスの周期は60
Hzの商用電源であれば約17msecであり、50H
zであれば約20msecとなる。そして該パルスはC
PU(8)のパルス計測端子CNTに入力され、CPU
(8)内部で上記周期内であるかどうか判定される。す
なわち、該パルスの立ち上がりt0が入力されてから、
次のパルスの立ち上がりt1が入力されるまでの時間を
計測し、該時間が上記周期内であるかどうか判定してい
る。該パルスが上記周期(17msecあるいは20m
sec)で入力されていると判定されている間は、CP
U(8)は通電中であると判断し、周期を外れていると
判定された時が停電であると判断するものである。該C
PU(8)は停電であると判断されると直ちに低消費電
力動作に切換わるものである。
Therefore, as the output of the photocoupler (10), a rectangular wave pulse corresponding to the positive voltage portion is output as shown in the timing chart (b). The pulse period is 60
If the commercial power source of Hz is about 17 msec, 50H
If z, it will be about 20 msec. And the pulse is C
Input to the pulse measurement terminal CNT of PU (8), CPU
(8) It is internally determined whether or not it is within the above cycle. That is, after the rising edge t0 of the pulse is input,
The time until the next pulse rise t1 is input is measured, and it is determined whether or not the time is within the above cycle. The pulse has the above cycle (17 msec or 20 m
sec), the CP
U (8) determines that the power is being supplied, and when it is determined that it is out of the cycle, it is determined that the power is out. The C
The PU (8) switches to the low power consumption operation immediately when it is determined that there is a power failure.

【0010】更に詳しく説明すると、タイミングチャー
ト(b)に示すパルスの立ち上がりt2がCPU(8)
のCNT端子に入力されてから次のパルスの立ち上がり
t3が入力されるまでの時間が20msec以内である
かどうか、CPU(8)が判定する。このt2−t3間で
停電が発生するとVt、フォトカプラー(10)のパル
ス出力は停止する。このVt時点では該CPU(8)は
20msecの計測中であって未だ停電を検出しておら
ず、バツクアップ用コンデンサ(9)からの電源供給に
より通常動作を続けている。そして次のパルスの立ち上
がりが入力される時点に至ってもなお、停電が続いてい
ると、CPU(8)は20msec以内に次のパルスの
立ち上がりが入力されず、よって停電と判断しVd、低
消費電力動作に切換わり、バックアップ用コンデンサ
(9)からの電源供給により、CPU(8)の一部回路
のみの動作を行う。
More specifically, the rising edge t2 of the pulse shown in the timing chart (b) is the CPU (8).
The CPU (8) determines whether the time from the input to the CNT terminal of the above until the input of the rising edge t3 of the next pulse is within 20 msec. When a power failure occurs between t2 and t3, Vt and the pulse output of the photocoupler (10) are stopped. At the time of Vt, the CPU (8) is measuring for 20 msec and has not yet detected the power failure, and continues the normal operation by the power supply from the backup capacitor (9). If the power failure still continues even when the rising edge of the next pulse is input, the CPU (8) does not input the rising edge of the next pulse within 20 msec, so that the CPU (8) determines that there is a power failure and reduces Vd and low consumption. The operation is switched to the power operation, and only a part of the circuit of the CPU (8) is operated by the power supply from the backup capacitor (9).

【0011】従って、停電発生Vtから停電検出Vdま
での間の該CPU(8)の通常動作による無駄な電力消
費はタイミングチャート(c)に示す電力Bの部分とな
り、該電力Bは最大でも、上記パルス一周期分のみで抑
えられる。
Therefore, the wasted power consumption due to the normal operation of the CPU (8) between the occurrence of the power failure Vt and the detection of the power failure Vd is the portion of the power B shown in the timing chart (c), and the power B is at maximum. It can be suppressed by only one pulse cycle.

【0012】[0012]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、電子機器の停電補償回路において、商用電源の
周波数に応じたパルスを発生させ、該パルスの周期を計
測する事で、停電を検出するように構成したので、停電
発生から停電検出までの時間が最長でも、該パルス一周
期分以内に短縮でき、従って、CPUを低消費電力動作
に迅速に切換えられ、無駄な通常動作を行って、電力を
消費する事がなくなるので、従来と同容量のバックアッ
プ用コンデンサであっても、CPUのバックアップが長
時間可能となる。
As described above in detail, according to the present invention, in the power failure compensating circuit for electronic equipment, by generating a pulse corresponding to the frequency of the commercial power source and measuring the period of the pulse, Since it is configured to detect a power failure, even if the time from the occurrence of a power failure to the detection of a power failure is the longest, it can be shortened to within one cycle of the pulse. Therefore, the CPU can be quickly switched to the low power consumption operation and the useless normal operation is performed. By doing so, the power consumption is eliminated, so that the CPU can be backed up for a long time even with the backup capacitor having the same capacity as the conventional one.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による停電補償回路を示す回
路図である。
FIG. 1 is a circuit diagram showing a power failure compensation circuit according to an embodiment of the present invention.

【図2】図1の回路における通電及び停電時のタイミン
グチャート図である。
FIG. 2 is a timing chart of the circuit of FIG. 1 during energization and power failure.

【図3】従来技術による停電補償回路を示す回路図であ
FIG. 3 is a circuit diagram showing a power failure compensation circuit according to a conventional technique.

【図4】図3の回路における通電及び停電時のタイミン
グチャート図である。
4 is a timing chart of the circuit of FIG. 3 during energization and power failure.

【符号の説明】[Explanation of symbols]

1 トランス 8 CPU 9 バックアップ用コンデンサ 10 フォトカプラー(パルス出力器) 1 transformer 8 CPU 9 backup capacitor 10 photo coupler (pulse output device)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電源トランスを介して電源に接続される電
子機器の停電補償回路において該電源の周波数に応じた
パルスを出力するパルス出力器と、該電源トランスの二
次側に接続されるCPUとを備え、上記パルス出力器の
出力を該CPUに入力し、上記出力されるパルスの有無
に応じて、該CPUの動作モードを切換える事を特徴と
する電子機器停電補償回路。
1. A pulse output device for outputting a pulse according to the frequency of the power supply in a power failure compensation circuit of an electronic device connected to the power supply via the power transformer, and a CPU connected to the secondary side of the power transformer. An electronic equipment power failure compensating circuit, comprising: an output of the pulse output device to the CPU, and switching the operation mode of the CPU according to the presence or absence of the output pulse.
JP5192482A 1993-08-03 1993-08-03 Power failure compensation circuit for electronic equipment Pending JPH0787684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5192482A JPH0787684A (en) 1993-08-03 1993-08-03 Power failure compensation circuit for electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5192482A JPH0787684A (en) 1993-08-03 1993-08-03 Power failure compensation circuit for electronic equipment

Publications (1)

Publication Number Publication Date
JPH0787684A true JPH0787684A (en) 1995-03-31

Family

ID=16292032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5192482A Pending JPH0787684A (en) 1993-08-03 1993-08-03 Power failure compensation circuit for electronic equipment

Country Status (1)

Country Link
JP (1) JPH0787684A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037027A1 (en) * 1995-05-16 1996-11-21 Miele & Cie. Gmbh & Co. Mains operated electric equipment
JPWO2022162813A1 (en) * 2021-01-28 2022-08-04

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037027A1 (en) * 1995-05-16 1996-11-21 Miele & Cie. Gmbh & Co. Mains operated electric equipment
JPWO2022162813A1 (en) * 2021-01-28 2022-08-04

Similar Documents

Publication Publication Date Title
JP5314111B2 (en) Method and apparatus for conditional response to fault conditions in switching power supplies
TW412859B (en) DC-DC converter control circuit
WO2002058222A1 (en) Switching power source device
JP2000350458A (en) Power supply unit
EP0286282B1 (en) Method for detecting input ac voltage
JPH0787684A (en) Power failure compensation circuit for electronic equipment
JPH09261958A (en) Uninterruptive switching regulator
JPH10248252A (en) Charge device for capacitor
JP2000308339A (en) Switching power unit
JP2006238510A (en) Power unit
JPH0560804A (en) Method and device for detecting drop in input ac voltage of dc switching power source
JP4180684B2 (en) Power supply
JP3056818B2 (en) Power supply
KR20000015607A (en) Over power protection circuit of a monitor
JPH08266050A (en) Voltage resonance type power supply
JP2615653B2 (en) Inverter circuit
JPH0145223Y2 (en)
JPH1042488A (en) Power supply
JP2723404B2 (en) Power supply
JPH02133072A (en) Control method of inverter device
JPH0735359Y2 (en) Discharge lamp lighting device
JPH0224090B2 (en)
JPS61164466A (en) High voltage power source for copying machine
KR20000020089A (en) Apparatus for sensing power failure and method therefor
JPH04123407U (en) Switching power supply input voltage monitoring circuit