JPH078737A - Oxygen enriched air producing apparatus - Google Patents

Oxygen enriched air producing apparatus

Info

Publication number
JPH078737A
JPH078737A JP5155148A JP15514893A JPH078737A JP H078737 A JPH078737 A JP H078737A JP 5155148 A JP5155148 A JP 5155148A JP 15514893 A JP15514893 A JP 15514893A JP H078737 A JPH078737 A JP H078737A
Authority
JP
Japan
Prior art keywords
carbon dioxide
adsorption
mode
air
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5155148A
Other languages
Japanese (ja)
Inventor
Yuichi Minamiyama
雄一 南山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP5155148A priority Critical patent/JPH078737A/en
Publication of JPH078737A publication Critical patent/JPH078737A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To efficiently perform enrichment of oxygen (adsorption of nitrogen) and the adsorption of carbon dioxide by one adsorption tower. CONSTITUTION:A low pressure circuit 13 having a solenoid valve EV3 and a high pressure circuit 15 having a solenoid valve EV4 and an orifice 14 are formed in parallel on the outlet side of an adsorption tower 12. At the time of an oxygen enriching mode, air is allowed to pass through the high pressure circuit 15 to increase passage resistance and the pressure in the adsorption tower 12 is raised to the pressure suitable for the adsorption of nitrogen. At the time of a carbon dioxide removing mode, passage resistance is lowered by passing air through the low pressure circuit 13 to lower the pressure in the adsorption tower 12 to the pressure suitable for the adsorption of carbon dioxide. Further, the cycle ratio R[=adsorption time/(adsorption time + regeneration time)] of the carbon dioxide removing mode is set to 0.5<R<=about 0.75 and the removal of carbon dioxide and the enrichment of oxygen are efficiently performed only by one adsorption tower 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気中の窒素及び二酸
化炭素を吸着する吸着剤を収容した吸着塔内に空気を送
って酸素富化空気を生成する酸素富化空気生成装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen-enriched air generator for sending air into an adsorption tower containing an adsorbent for adsorbing nitrogen and carbon dioxide in the air to produce oxygen-enriched air. is there.

【0002】[0002]

【従来の技術】近年、室内の酸素濃度の低下を防いで居
住空間の快適性を維持するために、空気中の窒素を一部
除去して酸素富化空気を生成する酸素富化空気生成装置
(PSA)が開発されている。このものは、特開平2−
174913号公報に記載されているように、空気中の
窒素を吸着するゼオライト等の吸着剤を収容した吸着塔
を設け、この吸着塔内にコンプレッサにより空気を送っ
て酸素富化空気を生成し、この酸素富化空気をパイプラ
インを通して室内に送るようになっている。
2. Description of the Related Art In recent years, an oxygen-enriched air generator for removing oxygen in the air to produce oxygen-enriched air in order to prevent a decrease in the oxygen concentration in the room and maintain the comfort of a living space. (PSA) has been developed. This is disclosed in JP-A-2-
As described in Japanese Patent No. 174913, an adsorption tower containing an adsorbent such as zeolite that adsorbs nitrogen in the air is provided, and air is sent by a compressor into the adsorption tower to generate oxygen-enriched air, This oxygen-enriched air is sent to the room through a pipeline.

【0003】[0003]

【発明が解決しようとする課題】ところで、快適性を左
右する空気環境として、酸素濃度の他、二酸化炭素濃度
もある。これを確認するため、空気環境(酸素濃度,二
酸化炭素濃度)と人間の疲労軽減率との関係を調べてみ
ると、図9に示すような結果が得られた。この図9にお
いて、領域Iは、高酸素濃度・低二酸化炭素濃度によっ
て疲労軽減率が高く快適と感じる領域であり、領域II
は、酸素濃度が若干低いが、二酸化炭素濃度を低下させ
ることで領域Iとほぼ同じ疲労軽減率(快適性)を確保
できる領域であり、領域III は、二酸化炭素濃度が高く
て疲労軽減率(快適性)の低い領域である。
By the way, as an air environment that affects comfort, there is a carbon dioxide concentration in addition to an oxygen concentration. In order to confirm this, when the relationship between the air environment (oxygen concentration, carbon dioxide concentration) and the human fatigue reduction rate was examined, the results shown in FIG. 9 were obtained. In FIG. 9, region I is a region where the fatigue reduction rate is high and the user feels comfortable due to the high oxygen concentration and low carbon dioxide concentration.
Is a region in which the oxygen concentration is slightly low, but the fatigue reduction rate (comfort) that is almost the same as in region I can be secured by reducing the carbon dioxide concentration. It is an area of low comfort.

【0004】この関係から明らかなように、たとえ酸素
濃度が高くても、二酸化炭素濃度が高くなれば、疲労軽
減率(快適性)が著しく低下してしまう。それ故に、快
適性を維持するためには、酸素富化に加え、二酸化炭素
濃度を低下させることも必要となる。
As is clear from this relationship, even if the oxygen concentration is high, if the carbon dioxide concentration is high, the fatigue reduction rate (comfort) will be significantly reduced. Therefore, in order to maintain comfort, it is also necessary to lower the carbon dioxide concentration in addition to oxygen enrichment.

【0005】しかしながら、前述した従来のものは、酸
素富化のみによる空気環境の改善を狙ったものであり、
二酸化炭素濃度を制御できる構成とはなっていないの
で、十分な快適性を確保できない。尚、ゼオライト等の
吸着剤には、窒素の吸着と共に二酸化炭素も吸着する能
力があるが、後述するように二酸化炭素は窒素に比べて
選択吸着性が強く、しかも空気中の二酸化炭素は窒素に
比べて極めて濃度が低いので、通常空気を原料空気とす
る場合には、窒素の吸着と二酸化炭素の吸着とを両立さ
せることができず、二酸化炭素の吸着を効率良く行うこ
とはできない。
However, the above-mentioned conventional ones aim to improve the air environment only by enriching oxygen,
Since it is not configured to control the carbon dioxide concentration, sufficient comfort cannot be ensured. Incidentally, an adsorbent such as zeolite has an ability to adsorb carbon dioxide as well as nitrogen, but as described later, carbon dioxide has a stronger selective adsorption property than nitrogen, and carbon dioxide in the air is converted to nitrogen. Since the concentration is extremely low in comparison, when normal air is used as the raw material air, both nitrogen adsorption and carbon dioxide adsorption cannot be achieved at the same time, and carbon dioxide adsorption cannot be performed efficiently.

【0006】最近、この問題を解決するために、複数の
吸着塔を設けて、二酸化炭素を選択的に吸着できるよう
にした多塔式PSAも開発されているが、システム全体
が複雑化して、システムの大型化や高価格化を招くとい
う欠点がある。
Recently, in order to solve this problem, a multi-tower PSA has been developed in which a plurality of adsorption towers are provided so that carbon dioxide can be selectively adsorbed, but the whole system becomes complicated, It has the drawback of increasing the size and cost of the system.

【0007】本発明は、このような事情を考慮してなさ
れたもので、その目的は、1つの吸着塔によって、酸素
富化(窒素の吸着)と二酸化炭素の吸着とを効率良く行
わせることができて、空気中の酸素濃度と二酸化炭素濃
度の双方を適正に制御でき、極めて快適な空気環境を実
現することができる酸素富化空気生成装置を提供するこ
とにある。
The present invention has been made in consideration of such circumstances, and an object thereof is to efficiently perform oxygen enrichment (adsorption of nitrogen) and adsorption of carbon dioxide by one adsorption tower. Accordingly, it is an object of the present invention to provide an oxygen-enriched air generator capable of properly controlling both the oxygen concentration and the carbon dioxide concentration in the air and realizing an extremely comfortable air environment.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の酸素富化空気生成装置は、空気中の窒素及
び二酸化炭素を吸着する吸着剤を収容した吸着塔を設
け、この吸着塔内に送気手段により空気を送って酸素富
化空気を生成するものにおいて、前記吸着塔の内部若し
くはその出口側の空気流通経路の流路抵抗を低下させる
ように切り替えることで酸素富化モードから二酸化炭素
除去モードへ運転を切り替えるモード切替手段と、前記
酸素富化モード及び前記二酸化炭素除去モードのいずれ
のモードでも、当該モードの運転中に、前記吸着塔内の
吸着剤に付着している窒素及び二酸化炭素を取り除く再
生モードの運転を間欠的に実行させる制御手段とを備
え、前記制御手段は、前記二酸化炭素除去モードの運転
時に、サイクル比Rが、 0.5<R≦約0.75 [但し、R=吸着時間/(吸
着時間+再生時間)] となるように制御するものである。
In order to achieve the above object, the oxygen-enriched air generator of the present invention is provided with an adsorption tower containing an adsorbent for adsorbing nitrogen and carbon dioxide in the air, and the adsorption tower is provided. In a device for generating oxygen-enriched air by sending air into the tower by an air supply means, an oxygen-enriched mode is selected by switching so as to reduce the flow path resistance of the air circulation path inside the adsorption tower or on the outlet side thereof. From the carbon dioxide removal mode to the carbon dioxide removal mode, and in any of the oxygen enrichment mode and the carbon dioxide removal mode, while adhering to the adsorbent in the adsorption tower during the operation of the mode. And a control means for intermittently executing a regeneration mode operation for removing nitrogen and carbon dioxide, wherein the control means has a cycle ratio R during operation of the carbon dioxide removal mode. 0.5 <R ≦ 0.75 [where, R = adsorption time / (adsorption time + playback time) and controls so as to.

【0009】[0009]

【作用】吸着塔の内部若しくはその出口側の空気流通経
路の流路抵抗を低下させて、吸着塔内の圧力(以下「ス
イング圧力」という)を低下させると、吸着塔内に流れ
る空気の流量が増加する。しかし、吸着剤(例えばゼオ
ライト)の特性により、図10に示すように、スイング
圧力の低下に伴って窒素及び二酸化炭素の飽和吸着量は
減少するので、窒素の吸着に最適なスイング圧力が存在
し、酸素富化量にピーク点が現われる。これに対し、二
酸化炭素は、窒素に比べて、吸着剤(例えばゼオライ
ト)の極性分子に対する選択吸着性が強いため、空気流
量の増加に伴って単位時間当りの二酸化炭素の吸着量は
増加する特性がある。
[Function] When the pressure in the adsorption tower (hereinafter referred to as "swing pressure") is reduced by lowering the flow path resistance of the air flow path inside the adsorption tower or on the outlet side thereof, the flow rate of the air flowing in the adsorption tower Will increase. However, due to the characteristics of the adsorbent (for example, zeolite), as shown in FIG. 10, the saturated adsorption amount of nitrogen and carbon dioxide decreases as the swing pressure decreases, so that the optimum swing pressure for nitrogen adsorption exists. A peak point appears in the oxygen enrichment amount. On the other hand, carbon dioxide has a stronger selective adsorption property to polar molecules of the adsorbent (for example, zeolite) than nitrogen, so that the adsorption amount of carbon dioxide per unit time increases as the air flow rate increases. There is.

【0010】そこで、本発明では、酸素富化(窒素除
去)モード時には、モード切替手段により吸着塔の内部
若しくはその出口側の空気流通経路の流路抵抗を高圧側
に切り替えて、スイング圧力を窒素の吸着に適した圧力
に設定する。これにより、空気中の窒素を効率良く吸着
して、空気中の酸素濃度を高める。
Therefore, in the present invention, in the oxygen enrichment (removal of nitrogen) mode, the mode switching means switches the flow path resistance of the air flow path inside the adsorption tower or at the outlet side thereof to the high pressure side to change the swing pressure to nitrogen. Set a pressure suitable for adsorption of. As a result, nitrogen in the air is efficiently adsorbed and the oxygen concentration in the air is increased.

【0011】一方、二酸化炭素除去モード時には、モー
ド切替手段により吸着塔の内部若しくはその出口側の空
気流通経路の流路抵抗を低圧側に切り替えて、スイング
圧力を二酸化炭素の吸着に適した低圧力に設定する。こ
れにより、空気中の二酸化炭素を効率良く吸着して、空
気中の二酸化炭素濃度を低下させる。
On the other hand, in the carbon dioxide removal mode, the mode switching means switches the flow path resistance of the air flow path inside or at the outlet side of the adsorption tower to the low pressure side to set the swing pressure to a low pressure suitable for adsorption of carbon dioxide. Set to. As a result, carbon dioxide in the air is efficiently adsorbed, and the carbon dioxide concentration in the air is reduced.

【0012】上述した酸素富化モード及び二酸化炭素除
去モードのいずれのモードでも、当該モードの運転中に
再生モードの運転を間欠的に実行させ、この再生モード
の運転中に、吸着塔内の吸着剤に吸着されている窒素や
二酸化炭素の分子を取り除いて吸着能力を回復させる。
In any of the above-described oxygen enrichment mode and carbon dioxide removal mode, the operation of the regeneration mode is intermittently executed during the operation of the mode, and the adsorption in the adsorption tower is performed during the operation of the regeneration mode. The nitrogen and carbon dioxide molecules adsorbed on the agent are removed to restore the adsorption ability.

【0013】ところで、図4に示すように、二酸化炭素
除去量を増加させるには、サイクル比Rを大きくして吸
着時間(二酸化炭素除去モードの運転時間)を長くすれ
ば良いが、吸着時間が長くなるに従って、再生時間(再
生モードの運転時間)が短くなって、再生量が少なくな
る。再生量が少なくなれば、窒素再生率(=再生量/吸
着量×100)が低下して、酸素富化能力が低下してし
まう。
By the way, as shown in FIG. 4, in order to increase the carbon dioxide removal amount, the cycle ratio R may be increased to lengthen the adsorption time (carbon dioxide removal mode operation time). The longer the time, the shorter the reproduction time (the operation time in the reproduction mode) and the smaller the reproduction amount. If the regeneration amount is small, the nitrogen regeneration rate (= regeneration amount / adsorption amount × 100) is reduced and the oxygen enrichment capability is reduced.

【0014】この関係を考慮して、本発明では、二酸化
炭素除去モードのサイクル比Rを、0.5<R≦約0.
75に設定し、1つの吸着塔によって二酸化炭素除去能
力と酸素富化(窒素除去)能力とを両立させて、二酸化
炭素除去と酸素富化とを共に効率良く行うものである。
In consideration of this relationship, in the present invention, the cycle ratio R in the carbon dioxide removal mode is set to 0.5 <R ≦ about 0.
It is set to 75, and both the carbon dioxide removal capability and the oxygen enrichment (nitrogen removal) capability are made compatible by one adsorption tower, and both carbon dioxide removal and oxygen enrichment are efficiently performed.

【0015】[0015]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1において、酸素富化モード及び二酸化炭素
除去モードのいずれのモードでも、室内空気は、電磁弁
EV1を通して送気手段たる真空ポンプ11に吸入され
る。この真空ポンプ11から吐出される空気は、電磁弁
EV2を通って吸着塔12内に流入する。この吸着塔1
2内には、空気中の窒素及び二酸化炭素を吸着するゼオ
ライト等の吸着剤(図示せず)が収容されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, in both the oxygen enrichment mode and the carbon dioxide removal mode, the room air is sucked into the vacuum pump 11 serving as an air feeding means through the electromagnetic valve EV1. The air discharged from the vacuum pump 11 flows into the adsorption tower 12 through the electromagnetic valve EV2. This adsorption tower 1
An adsorbent (not shown) such as zeolite that adsorbs nitrogen and carbon dioxide in the air is housed in the inside of the chamber 2.

【0016】この吸着塔12の出口側の空気流通経路に
は、電磁弁EV3を有する低圧回路13と、電磁弁EV
4とオリフィス14とを有する高圧回路15が並列に接
続されており、これら低圧回路13と高圧回路15とか
らモード切替手段16が構成されている。この場合、酸
素富化モード時には、低圧回路13の電磁弁EV3を閉
鎖して高圧回路15の電磁弁EV4を開放することで、
吸着塔12の出口側の空気流通経路の流路抵抗を大きく
して、吸着塔12内の圧力(スイング圧力)を窒素の吸
着に適した高圧力(例えば0.5kgf/cm2 G )に切り替
え、吸着塔12から流出する酸素富化空気を、図1に実
線矢印で示すように、高圧回路15(電磁弁EV4→オ
リフィス14)→逆止弁24の経路で室内へ供給する。
In the air flow path on the outlet side of the adsorption tower 12, a low pressure circuit 13 having a solenoid valve EV3 and a solenoid valve EV are provided.
4 and an orifice 14 are connected in parallel to each other, and the low voltage circuit 13 and the high voltage circuit 15 constitute a mode switching means 16. In this case, in the oxygen enrichment mode, by closing the solenoid valve EV3 of the low pressure circuit 13 and opening the solenoid valve EV4 of the high pressure circuit 15,
By increasing the flow path resistance of the air flow path on the outlet side of the adsorption tower 12, the pressure inside the adsorption tower 12 (swing pressure) is switched to a high pressure suitable for nitrogen adsorption (for example, 0.5 kgf / cm 2 G), The oxygen-enriched air flowing out from the adsorption tower 12 is supplied into the room through the route of the high pressure circuit 15 (electromagnetic valve EV4 → orifice 14) → check valve 24, as shown by the solid arrow in FIG.

【0017】これに対し、二酸化炭素除去モード時に
は、高圧回路15の電磁弁EV4を閉鎖して低圧回路1
3の電磁弁EV3を開放することで、吸着塔12の出口
側の空気流通経路の流路抵抗を小さくして、スイング圧
力を二酸化炭素の吸着に適した低圧力に切り替え、吸着
塔12から流出する酸素富化空気を、図1に一点鎖線矢
印で示すように、低圧回路13→逆止弁24の経路で室
内に供給する。
On the other hand, in the carbon dioxide removal mode, the solenoid valve EV4 of the high pressure circuit 15 is closed to close the low pressure circuit 1.
By opening the solenoid valve EV3 of No. 3, the flow path resistance of the air circulation path on the outlet side of the adsorption tower 12 is reduced, the swing pressure is switched to a low pressure suitable for adsorption of carbon dioxide, and the outflow from the adsorption tower 12 is performed. The oxygen-enriched air to be supplied is supplied into the room through the route of the low pressure circuit 13 → the check valve 24 as shown by the one-dot chain line arrow in FIG.

【0018】一方、再生モード時には、低圧回路13の
電磁弁EV3及び高圧回路15の電磁弁EV4を共に閉
鎖した状態で、吸着塔12内に残留している空気を、図
1に点線矢印で示すように、電磁弁EV5→真空ポンプ
11→電磁弁EV6の経路で室外に排出して吸着塔12
内を真空引きすることで、吸着塔12内の吸着剤に吸着
されている窒素や二酸化炭素の分子を取り除いて吸着能
力を回復させる。以上説明した各モードにおける電磁弁
EV1〜電磁弁EV6のON(開放)/OFF(閉鎖)
の切替は、図2に示すようになっている。
On the other hand, in the regeneration mode, the air remaining in the adsorption tower 12 is shown by a dotted arrow in FIG. 1 with both the solenoid valve EV3 of the low pressure circuit 13 and the solenoid valve EV4 of the high pressure circuit 15 closed. In this way, the adsorption tower 12 is discharged to the outside through the path of the solenoid valve EV5 → the vacuum pump 11 → the solenoid valve EV6.
By vacuuming the inside, nitrogen and carbon dioxide molecules adsorbed by the adsorbent in the adsorption tower 12 are removed to restore the adsorption capacity. ON (open) / OFF (close) of the solenoid valves EV1 to EV6 in each mode described above
2 is switched as shown in FIG.

【0019】次に、図3に基づいて制御手段たる制御回
路17の構成を説明する。モード切替スイッチ18は、
酸素富化モードと二酸化炭素除去モードとを切り替える
もので、このモード切替スイッチ18に直列に第1のリ
レーコイルRL1が接続されている。このモード切替ス
イッチ18がオフのときには、酸素富化モードに設定さ
れ、常閉型のリレースイッチRL1bを介して電磁弁E
V4に通電され、この電磁弁EV4がオン(開放)され
る。この後、モード切替スイッチ18をオンすると、第
1のリレーコイルRL1に通電され、常閉型のリレース
イッチRL1bがオフされて、電磁弁EV4がオフ(閉
鎖)され、その代りに、常開型のリレースイッチRL1
aがオンされて、電磁弁EV3がオンされ、二酸化炭素
除去モードに切り替えられる。
Next, the structure of the control circuit 17, which is the control means, will be described with reference to FIG. The mode switch 18 is
It switches between the oxygen enrichment mode and the carbon dioxide removal mode, and the first relay coil RL1 is connected to the mode changeover switch 18 in series. When the mode selector switch 18 is off, the oxygen enrichment mode is set, and the solenoid valve E is set via the normally closed relay switch RL1b.
V4 is energized and this solenoid valve EV4 is turned on (open). Thereafter, when the mode switch 18 is turned on, the first relay coil RL1 is energized, the normally closed relay switch RL1b is turned off, and the solenoid valve EV4 is turned off (closed). Relay switch RL1
a is turned on, the solenoid valve EV3 is turned on, and the mode is switched to the carbon dioxide removal mode.

【0020】一方、メインスイッチ19には、第2のリ
レーコイルRL2が接続されている。このメインスイッ
チ19をオンすると、第2のリレーコイルRL2に通電
されてリレースイッチRL2aがオンされる。これによ
り、真空ポンプ11の運転が開始されると共に、常閉型
のリレースイッチRL3aを介して第1のリレータイマ
ーRLT1,電磁弁EV1,EV2に通電される。上記
第1のリレータイマーRLT1は、通電と同時に計時動
作を開始し、所定時間経過後にリレースイッチRLT1
aをオンに切り替える。このリレースイッチRLT1a
のオンにより、常閉型のリレースイッチRLT2aを介
して第3のリレーコイルRL3に通電され、常閉型のリ
レースイッチRL3aがオフされて、電磁弁EV1,E
V2がオフされると共に、リレースイッチRL3bがオ
ンされ、このリレースイッチRL3bと常閉型のリレー
スイッチRLT2aを介して電磁弁EV5,EV6に通
電され、再生モードの運転を開始する。
On the other hand, the main switch 19 is connected to the second relay coil RL2. When the main switch 19 is turned on, the second relay coil RL2 is energized and the relay switch RL2a is turned on. As a result, the operation of the vacuum pump 11 is started and the first relay timer RLT1 and the solenoid valves EV1 and EV2 are energized via the normally closed relay switch RL3a. The first relay timer RLT1 starts timing operation at the same time as energization, and after a predetermined time elapses, the relay switch RLT1.
Switch a on. This relay switch RLT1a
Is turned on, the third relay coil RL3 is energized via the normally closed relay switch RLT2a, the normally closed relay switch RL3a is turned off, and the solenoid valves EV1 and E1 are connected.
When V2 is turned off and the relay switch RL3b is turned on, the solenoid valves EV5 and EV6 are energized via the relay switch RL3b and the normally closed relay switch RLT2a to start the operation in the regeneration mode.

【0021】この再生モードの運転中は、リレースイッ
チRL3bを介して第2のリレータイマーRLT2に通
電される。この第2のリレータイマーRLT2は、再生
モードの運転時間(再生時間)をカウントし、所定時間
経過後に、常閉型のリレースイッチRLT2aをオフす
る。これにより、第3のリレーコイルRL3及び電磁弁
EV5,EV6がオフされると共に、常閉型のリレース
イッチRL3aがオン状態に復帰して電磁弁EV1,E
V2がオンされ、モード切替スイッチ18により設定さ
れた二酸化炭素除去モード又は酸素富化モードのいずれ
かのモードで運転が行われる。
During operation in this regeneration mode, the second relay timer RLT2 is energized via the relay switch RL3b. The second relay timer RLT2 counts the operation time (reproduction time) in the regeneration mode, and turns off the normally closed relay switch RLT2a after a predetermined time has elapsed. As a result, the third relay coil RL3 and the solenoid valves EV5, EV6 are turned off, and the normally closed relay switch RL3a is returned to the on state, so that the solenoid valves EV1, EV
V2 is turned on, and the operation is performed in either the carbon dioxide removal mode or the oxygen enrichment mode set by the mode changeover switch 18.

【0022】以上のような回路構成により、酸素富化モ
ード及び二酸化炭素除去モードのいずれのモードでも、
当該モードの運転中に、再生モードの運転を間欠的に実
行し、吸着塔12内の吸着剤に付着している窒素及び二
酸化炭素を取り除いて吸着能力を回復させる。
With the circuit configuration as described above, in any of the oxygen enrichment mode and the carbon dioxide removal mode,
During the operation of the mode, the operation of the regeneration mode is intermittently performed to remove nitrogen and carbon dioxide adhering to the adsorbent in the adsorption tower 12 to recover the adsorption capacity.

【0023】ところで、図4に示すように、二酸化炭素
除去量を増加させるには、下記の式で定義されるサイク
ル比Rを大きくして吸着時間(二酸化炭素除去モードの
運転時間)を長くすれば良い。 サイクル比R=吸着時間/(吸着時間+再生時間) ここで、サイクル比Rを増加させると、吸着時間が長く
なるばかりか、図5に示すように、単位時間当りの流入
量も増加し、二酸化炭素除去量が増加するという関係が
ある。
By the way, as shown in FIG. 4, in order to increase the amount of carbon dioxide removed, the cycle ratio R defined by the following equation is increased to increase the adsorption time (the operating time of the carbon dioxide removal mode). Good. Cycle ratio R = adsorption time / (adsorption time + regeneration time) Here, when the cycle ratio R is increased, not only the adsorption time becomes longer but also the inflow amount per unit time increases as shown in FIG. There is a relationship that the amount of carbon dioxide removed increases.

【0024】しかしながら、吸着時間が長くなるに従っ
て、再生時間(再生モードの運転時間)が短くなって、
再生量が少なくなり、窒素再生率(=再生量/吸着量×
100)が低下してしまう。本発明者の実験結果によれ
ば、図4に示すように、サイクル比Rが0.6以上にな
ると、窒素再生率の低下幅が次第に大きくなり、サイク
ル比Rが約0.75で、窒素再生率が実用範囲の下限値
に達してしまう。この下限値を下回ると、酸素富化能力
が実用最低レベルを下回ってしまい、二酸化炭素除去能
力と酸素富化能力とを両立させることができない。
However, as the adsorption time becomes longer, the regeneration time (the operation time of the regeneration mode) becomes shorter,
Regeneration amount decreases, nitrogen regeneration rate (= regeneration amount / adsorption amount x
100) will decrease. According to the experimental results of the present inventor, as shown in FIG. 4, when the cycle ratio R becomes 0.6 or more, the decrease width of the nitrogen regeneration rate gradually increases, and the cycle ratio R is about 0.75. The reproduction rate reaches the lower limit of the practical range. Below this lower limit, the oxygen enrichment capacity will fall below the practical minimum level, and it will not be possible to achieve both a carbon dioxide removal capacity and an oxygen enrichment capacity.

【0025】この関係を考慮して、本実施例では、二酸
化炭素除去モードのサイクル比Rを0.5<R≦約0.
75に設定している。これにより、1つの吸着塔12に
よって二酸化炭素除去能力と酸素富化能力とを両立させ
て、二酸化炭素除去と酸素富化とを共に効率良く行うこ
とができる。また、本実施例では、酸素富化モードのサ
イクル比Sも0.5よりも大きくし、例えばS=0.5
7に設定することで、酸素富化能力も更に強化してい
る。
In consideration of this relationship, in the present embodiment, the cycle ratio R in the carbon dioxide removal mode is 0.5 <R ≦ about 0.
It is set to 75. This makes it possible to achieve both carbon dioxide removal capability and oxygen enrichment capability by one adsorption tower 12 and efficiently perform both carbon dioxide removal and oxygen enrichment. Further, in the present embodiment, the cycle ratio S in the oxygen enrichment mode is also set to be larger than 0.5, for example, S = 0.5.
By setting it to 7, the oxygen enrichment capacity is further enhanced.

【0026】本発明者の実験結果によれば、二酸化炭素
除去モードのサイクル比Rを0.75として運転した場
合、図6に示すように、従来のPSAに比して二酸化炭
素除去能力を約40%向上させることができると共に、
酸素富化能力を約3%向上させることができる。これに
より、室内の空気環境を、図9に示す疲労軽減率(快適
性)の高い領域I又は領域IIの範囲内に維持することが
でき、室内の居住空間の快適性を良好に保つことができ
る。
According to the experimental results of the present inventor, when the carbon dioxide removal mode is operated at a cycle ratio R of 0.75, as shown in FIG. 40% improvement and
The oxygen enrichment capacity can be improved by about 3%. As a result, the indoor air environment can be maintained within the range of the region I or the region II having a high fatigue reduction rate (comfort) shown in FIG. 9, and the comfort of the indoor living space can be kept good. it can.

【0027】以上説明した本実施例の酸素富化空気生成
装置20は、図7に示すように室内25に設置して使用
しても良い。或は、図8に示すように、酸素富化空気生
成装置20をエアコン室外機21と共に屋外に設置し
て、酸素富化空気生成装置20から導出した空気配管2
2をエアコン室内機23に接続し、エアコン室内機23
から冷風と共に酸素富化空気を吹き出したり、エアコン
室内機23を通して室内25の空気を吸い込むようにし
ても良い。
The oxygen-enriched air generator 20 of the present embodiment described above may be installed in a room 25 and used as shown in FIG. Alternatively, as shown in FIG. 8, the oxygen-enriched air generator 20 is installed outdoors together with the air conditioner outdoor unit 21, and the air pipe 2 derived from the oxygen-enriched air generator 20 is installed.
2 is connected to the air conditioner indoor unit 23, and the air conditioner indoor unit 23
Alternatively, oxygen-enriched air may be blown out together with the cool air, or the air in the room 25 may be sucked in through the air conditioner indoor unit 23.

【0028】尚、本実施例では、酸素富化モードと二酸
化炭素除去モードとの切替をモード切替スイッチ18の
手動操作により行うようにしたが、酸素センサ(又は二
酸化炭素センサ)により酸素濃度(又は二酸化炭素濃
度)を検出し、その検出結果に基づいて酸素富化モード
と二酸化炭素除去モードとの切替を自動的に切り替える
ようにしても良い。
In this embodiment, the oxygen enrichment mode and the carbon dioxide removal mode are switched by the manual operation of the mode changeover switch 18, but the oxygen concentration (or the carbon dioxide sensor) is changed by the oxygen sensor (or the carbon dioxide sensor). The carbon dioxide concentration) may be detected, and the switching between the oxygen enrichment mode and the carbon dioxide removal mode may be automatically switched based on the detection result.

【0029】また、本実施例では、送気手段として真空
ポンプ11を用い、再生モード時に吸着塔12内を真空
引きすることで、吸着塔12内の吸着剤に吸着されてい
る窒素や二酸化炭素の分子を取り除いて吸着能力を回復
させるようにしたが、吸着塔12の後段に、酸素富化空
気の一部を蓄えるサージタンクを設け、再生モード時に
このサージタンクから酸素富化空気を吸着塔12内に流
すことで、吸着塔12内の吸着剤に吸着されている窒素
や二酸化炭素の分子を取り除くようにしても良い。
Further, in the present embodiment, the vacuum pump 11 is used as the air supply means, and the inside of the adsorption tower 12 is evacuated in the regeneration mode, so that the nitrogen or carbon dioxide adsorbed by the adsorbent in the adsorption tower 12 is absorbed. The molecule was removed to recover the adsorption capacity, but a surge tank for storing a part of the oxygen-enriched air was provided in the latter stage of the adsorption tower 12, and the oxygen-enriched air was adsorbed from the surge tank during the regeneration mode. The nitrogen and carbon dioxide molecules adsorbed by the adsorbent in the adsorption tower 12 may be removed by flowing the adsorbent in the adsorption tower 12.

【0030】また、本実施例では、吸着塔12の出口側
の空気流通経路に、低圧回路13と高圧回路15とを並
列に設け、二酸化炭素除去モード時には、空気の流路を
高圧回路15から低圧回路13へ切り替えることで、流
路抵抗を低下させて吸着塔12内の圧力を低下させ、空
気の流入量を増加させるようにしたが、吸着塔12の側
壁にバイパス回路を設け、二酸化炭素除去モード時にこ
のバイパス回路を通して吸着塔12内に空気を流入させ
ることで、吸着塔12内における空気流通経路を短縮し
て、吸着塔12内の流路抵抗(圧損)を低下させ、空気
の流入量を増加させるようにしても良い。
Further, in the present embodiment, the low pressure circuit 13 and the high pressure circuit 15 are provided in parallel in the air flow path on the outlet side of the adsorption tower 12, and the air flow path is changed from the high pressure circuit 15 in the carbon dioxide removal mode. By switching to the low-pressure circuit 13, the flow path resistance is reduced, the pressure in the adsorption tower 12 is reduced, and the inflow amount of air is increased. However, a bypass circuit is provided on the side wall of the adsorption tower 12, By allowing air to flow into the adsorption tower 12 through this bypass circuit in the removal mode, the air flow path in the adsorption tower 12 is shortened, the flow path resistance (pressure loss) in the adsorption tower 12 is reduced, and the inflow of air is reduced. The amount may be increased.

【0031】その他、本発明は、上記各実施例に限定さ
れるものではなく、例えば、送気手段を真空ポンプ11
(コンプレッサ)からブロワに代えたり、吸着塔12の
サイズ・構造に応じてスイング圧力を適宜変更しても良
い等、要旨を逸脱しない範囲内で種々変更して実施でき
ることは言うまでもない。
In addition, the present invention is not limited to the above-mentioned embodiments, and for example, the air feeding means may be the vacuum pump 11.
It goes without saying that various modifications can be made without departing from the scope, such as changing the (compressor) to a blower or changing the swing pressure appropriately according to the size and structure of the adsorption tower 12.

【0032】[0032]

【発明の効果】以上の説明から明らかなように、本発明
によれば、二酸化炭素除去モード時には、モード切替手
段により吸着塔の内部若しくはその出口側の空気流通経
路の流路抵抗を低圧側に切り替えて、吸着塔内の圧力
(スイング圧力)を二酸化炭素の吸着に適した低圧力に
設定すると共に、二酸化炭素除去モードのサイクル比R
を0.5<R≦約0.75に設定したので、1つの吸着
塔によって、酸素富化(窒素除去)と二酸化炭素除去の
双方を効率良く行うことができて、空気中の酸素濃度と
二酸化炭素濃度の双方を適正に制御でき、極めて快適な
空気環境を実現できる。
As is apparent from the above description, according to the present invention, in the carbon dioxide removal mode, the flow path resistance of the air flow path inside the adsorption tower or at the outlet side thereof is set to the low pressure side by the mode switching means. By switching the pressure (swing pressure) in the adsorption tower to a low pressure suitable for adsorption of carbon dioxide, the cycle ratio R in the carbon dioxide removal mode is set.
Is set to 0.5 <R ≦ about 0.75, so that both oxygen enrichment (removal of nitrogen) and removal of carbon dioxide can be efficiently performed by one adsorption tower, and oxygen concentration in the air can be reduced. Both carbon dioxide concentration can be controlled appropriately, and an extremely comfortable air environment can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示すシステム構成図FIG. 1 is a system configuration diagram showing a first embodiment of the present invention.

【図2】各モードと各電磁弁のON/OFFとの関係を
示す図
FIG. 2 is a diagram showing a relationship between each mode and ON / OFF of each solenoid valve.

【図3】制御回路の詳細を示す電気回路図FIG. 3 is an electric circuit diagram showing details of a control circuit.

【図4】サイクル比と窒素再生率,二酸化炭素除去量と
の関係を示す図
FIG. 4 is a diagram showing a relationship between a cycle ratio, a nitrogen regeneration rate, and a carbon dioxide removal amount.

【図5】サイクル比と空気の流入量との関係を示す図FIG. 5 is a diagram showing a relationship between a cycle ratio and an inflow amount of air.

【図6】本実施例の二酸化炭素除去能力と酸素富化能力
を従来のPSAと比較して説明する図
FIG. 6 is a diagram for explaining the carbon dioxide removal capacity and oxygen enrichment capacity of this example in comparison with a conventional PSA.

【図7】本実施例の酸素富化空気生成装置を室内設置型
として使用する場合の概念図
FIG. 7 is a conceptual diagram when the oxygen-enriched air generator of this embodiment is used as an indoor installation type.

【図8】本実施例の酸素富化空気生成装置を屋外設置型
として使用する場合の概念図
FIG. 8 is a conceptual diagram when the oxygen-enriched air generator of this embodiment is used as an outdoor installation type.

【図9】空気環境と疲労軽減率との関係を示す図FIG. 9 is a diagram showing a relationship between an air environment and a fatigue reduction rate.

【図10】スイング圧力と酸素濃度(a),二酸化炭素
除去量(b)との関係を示す図
FIG. 10 is a graph showing the relationship between swing pressure, oxygen concentration (a), and carbon dioxide removal amount (b).

【符号の説明】[Explanation of symbols]

11…真空ポンプ(送気手段)、12…吸着塔、13…
低圧回路、14…オリフィス、15…高圧回路、16…
モード切替手段、17…制御回路(制御手段)、18…
モード切換スイッチ、19…メインスイッチ、EV1〜
EV6…電磁弁。
11 ... Vacuum pump (air supply means), 12 ... Adsorption tower, 13 ...
Low voltage circuit, 14 ... Orifice, 15 ... High voltage circuit, 16 ...
Mode switching means, 17 ... Control circuit (control means), 18 ...
Mode switch, 19 ... Main switch, EV1
EV6 ... Solenoid valve.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 空気中の窒素及び二酸化炭素を吸着する
吸着剤を収容した吸着塔を設け、この吸着塔内に送気手
段により空気を送って酸素富化空気を生成する酸素富化
空気生成装置において、 前記吸着塔の内部若しくはその出口側の空気流通経路の
流路抵抗を低下させるように切り替えることで酸素富化
モードから二酸化炭素除去モードへ運転を切り替えるモ
ード切替手段と、 前記酸素富化モード及び前記二酸化炭素除去モードのい
ずれのモードでも、当該モードの運転中に、前記吸着塔
内の吸着剤に付着している窒素及び二酸化炭素を取り除
く再生モードの運転を間欠的に実行させる制御手段とを
備え、 前記制御手段は、前記二酸化炭素除去モードの運転時
に、サイクル比Rが、 0.5<R≦約0.75 [但し、R=吸着時間/(吸
着時間+再生時間)] となるように制御することを特徴とする酸素富化空気生
成装置。
1. An oxygen-enriched air production system, wherein an adsorption tower containing an adsorbent for adsorbing nitrogen and carbon dioxide in air is provided, and air is sent into the adsorption tower by an air supply means to produce oxygen-enriched air. In the apparatus, mode switching means for switching the operation from the oxygen enrichment mode to the carbon dioxide removal mode by switching so as to reduce the flow path resistance of the air circulation path inside the adsorption tower or on the outlet side thereof, and the oxygen enrichment. In any of the mode and the carbon dioxide removal mode, a control means for intermittently executing a regeneration mode operation for removing nitrogen and carbon dioxide adhering to the adsorbent in the adsorption tower during the operation of the mode. The control means has a cycle ratio R of 0.5 <R ≦ about 0.75 [where R = adsorption time / (in adsorption) during the operation in the carbon dioxide removal mode. + Duration) be controlled to be oxygen-enriched air producing apparatus according to claim.
JP5155148A 1993-06-25 1993-06-25 Oxygen enriched air producing apparatus Pending JPH078737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5155148A JPH078737A (en) 1993-06-25 1993-06-25 Oxygen enriched air producing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5155148A JPH078737A (en) 1993-06-25 1993-06-25 Oxygen enriched air producing apparatus

Publications (1)

Publication Number Publication Date
JPH078737A true JPH078737A (en) 1995-01-13

Family

ID=15599590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5155148A Pending JPH078737A (en) 1993-06-25 1993-06-25 Oxygen enriched air producing apparatus

Country Status (1)

Country Link
JP (1) JPH078737A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132995A1 (en) * 2014-03-06 2015-09-11 アイシン精機株式会社 Internal combustion engine and hydraulic control device for internal combustion engine
US20220010993A1 (en) * 2018-12-04 2022-01-13 Samsung Electronics Co., Ltd. Air conditioner and control method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132995A1 (en) * 2014-03-06 2015-09-11 アイシン精機株式会社 Internal combustion engine and hydraulic control device for internal combustion engine
JP2015169113A (en) * 2014-03-06 2015-09-28 アイシン精機株式会社 Internal combustion engine and hydraulic control device for the same
US20220010993A1 (en) * 2018-12-04 2022-01-13 Samsung Electronics Co., Ltd. Air conditioner and control method therefor
US11874026B2 (en) * 2018-12-04 2024-01-16 Samsung Electronics Co., Ltd. Air conditioner and control method therefor

Similar Documents

Publication Publication Date Title
CA2293503C (en) Pressure swing adsorption apparatus and method
CA2663760C (en) Oxygen concentrator
JP2008500890A (en) Gas concentration method and apparatus
JP2013526697A (en) Method and system for improved efficiency air conditioning
JP2005090941A (en) Air conditioning auxiliary device and air conditioning auxiliary method
JPH078737A (en) Oxygen enriched air producing apparatus
KR100495973B1 (en) Oxygen Concentrator for the Automobiles
JP3723478B2 (en) Concentrated oxygen supply device
JPH07124434A (en) Device for forming air rich in oxygen
JP3749150B2 (en) Concentrated oxygen supply device
JPH0768120A (en) Oxygen enrich air forming device
JPH03131504A (en) Oxygen concentrator
KR100460278B1 (en) Oxygen Concentrator Using Car Turbo-charger and Vacuum Source
JP3099588B2 (en) Dehumidifying / humidifying device
JPH0416212A (en) Gas concentrator equipped with automatic switching apparatus operated by frequency of electric power source
JP2833241B2 (en) Dry dehumidifier
JP2003214656A (en) Dehumidifier and its operation method
JPH07148413A (en) Apparatus for controlling air quality
JPH07101234A (en) Oxygen-rich air generating device for automobile
JPH1121107A (en) Air quality activating device
KR100500403B1 (en) gas concentration method
CN114110867A (en) Air conditioning device
JPH1121106A (en) Air quality activating device
JPH11236203A (en) Air quality activation apparatus
JP2006008464A (en) Oxygen concentrator