JPH0787464A - Television reinforcing signal system - Google Patents

Television reinforcing signal system

Info

Publication number
JPH0787464A
JPH0787464A JP5225451A JP22545193A JPH0787464A JP H0787464 A JPH0787464 A JP H0787464A JP 5225451 A JP5225451 A JP 5225451A JP 22545193 A JP22545193 A JP 22545193A JP H0787464 A JPH0787464 A JP H0787464A
Authority
JP
Japan
Prior art keywords
signal
multiplexed
frequency
reinforcing
television
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5225451A
Other languages
Japanese (ja)
Inventor
Masahiro Kageyama
昌広 影山
Norihiko Fukinuki
敬彦 吹抜
Hiroshi Yoshiki
宏 吉木
Norihiro Suzuki
教洋 鈴木
Kazuo Ishikura
和夫 石倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5225451A priority Critical patent/JPH0787464A/en
Publication of JPH0787464A publication Critical patent/JPH0787464A/en
Pending legal-status Critical Current

Links

Landscapes

  • Television Systems (AREA)

Abstract

PURPOSE:To obtain a television reinforcing signal system with less ghost disturbance than that of a conventional system by dividing a vertical time reinforcing signal into signal series of three phases or over, applying frequency multiplexing to them and sending the multiplexed signal while being multiplexed onto upper and lower non-picture portions. CONSTITUTION:A vertical time reinforcing signal of an interlace scanning form having 360 valid scanning lines per frame, for example (hereinafter a VT signal of 360i form) is divided into three phases signal series 1-3 in a frequency multiplex circuit 2 and they are frequency-multiplexed to obtain a signal of 120i form. In this case, the signal series 1 is multiplexed without modulation as a base band, and the signal series 2,3 are multiplexed through orthogonal amplitude modulation. Then the result is sent while being multiplexed on upper/lower non-picture part of 120i form. Since the frequency multiplex signal is not accompanied with compression of a time base, a ghost image of the VT signal is produced at the same position as that of a major signal even when ghost is produced in a transmission line. Thus, ghost disturbance almost the same degree as that of an existing receiver is obtained and the effect of ghost is reduced more than that of a conventional reinforcing signal system due to time division multiplexing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はテレビジョン補強信号方
式に関し、特に現行テレビジョン方式と両立性を保っ
て、垂直時間補強信号(VT信号)や垂直補強信号(V
H信号)を伝送する方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a television enhancement signal system, and more particularly to a vertical time enhancement signal (VT signal) or a vertical enhancement signal (V signal) while maintaining compatibility with the current television system.
H signal) is transmitted.

【0002】[0002]

【従来の技術】現行テレビジョン方式と両立性を保っ
て、ワイド画面化、および高画質化を実現する第2世代
EDTV方式の規格化が進められている。ワイド化手法
として、現行画面上下に無画部を設けるレターボックス
方式の採用が検討されており、この無画部を用いて高画
質化のための各種補強信号を伝送する方式が多数提案さ
れている。
2. Description of the Related Art Standardization of a second-generation EDTV system for achieving a wide screen and high image quality while maintaining compatibility with the current television system is being promoted. As a widening method, the adoption of the letterbox method in which non-image areas are provided above and below the current screen is under consideration, and many methods of transmitting various reinforcing signals for high image quality using this non-image area have been proposed. There is.

【0003】無画部に多重する補強信号の候補として、
画像の動領域の画質を改善する垂直時間補強信号(VT
信号)が挙げられている。また、送信側でレターボック
ス処理を行う際に低下する垂直解像度を補強するための
信号(VH信号)の伝送も考えられている。以下、説明
の簡単化のため、VT信号の場合についての説明を行
う。
As a candidate for the reinforcement signal to be multiplexed in the non-picture part,
A vertical time enhancement signal (VT) that improves the image quality in the moving region of an image.
Signal) is listed. Further, transmission of a signal (VH signal) for reinforcing the vertical resolution that is lowered when the letterbox processing is performed on the transmitting side is also considered. Hereinafter, in order to simplify the description, the case of the VT signal will be described.

【0004】VT信号は、順次走査形態の信号源を用
い、SSKF(Symmetric ShortKernel Filter)により
作成する(参考文献1:例えば、守田ほか;"レターボッ
クス方式の評価雑音" テレビ学技報 Vol.16 No.7 pp.25
-32 BCS'92-5(Jan.1992))。このとき、フレームあたり
の有効走査線数が360本で飛び越し走査形態(以下、
360iと記す)の主信号に対して、同じく360i形
態のVT信号が作成される。これに対して、上下無画部
はフレームあたり120本(以下、120iと記す)の
走査線しか無いため、従来は図2に示すように、360
i形態のVT信号(走査線1,2,3…、およびイ,
ロ,ハ…)を走査線単位で3相に分割し、それぞれを1
/3に時間軸圧縮し、上下無画部の1走査線(例えば、
走査線A)に対して3走査線分のVT信号(例えば、走
査線1,2,3)を時間軸多重して120i形態にして
いた。
The VT signal is generated by an SSKF (Symmetric ShortKernel Filter) using a progressive scanning type signal source (Reference 1: Morita et al .; "Letterbox-type evaluation noise", TV Technical Report Vol.16). No.7 pp.25
-32 BCS'92-5 (Jan. 1992)). At this time, the number of effective scanning lines per frame is 360 and the interlaced scanning mode (hereinafter,
For the main signal of 360i), a VT signal of the same form as 360i is created. On the other hand, since the upper and lower non-image portions have only 120 (hereinafter, referred to as 120i) scanning lines per frame, conventionally, as shown in FIG.
i-form VT signal (scan lines 1, 2, 3, ..., And a,
(B, c ...) is divided into 3 phases for each scanning line, and each is divided into 1
Time-axis compression to / 3, and one scan line (for example,
The VT signals for three scanning lines (for example, the scanning lines 1, 2, and 3) are time-axis-multiplexed with respect to the scanning line A) to form 120i.

【0005】[0005]

【発明が解決しようとする課題】3相のVT信号系列を
時分割多重する上記従来技術では、伝送路のゴースト妨
害などによって、大きな画質劣化を生じる欠点があっ
た。以下、この欠点について詳しく説明する。
The above-mentioned conventional technique for time-division-multiplexing a three-phase VT signal sequence has a drawback in that the image quality is greatly deteriorated due to ghost interference in the transmission path. Hereinafter, this drawback will be described in detail.

【0006】現在のテレビジョン伝送路では、放送波が
建造物や地形により反射され、時間的な遅れを伴って正
規の信号に重畳されるゴースト妨害が発生することが多
い。
[0006] In the current television transmission path, a broadcast wave is often reflected by a building or terrain, and ghost interference is often generated in which a broadcast signal is superimposed on a regular signal with a time delay.

【0007】従来のように、VT信号を1/3に時間軸
圧縮して時分割多重する方式では、再生時にVT信号を
3倍に時間伸張して主信号に加えるため、主信号のゴー
ストに比べて、VT信号のゴーストが画面上で3倍離れ
た位置に生じることになる。また、図2に示した120
i形態の信号において、例えば、走査線A上の信号1右
端が遅延して信号2の左端に重畳されることになり、画
面に向かって画像の右側だけでなく、左側にも大振幅の
ゴーストが生じてしまう。従って、現行受像機よりも極
めて大きなゴースト妨害が生じることになる。
In the conventional system in which the VT signal is time-axis-compressed to 1/3 and time-division-multiplexed, the VT signal is time-expanded three times and added to the main signal at the time of reproduction. On the other hand, the ghost of the VT signal is generated at the position three times away on the screen. In addition, 120 shown in FIG.
In the i-type signal, for example, the right end of the signal 1 on the scanning line A is delayed and superimposed on the left end of the signal 2, and a ghost having a large amplitude not only on the right side of the image but also on the left side of the image toward the screen. Will occur. Therefore, a ghost disturbance that is significantly larger than that of the current receiver will occur.

【0008】ゴーストを除去する装置は既に販売されて
いるが、現在のところ未だ高価である。また、1/3時
間軸圧縮されたVT信号のゴーストを完全に除去するた
めには、ゴースト除去装置の信号処理に3倍の時間精度
が必要になり、さらに高性能かつ高価になって経済的で
はない。
Devices for removing ghosts are already on the market, but at present they are still expensive. Further, in order to completely remove the ghost of the VT signal compressed by the 1/3 time axis, the signal processing of the ghost removing apparatus needs to have a time accuracy of three times, which is more efficient and expensive and economical. is not.

【0009】従って、本発明の目的は、従来よりもゴー
スト妨害の小さいテレビジョン補強信号方式を提供する
ことにある。
Therefore, it is an object of the present invention to provide a television augmented signaling system with less ghost interference than before.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、VT信号をn相(nは3以上の整数)に分割し、そ
れらを周波数多重したのち、上下無画部により伝送す
る。
In order to achieve the above object, a VT signal is divided into n phases (n is an integer of 3 or more), frequency-multiplexed, and then transmitted by an upper and lower non-picture section.

【0011】[0011]

【作用】図3を用いて、本発明の動作を説明する。36
0i形態のVT信号(同図、走査線1,2,3,4,
5,6…)を、3相の信号系列(走査線1,4…、2,
5…、3,6…)に分割し、それらを周波数多重して、
120i形態の信号(走査線A=1+2+3、B=4+
5+6、…)とする。
The operation of the present invention will be described with reference to FIG. 36
0i type VT signal (scanning lines 1, 2, 3, 4,
5, 6 ...) and three-phase signal series (scan lines 1, 4, ..., 2,
5 ..., 3, 6 ...), frequency-multiplex them,
120i type signal (scan line A = 1 + 2 + 3, B = 4 +
5 + 6, ...).

【0012】この周波数多重信号は、時間軸の圧伸を伴
わないので、伝送路でゴーストが生じても主信号と同じ
位置にVT信号のゴースト像が生じる。従って、現行受
像機とほぼ同程度のゴースト妨害となり、従来の時分割
多重による補強信号方式よりもゴーストの影響を軽減で
きる。
Since this frequency-multiplexed signal is not accompanied by companding on the time axis, even if a ghost occurs on the transmission line, a ghost image of the VT signal is produced at the same position as the main signal. Therefore, the ghost interference is almost the same as that of the current receiver, and the influence of the ghost can be reduced as compared with the conventional augmented signal system by time division multiplexing.

【0013】[0013]

【実施例】以下、図面を用いて本発明の実施例を説明す
る。なお、説明の簡単化のため、補強信号はVT信号を
仮定し、3相に分割したVT信号を周波数多重する場合
について例を示す。
Embodiments of the present invention will be described below with reference to the drawings. For the sake of simplification of explanation, an example will be shown in which a reinforcement signal is assumed to be a VT signal and the VT signal divided into three phases is frequency-multiplexed.

【0014】図1に、本発明の一実施例の構成図を示
す。同図において、送信側では、有効走査線数360本
の順次走査形態(以下、360pと記す)で、アスペク
ト比16:9のワイド画像信号を、後述する補強信号分
離回路1に入力し、360i形態の主信号とVT信号に
分離する。VT信号は、後述する周波数多重回路2によ
り3相分割および周波数多重を行い、120i形態に変
換する。切り替え器3を用いて、360i形態の主信号
はアスペクト比4:3の現行画面の中央部に配置し、1
20i形態のVT信号は現行画面上下無画部に配置して
出力し、伝送信号とする。受信側では逆処理を行い、3
60p形態のワイド画像出力を得る。すなわち、切り替
え器4により主信号とVT信号を分離したのち、VT信
号は、後述の周波数分離回路5により360i形態に変
換する。さらに、後述の補強信号合成回路6により、主
信号とVT信号を合わせて360p形態の信号を得る。
FIG. 1 shows a block diagram of an embodiment of the present invention. In the figure, on the transmitting side, a wide image signal with an aspect ratio of 16: 9 is input to a reinforcement signal separation circuit 1 described later in a progressive scanning mode with 360 effective scanning lines (hereinafter, referred to as 360p), and 360i is input. The morphological main signal and the VT signal are separated. The VT signal is divided into three phases and frequency-multiplexed by a frequency multiplexing circuit 2 described later, and converted into a 120i form. By using the switch 3, the main signal of the form of 360i is arranged at the center of the current screen with an aspect ratio of 4: 3, and
The 20i type VT signal is arranged in the upper and lower non-image portions of the current screen and output, and is used as a transmission signal. The receiving side performs reverse processing and
Obtain a 60p wide image output. That is, after the main signal and the VT signal are separated by the switcher 4, the VT signal is converted into the 360i form by the frequency separation circuit 5 described later. Further, a reinforcement signal synthesizing circuit 6 described later combines the main signal and the VT signal to obtain a 360p type signal.

【0015】図4に、周波数多重回路2の動作の一例を
示す。同図において、3相に分割したVT信号系列を、
それぞれ信号1、2、3として示す。
FIG. 4 shows an example of the operation of the frequency multiplexing circuit 2. In the figure, the VT signal sequence divided into three phases is
Shown as signals 1, 2, and 3, respectively.

【0016】まず、図4(a)では、信号1はベースバ
ンドのまま変調しないで多重し、信号2および3は直交
振幅変調(QAM)して多重している。現行テレビジョ
ン方式の伝送帯域4.2MHzを有効に利用するため、
信号1、2、3の帯域幅はそれぞれ1.4MHz(=
4.2/3)とし、直交変調の搬送波周波数は2.8M
Hz(=4.2×2/3)とするのが好ましい。ただ
し、この搬送波周波数は、色副搬送波周波数(fsc=
3.58MHz)や水平走査周波数(fh=15.75
kHz)に対して簡単な整数比で表されるように設定す
ると、回路的にも運用的にも都合がよい。2.8MHz
に近い値として、例えば、7/9fscや11/14f
scなどが考えられる。また、直交変復調の際のS/N
劣化(3dB)を送信側で予め補正して、変調搬送波の
振幅(ゲイン)を141%とすれば、信号1、2、3の
受像機側S/Nをすべて等しくできる。
First, in FIG. 4A, the signal 1 is multiplexed as it is without being modulated in the baseband, and the signals 2 and 3 are multiplexed by quadrature amplitude modulation (QAM). In order to effectively use the transmission band of 4.2 MHz of the current television system,
The bandwidth of signals 1, 2, and 3 is 1.4 MHz (=
4.2 / 3), and the carrier frequency of quadrature modulation is 2.8M.
It is preferable to set to Hz (= 4.2 × 2/3). However, this carrier frequency is the color subcarrier frequency (fsc =
3.58 MHz) and horizontal scanning frequency (fh = 15.75)
If it is set to be expressed by a simple integer ratio with respect to (kHz), it is convenient in terms of circuit and operation. 2.8MHz
As a value close to, for example, 7 / 9fsc or 11 / 14f
sc etc. are possible. In addition, S / N for orthogonal modulation / demodulation
If the deterioration (3 dB) is corrected in advance on the transmitting side and the amplitude (gain) of the modulated carrier wave is set to 141%, the S / N ratios of the signals 1, 2, and 3 on the receiver side can be made equal.

【0017】図4(b)では、信号1および2を直交振
幅変調(QAM)して多重し、信号3を残留側波帯振幅
変調(VSB変調)して多重している。図4(a)の方
式に比べて、VSBにおける両側波帯成分の帯域幅だけ
信号1、2、3の帯域損が生じる。例えば、QAMの搬
送波周波数を1/3fscとし、VSBの搬送波周波数
をfscとすれば、信号1、2、3の帯域幅はそれぞれ
1.2MHzとなる。ただし、この方式では直流成分が
生じないため、受像機の同期外れが生じにくくなるとと
もに、受像機側で直流成分除去が可能となってサグなど
の直流変動に対して強くなるという利点がある。なお、
受像機側S/Nをベースバンド伝送のときと等しくする
には、QAMの変調搬送波振幅、およびVSBの両側波
帯成分のゲインを141%とし、VSBの単側波帯成分
のゲインを200%とすればよい。また、S/Nの点で
は損ではあるが、VSB復調時のゲイン補正(いわゆる
VSB補正、あるいはナイキスト補正ともいう)を予め
送信側で行い、例えば同図(b)の点線や破線で示すよ
うにフィルタをかけて伝送すると、受信側の補正が不要
になってハードウェアが簡単化できる。
In FIG. 4B, the signals 1 and 2 are quadrature amplitude modulated (QAM) and multiplexed, and the signal 3 is vestigial sideband amplitude modulated (VSB modulated) and multiplexed. Compared with the method of FIG. 4A, band loss of the signals 1, 2, and 3 occurs by the bandwidth of the double sideband component in VSB. For example, if the carrier frequency of QAM is 1/3 fsc and the carrier frequency of VSB is fsc, the bandwidths of signals 1, 2, and 3 are 1.2 MHz, respectively. However, in this method, since no DC component is generated, the receiver is less likely to be out of synchronization, and the DC component can be removed on the receiver side, which makes it more resistant to DC fluctuations such as sag. In addition,
In order to make the S / N on the receiver side equal to that for baseband transmission, the modulation carrier amplitude of QAM and the gain of the double sideband component of VSB are set to 141%, and the gain of the single sideband component of VSB is set to 200%. And it is sufficient. Further, although it is a loss in terms of S / N, gain correction (also called VSB correction or Nyquist correction) at the time of VSB demodulation is performed on the transmission side in advance, and as shown by a dotted line or a broken line in FIG. If the signal is transmitted after being filtered, the correction on the receiving side becomes unnecessary and the hardware can be simplified.

【0018】図4(a)、(b)ほど特性はよくない
が、以下の変形例も考えられる。
Although the characteristics are not as good as those in FIGS. 4A and 4B, the following modified examples are also possible.

【0019】図4(c)では、図4(b)の場合と同様
に、信号1および2を直交変調して多重し、信号3をV
SB変調して多重している。ただし、信号3は上側波帯
を高域まで伸ばしており、VSB変調の搬送波周波数は
図4(b)よりもやや低く、例えば5/6fscとす
る。この方式では、直交変調成分がVSBの下側波帯成
分として漏れ込むと信号3の低域成分に化けて大きな妨
害となるため、図4(b)の場合よりも急峻な帯域分離
フィルタが必要である。信号1、2、3の帯域幅は、図
4(b)の場合と同じである。
In FIG. 4C, as in the case of FIG. 4B, signals 1 and 2 are quadrature-modulated and multiplexed, and signal 3 is converted to V.
SB modulated and multiplexed. However, the signal 3 has the upper sideband extended to a high range, and the carrier frequency of VSB modulation is slightly lower than that of FIG. 4B, for example, 5/6 fsc. In this method, if the quadrature modulation component leaks as the lower sideband component of VSB, it becomes a low-frequency component of the signal 3 and becomes a large interference. Therefore, a sharper band separation filter than that in the case of FIG. 4B is required. Is. The bandwidths of the signals 1, 2, and 3 are the same as in the case of FIG.

【0020】図4(d)では、信号1をVSB変調して
低域周波数側に多重し、信号2および3を直交変調して
高域側に多重している。直交変調およびVSBの搬送波
周波数を、例えばそれぞれ1/3fscおよび5/6f
scとすれば、信号1、2、3の帯域幅は図4(b)の
場合と同じになる。信号間の漏話に関しては、図4
(c)の場合と同じである。
In FIG. 4D, the signal 1 is VSB-modulated and multiplexed on the low frequency side, and the signals 2 and 3 are orthogonally modulated and multiplexed on the high frequency side. The carrier frequencies of quadrature modulation and VSB are, for example, 1/3 fsc and 5/6 f, respectively.
If sc, the bandwidths of the signals 1, 2, 3 are the same as in the case of FIG. For crosstalk between signals, see FIG.
It is the same as the case of (c).

【0021】図4(e)では、図4(d)の場合と同様
に、信号1をVSB変調して多重し、信号1および2を
直交変調して多重している。ただし、信号1は上側波帯
を高域まで伸ばしており、VSB変調の搬送波周波数は
図4(d)よりもやや低く、例えば1/6fscとす
る。信号間の漏話は、図4(b)の場合と同等に少な
い。しかし、信号1の搬送波周波数が低いため、復調時
に高調波と基本波が混じって混変調歪が生じる可能性が
あり、一旦高い周波数に変換したのち復調するか、複素
信号処理(参考文献2:大西ほか;“複素信号処理によ
る新しい周波数変換法” 信学技報 CAS88-45(Aug.198
8))などを用いる必要がある。
In FIG. 4E, as in the case of FIG. 4D, the signal 1 is VSB modulated and multiplexed, and the signals 1 and 2 are orthogonally modulated and multiplexed. However, the signal 1 has the upper sideband extended to a high range, and the carrier frequency of VSB modulation is slightly lower than that in FIG. 4D, for example, 1/6 fsc. Crosstalk between signals is as small as in the case of FIG. However, since the carrier frequency of the signal 1 is low, there is a possibility that a harmonic wave and a fundamental wave are mixed at the time of demodulation to cause intermodulation distortion. Therefore, the signal is once converted to a high frequency and then demodulated, or complex signal processing (reference document 2: Ohnishi et al. “New frequency conversion method by complex signal processing” IEICE Technical Report CAS 88-45 (Aug. 198)
8)) etc. need to be used.

【0022】図4(f)および図4(g)では、信号
1、2、3をすべてVSB変調して多重している。それ
ぞれの信号の搬送波周波数として、図4(f)の場合
は、例えば2/9fsc、11/18fsc、fscと
し、図4(g)の場合は例えば1/6fsc、5/9f
sc、17/18fscとすれば、どちらの場合もそれ
ぞれの信号帯域幅は0.8MHzとなる。また、図4
(h)では、信号1、2、3をすべて両側波帯振幅変調
(DSB変調)して多重している。それぞれの信号の搬
送波周波数として、例えば、7/36fsc、7/12
fsc、35/36fscとすれば、信号帯域幅は0.
7MHzとなる。これらは、本来確保できる信号帯域幅
(1.4MHz=4.2/3)に比べて格段に小さい
が、伝送路の位相歪(直交歪)に対して強くなる。
In FIGS. 4F and 4G, signals 1, 2, and 3 are all VSB-modulated and multiplexed. The carrier frequencies of the respective signals are, for example, 2 / 9fsc, 11 / 18fsc, and fsc in the case of FIG. 4 (f), and are, for example, 1 / 6fsc, 5 / 9f in the case of FIG. 4 (g).
With sc and 17/18 fsc, the signal bandwidth of each case is 0.8 MHz. Also, FIG.
In (h), all the signals 1, 2, and 3 are subjected to double sideband amplitude modulation (DSB modulation) and multiplexed. As the carrier frequency of each signal, for example, 7/36 fsc, 7/12
fsc and 35 / 36fsc, the signal bandwidth is 0.
It becomes 7MHz. These are remarkably smaller than the signal bandwidth that can be originally secured (1.4 MHz = 4.2 / 3), but are strong against the phase distortion (orthogonal distortion) of the transmission line.

【0023】なお、図4(b)〜(g)のVSB変調、
および図4(h)のDSB変調に対して、さらに直交変
調により、他の信号や、同じ信号の高精細成分などを多
重することも可能である。
The VSB modulation shown in FIGS. 4 (b) to 4 (g),
It is also possible to multiplex other signals or high-definition components of the same signal by quadrature modulation with respect to the DSB modulation of FIG. 4 (h).

【0024】図5に、補強信号分離回路1、および補強
信号合成回路6の構成例を示す。補強信号分離回路1
は、垂直低域通過フィルタ7、垂直高域通過フィルタ
9、および順次→飛び越し走査変換回路8、10から成
る。補強信号合成回路6は、飛び越し→順次走査変換回
路11、13、垂直低域通過フィルタ12、垂直高域通
過フィルタ14、および加算器15から成る。この構成
はSSKFと呼ばれており、フィルタ特性などは例えば
参考文献1記載のものをそのまま用いればよい。
FIG. 5 shows a configuration example of the reinforcement signal separation circuit 1 and the reinforcement signal synthesis circuit 6. Reinforcement signal separation circuit 1
Is composed of a vertical low-pass filter 7, a vertical high-pass filter 9, and a sequential-> interlaced scanning conversion circuit 8, 10. The reinforcement signal synthesizing circuit 6 is composed of interlace-to-sequential scan converting circuits 11 and 13, a vertical low-pass filter 12, a vertical high-pass filter 14, and an adder 15. This configuration is called SSKF, and for example, the filter characteristics described in Reference 1 may be used as they are.

【0025】図6に、周波数多重回路2の構成例を示
す。この構成例では、図4(a)に示した形態で周波数
多重を行う。入力されたVT信号は、まず水平低域通過
フィルタ16により所定の帯域(例えば1.4MHz=
4.2/3)に制限したのち、遅延回路17および18
により、それぞれ1H(Hは水平走査期間=63.5μ
秒)ずつの遅延を行う。遅延回路18の出力は信号1と
し、ベースバンドのまま変調しないで加算器21に入力
する。遅延回路17の出力は、乗算器19により搬送波
cos(2πft)を振幅変調して信号2とし、加算器
21に入力する。また、水平フィルタ16の出力は、乗
算器20により搬送波sin(2πft)を振幅変調し
て信号3とし、加算器21に入力する。ただし、fは周
波数(例えば、7/9fsc)であり、tは時間であ
る。また、前述したように、変復調によるS/N劣化の
補償のため、3dB(141%)の搬送波振幅補正を行
ってもよい。加算器21により多重された信号は、制御
回路23により制御されるメモリ22を用いて、1/3
走査線間引き(360i→120i変換)および位置シ
フトを行い、上下無画部に配置する。このように周波数
多重したVT信号は、ゲイン調整回路24によって所定
(規格)のゲインに調整したのち、出力信号とする。
FIG. 6 shows a configuration example of the frequency multiplexing circuit 2. In this configuration example, frequency multiplexing is performed in the form shown in FIG. The input VT signal is first filtered by the horizontal low-pass filter 16 into a predetermined band (for example, 1.4 MHz =
4.2 / 3) and then delay circuits 17 and 18
By 1H (H is horizontal scanning period = 63.5μ
(Seconds) each. The output of the delay circuit 18 is the signal 1 and is input to the adder 21 without being modulated in the baseband. The output of the delay circuit 17 is amplitude-modulated by the multiplier 19 on the carrier wave cos (2πft) to obtain the signal 2, which is input to the adder 21. Further, the output of the horizontal filter 16 is amplitude-modulated by the multiplier 20 on the carrier wave sin (2πft) to be a signal 3, which is input to the adder 21. However, f is a frequency (for example, 7 / 9fsc), and t is time. Further, as described above, in order to compensate for the S / N deterioration due to modulation / demodulation, carrier amplitude correction of 3 dB (141%) may be performed. The signal multiplexed by the adder 21 is ⅓ by using the memory 22 controlled by the control circuit 23.
Scanning line thinning (360i → 120i conversion) and position shift are performed, and the upper and lower non-image portions are arranged. The frequency-multiplexed VT signal is adjusted to a predetermined (standard) gain by the gain adjusting circuit 24 and then used as an output signal.

【0026】図7に、周波数分離回路5の構成例を示
す。この構成例では、図4(a)に示した形態で周波数
多重された信号の分離を行う。入力されたVT信号は、
制御回路26により制御されるメモリ25を用いて、上
下無画部から中央部に位置シフトするとともに、3走査
線ずつ繰り返して出力する。この信号を、ゲイン調整回
路27によって所定(規格)のゲインに調整したのち、
切り替え器30、乗算器28、および乗算器29に入力
する。乗算器28では搬送波cos(2πft)を乗じ
て信号2の復調を行い、乗算器29では搬送波sin
(2πft)を乗じて信号3の復調を行い、それぞれ切
り替え器30に入力する。切り替え器30では、入力さ
れた3信号を走査線ごとに順次切り替え、120i→3
60i変換を行う。この信号に含まれる不要成分(変調
された信号2および信号3、および復調による高調波成
分)を、水平低域通過フィルタ31により除去して出力
信号とする。
FIG. 7 shows a configuration example of the frequency separation circuit 5. In this configuration example, frequency-multiplexed signals are separated in the form shown in FIG. The input VT signal is
Using the memory 25 controlled by the control circuit 26, the position is shifted from the upper and lower non-image portions to the central portion, and three scanning lines are repeatedly output. After adjusting this signal to a predetermined (standard) gain by the gain adjusting circuit 27,
Input to the switch 30, the multiplier 28, and the multiplier 29. The multiplier 28 multiplies the carrier wave cos (2πft) to demodulate the signal 2, and the multiplier 29 calculates the carrier wave sin.
The signal 3 is demodulated by multiplying by (2πft), and is input to the switcher 30. The switcher 30 sequentially switches the three input signals for each scanning line, and outputs 120i → 3.
60i conversion is performed. Unwanted components (modulated signals 2 and 3 and harmonic components due to demodulation) included in this signal are removed by the horizontal low-pass filter 31 to be output signals.

【0027】以上、VT信号を周波数多重する場合を例
に挙げて説明したが、本発明はこれに限定されるわけで
はなく、他の補強信号(例えば、前述したVH信号な
ど)に対しても同様に適用できるのは明らかである。ま
た、VT信号とVH信号を多重(例えば、時間周波数多
重)した信号を1つの補強信号として、本発明を適用す
ることも可能である。
Although the case where the VT signal is frequency-multiplexed has been described above as an example, the present invention is not limited to this, and other reinforcing signals (for example, the above-mentioned VH signal) are also applicable. Obviously, the same applies. Further, the present invention can be applied by using a signal obtained by multiplexing (for example, time-frequency multiplexing) a VT signal and a VH signal as one reinforcement signal.

【0028】また、本発明は、補強信号を3相に分割す
る場合に限定されるわけではなく、一般にn相(nは3
以上の整数)に分割する場合にも適用できることは明白
である。例えば、n=2m+1(ただし、mは正整数)
と表せる場合には、2m相の補強信号系列については、
相異なるm組の周波数ごとにそれぞれ相直交する位相を
持つ合計2m個の搬送波をそれぞれ直交振幅変調(QA
M)し、残り1相の補強信号系列については、変調しな
いで周波数多重する、あるいは、さらに異なる周波数を
持つ搬送波を残留側波帯振幅変調(VSB)して周波数
多重すれば、図4(a)あるいは(b)に示した例と同
様に、伝送帯域を効率よく(無駄なく)利用できる。ま
た、n=2m(ただし、mは2以上の整数)と表せる場
合には、2m相の補強信号系列は、相異なるm組の周波
数ごとにそれぞれ相直交する位相を持つ合計2m個の搬
送波をそれぞれ直交振幅変調(QAM)して多重すれ
ば、伝送帯域を効率よく利用できる。
Further, the present invention is not limited to the case where the reinforcing signal is divided into three phases, but generally n phases (n is 3).
It is clear that it can also be applied to the case of division into the above integers). For example, n = 2m + 1 (where m is a positive integer)
In case of 2m phase reinforcement signal sequence,
Quadrature amplitude modulation (QA) is performed on a total of 2m carriers having orthogonal phases for m different frequencies.
M), the remaining one-phase reinforcing signal sequence is frequency-multiplexed without modulation, or a carrier having a different frequency is subjected to vestigial sideband amplitude modulation (VSB) and frequency-multiplexed. ) Or (b), the transmission band can be used efficiently (without waste). When n = 2m (where m is an integer of 2 or more), the 2m-phase reinforcing signal sequence has a total of 2m carriers having phases orthogonal to each other for m different frequencies. If they are quadrature amplitude modulated (QAM) and multiplexed, the transmission band can be used efficiently.

【0029】[0029]

【発明の効果】本発明によれば、従来の補強信号方式の
ような時間軸圧伸を行わないため、補強信号のゴースト
が主信号のゴーストと同じ位置に生じて現行受像機並と
なり、従来のような大きなゴースト妨害を生じない。
According to the present invention, since the time axis companding unlike the conventional reinforcement signal system is not performed, the ghost of the reinforcement signal is generated at the same position as the ghost of the main signal, which is similar to that of the existing receiver. It doesn't cause such a big ghost disturbance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】従来例の動作説明図である。FIG. 2 is an operation explanatory diagram of a conventional example.

【図3】本発明の動作説明図である。FIG. 3 is an operation explanatory diagram of the present invention.

【図4】本発明の一実施例の動作説明図である。FIG. 4 is an operation explanatory diagram of the embodiment of the present invention.

【図5】本発明に用いる回路の構成図である。FIG. 5 is a configuration diagram of a circuit used in the present invention.

【図6】本発明に用いる回路の構成図である。FIG. 6 is a configuration diagram of a circuit used in the present invention.

【図7】本発明に用いる回路の構成図である。FIG. 7 is a configuration diagram of a circuit used in the present invention.

【符号の説明】[Explanation of symbols]

1…補強信号分離回路;2…周波数多重回路;3,4,30…切り
替え器;5…周波数分離回路;6…補強信号合成回路;7,9,1
2,14…垂直フィルタ;8,10,11,13…走査変換回路;15,21
…加算器;16,31…水平フィルタ;17,18…遅延回路;19,2
0,28,29…乗算器;22,25…メモリ;23,26…制御回路;24,2
7…ゲイン調整回路。
1 ... Reinforcement signal separation circuit; 2 ... Frequency multiplex circuit; 3,4,30 ... Switcher; 5 ... Frequency separation circuit; 6 ... Reinforcement signal combination circuit; 7,9,1
2,14 ... Vertical filter; 8,10,11,13 ... Scan conversion circuit; 15,21
… Adder; 16,31… Horizontal filter; 17,18… Delay circuit; 19,2
0,28,29 ... Multiplier; 22,25 ... Memory; 23,26 ... Control circuit; 24,2
7 ... Gain adjustment circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 教洋 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 石倉 和夫 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Norihiro Suzuki 1-280, Higashi Koikeku, Kokubunji, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Kazuo Ishikura 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi, Ltd. Central Research Laboratory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】現行テレビジョンと両立性を保って補強信
号を伝送するテレビジョン補強信号方式において、補強
信号をn相(ただし、nは3以上の整数)の信号系列に
分割し、それらを周波数多重して伝送することを特徴と
するテレビジョン補強信号方式。
1. A television reinforcement signal system for transmitting a reinforcement signal while maintaining compatibility with a current television, wherein the reinforcement signal is divided into n-phase (where n is an integer of 3 or more) signal sequences, and these are divided. A television-enhanced signal system characterized by frequency-multiplexed transmission.
【請求項2】請求項1において、上記補強信号は、垂直
時間解像度を補強する信号(VT信号)と垂直解像度を
補強する信号(VH信号)のうち、少なくともどちらか
一方、あるいは両方を含むことを特徴とするテレビジョ
ン補強信号方式。
2. The reinforcing signal according to claim 1, wherein at least either one or both of a signal for reinforcing the vertical temporal resolution (VT signal) and a signal for reinforcing the vertical resolution (VH signal) are included. Television reinforcement signal system characterized by.
【請求項3】請求項1、2において、n=2m+1(た
だし、mは正整数)と表せる場合に、2m相の補強信号
系列については、相異なるm組の周波数ごとにそれぞれ
相直交する位相を持つ合計2m個の搬送波をそれぞれ直
交振幅変調(QAM)し、残り1相の補強信号系列につ
いては、変調しないで周波数多重する、あるいは、さら
に異なる周波数を持つ搬送波を残留側波帯振幅変調(V
SB)して周波数多重することを特徴とするテレビジョ
ン補強信号方式。
3. In claim 1 and 2, when n = 2m + 1 (where m is a positive integer), for a 2m-phase reinforcing signal sequence, phases that are orthogonal to each other for each of m different frequencies. Of 2 m in total are subjected to quadrature amplitude modulation (QAM), and the remaining one-phase reinforcing signal sequence is frequency-multiplexed without modulation, or carriers having different frequencies are vestigial sideband amplitude modulated (QAM). V
A television-enhanced signaling system characterized by SB) and frequency multiplexing.
【請求項4】請求項1、2において、n=2m(ただ
し、mは2以上の整数)と表せる場合に、2m相の補強
信号系列は、相異なるm組の周波数ごとにそれぞれ相直
交する位相を持つ合計2m個の搬送波をそれぞれ直交振
幅変調(QAM)して周波数多重することを特徴とする
テレビジョン補強信号方式。
4. In claim 1 or 2, when n = 2m (where m is an integer of 2 or more), 2m-phase reinforcing signal sequences are orthogonal to each other for m different frequencies. A television-enhanced signaling system characterized by quadrature amplitude modulation (QAM) and frequency-multiplexing a total of 2 m carriers having phases.
【請求項5】請求項1、2、3、4において、上記補強
信号は、現行テレビジョン画面の上下部に表示される領
域に配置して伝送することを特徴とするテレビジョン補
強信号方式。
5. The television reinforcement signal system according to claim 1, 2, 3, or 4, wherein the reinforcement signal is arranged and transmitted in an area displayed at the upper and lower portions of a current television screen.
JP5225451A 1993-09-10 1993-09-10 Television reinforcing signal system Pending JPH0787464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5225451A JPH0787464A (en) 1993-09-10 1993-09-10 Television reinforcing signal system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5225451A JPH0787464A (en) 1993-09-10 1993-09-10 Television reinforcing signal system

Publications (1)

Publication Number Publication Date
JPH0787464A true JPH0787464A (en) 1995-03-31

Family

ID=16829561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5225451A Pending JPH0787464A (en) 1993-09-10 1993-09-10 Television reinforcing signal system

Country Status (1)

Country Link
JP (1) JPH0787464A (en)

Similar Documents

Publication Publication Date Title
KR100188832B1 (en) Transmitting auxiliary information in a television signal
KR860001201B1 (en) Technique for providing campatibility between high definition and conventional color television
US4944032A (en) Multiplex signal processing apparatus
JP2588636B2 (en) Method and apparatus for compatibility between NTSC and HD television screen signals
JPH03274880A (en) Television signal multiplex transmission device
JP3330146B2 (en) Television signal encoding method and decoding device
JPH0787464A (en) Television reinforcing signal system
JPS6310986A (en) Transmission method for television signal
JP2658021B2 (en) Television signal processing method
JP2616753B2 (en) Television receiver
JP2506957B2 (en) Multiplex television signal processor
KR910007204B1 (en) Television signal processing apparatus
JP2598549B2 (en) Television signal transmission system and its reproducing apparatus
JP2715407B2 (en) Television signal processing method
JPH01229584A (en) Multiplexing signal receiving device
JPH0233292A (en) Television signal processor
JPH07327211A (en) Wide television signal processor
JPS6390990A (en) High accurate luminance information transmission system
JPH0767085A (en) Television additional signal transmitter-receiver
JPS647555B2 (en)
JPH01229578A (en) Television signal transmitter
JPH0575978A (en) Wide television signal transmitter
JPS63100885A (en) Transmission system of television signal
JPH01229590A (en) Transmitter for color television signal multiplexed with additional signal
JPH02142288A (en) Signal processor