JPH078727A - Collection material for exhaustion of diesel engine and production thereof - Google Patents

Collection material for exhaustion of diesel engine and production thereof

Info

Publication number
JPH078727A
JPH078727A JP5150828A JP15082893A JPH078727A JP H078727 A JPH078727 A JP H078727A JP 5150828 A JP5150828 A JP 5150828A JP 15082893 A JP15082893 A JP 15082893A JP H078727 A JPH078727 A JP H078727A
Authority
JP
Japan
Prior art keywords
conductive
skeleton
diesel engine
porous structure
fine pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5150828A
Other languages
Japanese (ja)
Inventor
Toichi Takagi
東一 高城
Kazuto Kushihashi
和人 串橋
Tetsuya Wada
徹也 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP5150828A priority Critical patent/JPH078727A/en
Publication of JPH078727A publication Critical patent/JPH078727A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)

Abstract

PURPOSE:To provide a fine particle collection material for the exhaustion of a diesel engine low in pressure loss and high in collection efficiency. CONSTITUTION:A collection material for the exhaustion of a diesel engine is constituted of a three-dimensional porous structure composed of a hollow skeleton having fine pores and produced by making the parts forming the fine pores 2 of the surface of the skeleton 1 of the three-dimensional porous structure non-conductive and subsequently applying electroplating to the non-conductive parts.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は微細孔のある中空骨格か
らなる新規な三次元多孔質構造のディーゼルエンジン排
気用捕集材及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel diesel engine exhaust trapping material having a three-dimensional porous structure having a hollow skeleton with fine pores and a method for producing the same.

【0002】[0002]

【従来技術】自動車の排気ガスは大気汚染の大きな原因
の一つで、排気ガスに含まれる有害成分を除去する技術
は極めて重要である。特にディーゼルエンジン車におい
ては、主にNOxとカーボンを主体とするすす状微粒子
(パーティキュレート)の除去が重要な課題である。こ
れらの有害成分を除去するために、過給を行なったり燃
料噴射系の改善や燃焼室形状の改善を行なったり、エン
ジン側の努力も行なわれているが、抜本的な決め手がな
く、後処理による除去が不可欠である。
2. Description of the Related Art Exhaust gas from an automobile is one of the major causes of air pollution, and a technique for removing harmful components contained in the exhaust gas is extremely important. Particularly in diesel engine vehicles, the removal of soot-like fine particles (particulates) mainly composed of NOx and carbon is an important issue. In order to remove these harmful components, supercharging, improvement of the fuel injection system and improvement of the shape of the combustion chamber have been made, and efforts have been made on the engine side, but there is no definitive decisive factor and the aftertreatment Removal by is essential.

【0003】排気ガス有害成分中、微粒子は固体カーボ
ンと有機溶媒に溶解する可溶性有機物からなり、フィル
タートラップによって捕集除去する方法が最も実用的で
あると考えられている。このフィルタートラップの捕集
材としては、使用される条件から次のような性能を満足
する必要がある。第1には、必要とされる排気ガスの清
浄度を満足させ得るだけの微粒子に対する捕集効率をも
っていることが必要である。第2には、エンジン排気は
このトラップを通して排出されるわけだから、エンジン
に過度な背圧をかけないためには、排気ガス流動時の通
気圧力損失が小さい必要がある。初期圧力損失が小さい
ことはもちろん、微粒子がトラップされても圧力損失が
上がりにくいことが要求される。第3には、微粒子があ
る程度以上捕集堆積されると排気ガス通過時の圧力損失
が大きくなり、エンジンに背圧がかかるようになるため
トラップされた微粒子を除去して再生して捕集能を回復
してやる必要がある。この再生処理の方法としては電熱
またはバーナー加熱によって微粒子を燃焼除去する方法
が最も有力な方法だと考えられている。したがって、捕
集材はこの再生処理に耐える必要がある。
Among exhaust gas harmful components, fine particles consist of solid carbon and a soluble organic substance dissolved in an organic solvent, and it is considered that the method of collecting and removing them by a filter trap is the most practical. It is necessary for the trapping material of this filter trap to satisfy the following performances under the conditions of use. First, it is necessary to have a collection efficiency for fine particles that can satisfy the required cleanliness of exhaust gas. Secondly, the engine exhaust is exhausted through this trap, so that the ventilation pressure loss during exhaust gas flow must be small in order to prevent excessive back pressure on the engine. It is required that the initial pressure loss is small and that the pressure loss is hard to increase even if fine particles are trapped. Third, if particulates are collected and accumulated to a certain extent or more, the pressure loss when passing through the exhaust gas becomes large, and back pressure is applied to the engine, so trapped particulates are removed and regenerated to collect. Need to recover. As the method of this regeneration treatment, it is considered that the method of burning and removing fine particles by electric heating or burner heating is the most effective method. Therefore, the trapping material must withstand this recycling process.

【0004】現在、捕集材としては排気ガスに対する耐
食性、耐熱性、捕集材性能及び再生に対する耐久性の面
からコージエライトセラミックスのハニカム状多孔体が
最も実用化に近い材料と言われている。しかしながら、
コージエライトセラミックスを捕集材として用いた場
合、再生時には微粒子の燃焼によって捕集材に局所的な
温度分布が生じやすく、熱応力によって亀裂を生じるの
を防ぐためには、再生条件のコントロールが極めて難し
いという問題点がある。これらの問題点を解決するため
に耐熱合金からなる三次元網状構造多孔体を捕集材とし
て用いることが提案されている(特開平4−86313
号公報)。
At present, as the trapping material, the honeycomb porous body of cordierite ceramics is said to be the most practical material from the viewpoints of corrosion resistance against exhaust gas, heat resistance, trapping material performance and durability against regeneration. There is. However,
When cordierite ceramics is used as the trapping material, local temperature distribution tends to occur in the trapping material due to combustion of fine particles during regeneration, and in order to prevent cracking due to thermal stress, control of regeneration conditions is extremely important. There is a problem that it is difficult. In order to solve these problems, it has been proposed to use a three-dimensional network structure porous body made of a heat-resistant alloy as a collector (Japanese Patent Laid-Open No. 4-86313).
Issue).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この耐
熱合金からなる三次元網状構造多孔体の性能をさらに向
上することが望まれている。本発明は多孔体の中空骨格
に微細孔を形成した新規な微構造を付与することによ
り、これらの問題点を解決することができることを見い
出し完成したものである。
However, it is desired to further improve the performance of the three-dimensional network structure porous body made of this heat resistant alloy. The present invention has been completed by finding that these problems can be solved by imparting a novel microstructure in which fine pores are formed to the hollow skeleton of a porous body.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明は、微
細孔を有する中空骨格からなる三次元多孔質構造体を用
いることを特徴とするディーゼルエンジン排気用捕集材
であり、また、基体多孔質構造体の骨格表面の微細孔を
形成する部分を非導電性としたのち、電気メッキするこ
とを特徴とするディーゼルエンジン排気用捕集材の製造
方法である。さらに、三次元多孔質構造体が耐熱合金で
あることを特徴とするディーゼルエンジン排気用捕集材
である。
That is, the present invention is a diesel engine exhaust trapping material characterized by using a three-dimensional porous structure comprising a hollow skeleton having fine pores, and a porous base material. The method for producing a diesel engine exhaust trapping material is characterized in that a portion of the skeleton surface of the porous structure that forms fine pores is made non-conductive and then electroplated. Furthermore, the three-dimensional porous structure is a heat-resistant alloy, which is a collector for a diesel engine exhaust.

【0007】以下、本発明のディーゼルエンジン排気用
捕集材について説明する。図1は、本発明のディーゼル
エンジン排気用捕集材を構成する三次元多孔質構造体の
中空骨格同士が交差した部分を模式的に表した図であ
る。中空骨格1に微細孔2を有しており、骨格の内部に
は連続した中空部分3が存在し、これは微細孔2を介し
て外部と連通している。
The trapping material for diesel engine exhaust of the present invention will be described below. FIG. 1 is a diagram schematically showing a portion where the hollow skeletons of a three-dimensional porous structure constituting the trapping material for exhaust of a diesel engine of the present invention intersect. The hollow skeleton 1 has fine pores 2, and a continuous hollow portion 3 exists inside the skeleton, which communicates with the outside through the fine pores 2.

【0008】図2は、本発明のディーゼルエンジン排気
用捕集材が三次元網状構造である場合の外観を示すもの
である。微細孔2のある中空骨格1で囲まれた間隙部分
5が存在する。
FIG. 2 shows the appearance of the diesel engine exhaust gas collecting material of the present invention having a three-dimensional mesh structure. There is a gap portion 5 surrounded by a hollow skeleton 1 having fine pores 2.

【0009】本発明のディーゼルエンジン排気用捕集材
の中空骨格をなす材質としては耐熱合金が好ましい。特
にニッケル−クロム合金、ニッケル−クロム−鉄合金、
鉄−クロムーアルミニウム合金或いはこれらの合金にア
ルミニウム、イットリウム、セリウムのような稀土類元
素を微量添加した合金が好ましい。さらにこれらの合金
にゾルゲル法などにより耐熱性のセラミックス層を被覆
したものも好ましい。これらの材質は耐熱性、高温耐腐
食性に優れている。
A heat-resistant alloy is preferred as the material forming the hollow skeleton of the diesel engine exhaust gas collecting material of the present invention. Especially nickel-chromium alloy, nickel-chromium-iron alloy,
An iron-chromium-aluminum alloy or an alloy obtained by adding a trace amount of a rare earth element such as aluminum, yttrium or cerium to these alloys is preferable. Further, it is also preferable to coat these alloys with a heat-resistant ceramic layer by a sol-gel method or the like. These materials have excellent heat resistance and high temperature corrosion resistance.

【0010】三次元多孔質構造体の骨格に囲まれた間隙
の大きさは、小さいほど捕集効率が増大するが圧力損失
も増大し、大きいほど圧力損失は低減するが捕集効率が
低下する。したがって、骨格に囲まれた間隙の大きさ
は、捕集効率の増大と圧力損失の低減のバランスから適
宜選択されるが、0.1〜0.5mm程度の範囲が好ま
しい。
The smaller the size of the gap surrounded by the skeleton of the three-dimensional porous structure, the greater the collection efficiency but the pressure loss, and the larger the size, the smaller the pressure loss but the collection efficiency. . Therefore, the size of the gap surrounded by the skeleton is appropriately selected from the balance of increased collection efficiency and reduced pressure loss, but a range of about 0.1 to 0.5 mm is preferable.

【0011】骨格の微細孔の大きさは、捕集効率の向上
から数μm〜数十μmが好ましいが、骨格の太さも考慮
して選択される。微細孔が骨格の太さに近い大きさの場
合には、強度の低下を生ずる場合があり好ましくない。
また、微細孔の形状は、色々な形が可能であるが強度の
点から円形や楕円形等の丸みをもった形状が好ましい。
The size of the fine pores of the skeleton is preferably several μm to several tens of μm from the viewpoint of improving the collection efficiency, but the size of the skeleton is also taken into consideration. When the size of the fine pores is close to the thickness of the skeleton, the strength may decrease, which is not preferable.
The shape of the micropores can be various shapes, but from the viewpoint of strength, a round shape such as a circle or an ellipse is preferable.

【0012】本発明のディーゼルエンジン排気用捕集材
を製造する方法としては、基体多孔質構造体の骨格表面
の微細孔を形成する部分を非導電性としたのち、電気メ
ッキする方法が適用される。用途によっては電気メッキ
後さらに基体多孔質構造体を除去することも適用され
る。以下、本発明の三次元多孔質構造体のうち三次元網
状構造或いは布帛状構造を例にとって説明するが、これ
らは本発明のディーゼルエンジン排気用捕集材を製造す
る一例であって、これによって制限されるものではな
い。
As a method for producing the diesel engine exhaust gas trapping material of the present invention, a method of applying electroplating after making the portions of the skeleton surface of the substrate porous structure forming the fine pores non-conductive is applied. It Depending on the application, it is also applicable to further remove the substrate porous structure after electroplating. Hereinafter, the three-dimensional porous structure of the present invention will be described by taking a three-dimensional network structure or a cloth-like structure as an example. However, these are one example of producing the diesel engine exhaust gas trapping material of the present invention. It is not limited.

【0013】本発明で用いる三次元網状構造の基体多孔
質構造体としては、合成樹脂発泡体が好適に用いられ
る。その具体例としては、ポリウレタンフォーム、ポリ
スチレンフォーム、エポキシフォーム、ポリ塩化ビニル
フォーム、フェノール樹脂フォーム、シリコンフォー
ム、ポリアクリルフォーム等の三次元連通気孔を有する
合成樹脂発泡体が好ましい。このうちウレタンフォーム
が好ましく特にセル膜のない軟質ポリウレタンフォーム
が好ましい。セル膜のない軟質ポリウレタンフォームの
製法としては、発泡時のコントロールによりセル膜をな
くしたもの、或いはアルカリ処理、熱処理、水圧処理等
によりセル膜を除去する方法があるが、特にアルカリ処
理、熱処理による方法がセル膜除去の完全さの点で好ま
しい。また、軟質ウレタンフォームの気泡の大きさはデ
ィーゼルエンジン排気用捕集材の使用目的によって異な
り特に限定されない。
A synthetic resin foam is preferably used as the three-dimensional network-structured substrate porous structure used in the present invention. Specific examples thereof include synthetic resin foams having three-dimensional continuous ventilation holes such as polyurethane foam, polystyrene foam, epoxy foam, polyvinyl chloride foam, phenol resin foam, silicone foam, and polyacrylic foam. Of these, urethane foam is preferable, and particularly flexible polyurethane foam having no cell membrane is preferable. As a method for producing a flexible polyurethane foam having no cell membrane, there is a method of eliminating the cell membrane by controlling foaming, or a method of removing the cell membrane by alkali treatment, heat treatment, hydraulic treatment, etc. The method is preferable in terms of completeness of cell film removal. The size of the bubbles of the flexible urethane foam varies depending on the purpose of use of the diesel engine exhaust trapping material and is not particularly limited.

【0014】本発明に用いる基体多孔質構造体が布帛状
構造の場合について説明する。布帛とは、不織布、織物
または編物の形状に大別される。不織布は、繊維集積
体、フェルト、マット、ペーパーなどであり、織物は二
次元と三次元の織物、編物、シートなどの形状をした基
体を用いる。この布帛状構造の基体多孔質構造体を構成
する繊維としては、導電性或いは非導電性繊維が挙げら
れる。
The case where the substrate porous structure used in the present invention has a cloth-like structure will be described. The cloth is roughly classified into a non-woven fabric, a woven fabric and a knitted fabric. Nonwoven fabrics are fiber aggregates, felts, mats, papers, etc., and woven fabrics use substrates in the form of two-dimensional and three-dimensional woven fabrics, knits, sheets and the like. Examples of the fiber that constitutes the substrate porous structure having the cloth-like structure include conductive or non-conductive fiber.

【0015】導電性の繊維としては、導電性カーボン繊
維及びグラファイト繊維など電気メッキ後の除去が容易
な材質の繊維が好適に用いられる。カーボン繊維は導電
性の低いものから導電性の高いグラファイト化率の大き
なものまで使用することができるが導電性の高いものの
方が電気メッキ工程でメッキを均一に行ないやすく好ま
しい。
As the conductive fibers, fibers made of materials such as conductive carbon fibers and graphite fibers, which are easily removed after electroplating, are preferably used. Carbon fibers having a low conductivity to a high conductivity having a high graphitization rate can be used, but a carbon fiber having a high conductivity is preferable because plating can be uniformly performed in the electroplating process.

【0016】非導電性の繊維基体を構成する繊維として
は、例えば、ポリエチレン、ポリエチレンテレフタレー
ト、ポリプロピレン、ポリエステル、ポリアミド、ポリ
スチレン、ポリアクリロニトリル、ポリビニルアルコー
ル、セルロース、リグニン、ポリ塩化ビニリデン、ポリ
ブタジエン、ポリアセチレン、ナイロン、アクリル、ポ
リウレタン、エポキシ、フェノール樹脂、ポリ塩化ビニ
ル等からなる各種合成繊維、或いは各種天然繊維などの
有機繊維が電気メッキ後の除去が容易であり好適に用い
られる。
The fibers constituting the non-conductive fiber substrate are, for example, polyethylene, polyethylene terephthalate, polypropylene, polyester, polyamide, polystyrene, polyacrylonitrile, polyvinyl alcohol, cellulose, lignin, polyvinylidene chloride, polybutadiene, polyacetylene, nylon. Organic fibers such as various synthetic fibers made of acrylic resin, acrylic resin, polyurethane, epoxy resin, phenol resin, polyvinyl chloride, or various natural fibers are suitable for use because they are easy to remove after electroplating.

【0017】不織布の製造方法としては、一般的な製法
が適用され特に限定されないが、例えば、2〜10cm
の繊維長を紡織カードで開繊するか、繊維を空気流でラ
ンダムに集積する方法の乾式不織布製造方法、または1
cm以下の繊維を水中に分散後、網ですく方式の湿式不
織布製造方法、または溶融された樹脂を紡糸し直接ラン
ダムに支持体に吹き付ける方式のスパンボンド製造方法
などのいずれの製造方法によってもよい。本発明に用い
る繊維織物の製造方法は一般に二次元或いは三次元の織
物を製造する方法が適用可能で特に限定されない。
As a method for producing the non-woven fabric, a general production method is applied and is not particularly limited, but for example, 2 to 10 cm.
A method for producing a dry non-woven fabric, in which the fiber length of the fiber is opened with a textile card or the fibers are randomly collected by an air flow, or 1
Any method such as a method of manufacturing a wet non-woven fabric by meshing after dispersing fibers having a size of not more than cm and a spun bond manufacturing method of spinning a melted resin and directly spraying it directly onto a support may be used. . A method for producing a two-dimensional or three-dimensional woven fabric is generally applicable to the method for producing a fiber woven fabric used in the present invention and is not particularly limited.

【0018】これらの基体多孔質構造体の骨格表面の微
細孔を形成する部分を非導電性としたのち、電気メッキ
する。この際、基体が非導電性の場合は導電処理する際
に骨格表面の微細孔を形成する部分を非導電性とする操
作を行なう。さらに必要に応じて電気メッキ後基体を除
去する。導電性カーボンなどからなる導電性の基体多孔
質構造体を用いる場合について以下に説明する。この場
合には骨格表面に導電処理せずにそのままの微細孔を形
成する部分を非導電性とする方法を適用できる。もちろ
ん、導電性がある場合でも導電処理を行なってもよい。
The portions of the skeleton surface of these base porous structures which form fine pores are made non-conductive and then electroplated. At this time, when the substrate is non-conductive, an operation is performed to make the portion of the skeleton surface where the fine pores are formed non-conductive during the conductive treatment. Further, if necessary, the substrate is removed after electroplating. The case of using a conductive substrate porous structure made of conductive carbon or the like will be described below. In this case, it is possible to apply a method in which the portions where the fine pores are formed as they are without conducting treatment on the skeleton surface are made non-conductive. Of course, even if it has conductivity, it may be subjected to a conductive treatment.

【0019】骨格表面の微細孔を形成する部分に非導電
性部分を形成する方法は、特に限定されないが、非導電
性物質を微細孔を形成する部分に斑点状に付着する方法
が好適に適用できる。付着させる非導電性物質としては
電気メッキ処理後、分解除去しやすいものが好ましく、
合成樹脂などの有機物が好ましい。また、使用条件によ
っても異なるが金属不純物等を含まないものが好ましい
場合もある。また、非導電性部分の形態は形成したい微
細孔の形状とも関係するが、得られるディーゼルエンジ
ン排気用捕集材の強度の点を考慮すると球状など丸みを
もった形態が好ましい。したがって非導電性物質の形態
は粒子形態のものが好ましい。
The method of forming the non-conductive portion on the portion of the skeleton surface where the fine pores are formed is not particularly limited, but a method of applying a non-conductive substance to the portion where the fine pores are formed in spots is preferably applied. it can. The non-conductive substance to be attached is preferably one that can be easily decomposed and removed after the electroplating treatment,
Organic substances such as synthetic resins are preferred. In addition, it may be preferable that it does not contain metal impurities, although it varies depending on the use conditions. The shape of the non-conductive portion is also related to the shape of the fine pores to be formed, but in consideration of the strength of the obtained diesel engine exhaust gas trapping material, a rounded shape such as a spherical shape is preferable. Therefore, the non-conductive substance is preferably in the form of particles.

【0020】粒子形態の非導電性物質としては各種合成
樹脂ビーズ、各種ラテックス粒子、各種エマルジョン粒
子などが挙げられる。実際にはエマルジョン粒子などは
凝集して粒子形態から種々の形状をした膜状になって骨
格表面に斑点状に付着する場合もあり、粒子形態を保持
したままで球状に近い形で骨格表面に付着する場合以外
に膜状や半球状など種々の形状で骨格表面に付着する。
何れの場合も斑点状、すなわち非導電性部分が広範囲に
わたる連結部分を形成せずに非導電性部分を形成させる
ことが望ましい。また、非導電性粒子の形状及び大きさ
は、用途によって決まる微細孔の形状及び大きさによっ
て適宜選択される。
Examples of the non-conductive substance in the form of particles include various synthetic resin beads, various latex particles, and various emulsion particles. In practice, emulsion particles may aggregate from the particle form into a film of various shapes and attach to the skeleton surface in spots. In addition to the case of attachment, it attaches to the skeleton surface in various shapes such as a film and hemisphere.
In any case, it is desirable to form the non-conductive portion without forming the connecting portion in which the spot-like, that is, non-conductive portion extends over a wide range. Further, the shape and size of the non-conductive particles are appropriately selected according to the shape and size of the micropores determined by the application.

【0021】非導電性部分を形成する具体的方法として
は、前記した各種非導電性物質を含む液に基体多孔質構
造体を浸漬して骨格表面に付着させる方法がある。例え
ば合成樹脂ビーズの分散液に基体多孔質構造体を浸漬さ
せる方法である。この際、合成樹脂ビーズの分散液に骨
格表面への付着を助ける粘着剤成分や分散剤などの添加
物を適宜加えることが好ましい。非導電性物質の性質、
特に表面の性質と骨格表面の性質の相互関係によって骨
格表面への付着の状態が異なるので表面の改質などの手
法で非導電性物質或いは骨格の表面の性質を調整する必
要がある場合がある。
As a specific method of forming the non-conductive portion, there is a method of immersing the porous structure of the substrate in a liquid containing the above-mentioned various non-conductive substances and adhering it to the surface of the skeleton. For example, it is a method in which the base porous structure is dipped in a dispersion liquid of synthetic resin beads. At this time, it is preferable to appropriately add additives such as a pressure-sensitive adhesive component and a dispersant, which aid adhesion of the synthetic resin beads to the skeleton surface. Properties of non-conductive materials,
In particular, the state of adhesion to the skeleton surface differs depending on the mutual relationship between the surface property and the skeleton surface property, so it may be necessary to adjust the surface property of the non-conductive substance or skeleton by methods such as surface modification. .

【0022】分散液中の非導電性物質の種類及び量や添
加物の種類及び量を調整することにより、骨格表面に形
成する斑点状の非導電性部分の形状、大きさ及び骨格表
面に占める割合を適宜調整することができる。また、基
体多孔質構造体の形状が単純な場合には非導電性物質を
含む液を噴霧して液滴を骨格表面に付着させる方法など
も適用可能である。
By adjusting the kind and amount of the non-conductive substance and the kind and amount of the additive in the dispersion, the spot-like non-conductive portion formed on the surface of the skeleton occupies the shape, size and surface of the skeleton. The ratio can be adjusted appropriately. Further, when the shape of the base porous structure is simple, a method of spraying a liquid containing a non-conductive substance to attach the liquid droplets to the surface of the skeleton is also applicable.

【0023】次に有機物などの非導電性の基体多孔質構
造体を用いる場合について以下に説明する。この場合に
は、導電処理する際に骨格表面の微細孔を形成する部分
を非導電性とする必要がある。導電処理の方法の具体例
としては、カーボン、グラファイトや金属などの導電性
物質の粉末を分散して調製した導電性ペーストで皮膜を
形成する方法や無電解メッキや銀鏡反応などの金属塩溶
液の還元反応を利用した化学的方法などが挙げられる。
本発明ではこの導電処理する際に微細孔を形成する部分
を斑点状に非導電性部分を形成する。その手順としては
非導電性骨格表面に導電処理を行なったのち、斑点状に
非導電性物質を付着することにより非導電性部分を形成
する方法と導電処理と同時に非導電性部分を導入する方
法がある。
Next, the case of using a non-conductive substrate porous structure such as an organic substance will be described below. In this case, it is necessary to make the portion of the skeleton surface where the fine pores are formed in the conductive treatment non-conductive. Specific examples of the method of conductive treatment include a method of forming a film with a conductive paste prepared by dispersing powder of a conductive substance such as carbon, graphite or metal, or a metal salt solution such as electroless plating or silver mirror reaction. A chemical method utilizing a reduction reaction can be mentioned.
In the present invention, the non-conductive portion is formed in spots in the portion where the fine pores are formed during the conductive treatment. The procedure is to perform a conductive treatment on the surface of the non-conductive skeleton, and then form a non-conductive portion by depositing a non-conductive substance in spots and a method of introducing the non-conductive portion at the same time as the conductive treatment. There is.

【0024】具体的には、導電性ペースト中に非導電性
物質の粒子などを分散したものを用いて導電処理皮膜を
形成すると同時に非導電性物質を骨格表面に付着させて
非導電性部分を形成する方法などが挙げられる。この
際、非導電性物質の形状、大きさ及びペースト中の量を
用途に応じて適宜調整する。また、非導電性物質の表面
に導電性物質が被覆しないように表面改質或いは導電皮
膜の厚みよりも大きな非導電性物質を用いるなどの点に
留意する必要がある。
Specifically, a conductive treatment film is formed by using particles of a non-conductive substance dispersed in a conductive paste, and at the same time, the non-conductive substance is attached to the skeleton surface to remove the non-conductive portion. The forming method may be used. At this time, the shape, size, and amount of the non-conductive substance in the paste are appropriately adjusted according to the application. In addition, it is necessary to pay attention to the points such as surface modification so that the surface of the non-conductive substance is not covered with the conductive substance or a non-conductive substance having a thickness larger than the thickness of the conductive film is used.

【0025】電気メッキは通常の方法が適用される。電
気メッキにより形成する金属層の厚みは捕集材の使用条
件用途によって異なるが数μm〜数100μmである。
また、電気メッキする際にメッキ組成を順次変えること
などにより多種類の金属からなる多層構造を形成するこ
とも可能である。また、電気メッキ後に基体多孔質構造
体及び、または非導電性部分を除去する場合の方法とし
ては、熱分解、溶剤による溶解或いは溶融などの方法が
適用可能である。
A usual method is applied to electroplating. The thickness of the metal layer formed by electroplating is several μm to several hundred μm, although it varies depending on the usage conditions and use of the collecting material.
It is also possible to form a multi-layered structure composed of various kinds of metals by sequentially changing the plating composition during electroplating. Further, as a method for removing the base porous structure and / or the non-conductive portion after electroplating, a method such as thermal decomposition, dissolution with a solvent or melting can be applied.

【0026】[0026]

【作用】本発明の捕集材の骨格部分には微細孔が存在す
るので排気ガスが通り抜ける際に慣性力や重力により微
粒子が骨格に衝突、付着する過程が促進され捕集効率が
高いものと考えられる。
Since the skeletal portion of the trapping material of the present invention has fine pores, when exhaust gas passes through, the process of collision and adhesion of fine particles to the skeleton due to inertial force and gravity is promoted and the trapping efficiency is high. Conceivable.

【0027】[0027]

【実施例】以下、本発明の実施例について具体的に説明
する。 [実施例]三次元網状構造の基体多孔質構造体として、
骨格に囲まれた間隙の大きさ約0.3mmのセル膜のな
い軟質ポリウレタンフォームに無電解ニッケルメッキに
より骨格表面に導電処理を施した。これにポリスチレン
樹脂粒子(粒径4〜5μm)及び有機系添加剤を加えた
分散液に浸漬したのち乾燥した。これに順次、電気メッ
キによりニッケル−クロム−鉄系金属膜(組成ニッケル
42〜48%、クロム25〜31%、鉄24〜30%)
を形成し三次元網状構造の多孔質構造体を得た。得られ
た多孔質構造体を空気中で温度約600℃で熱処理し基
体樹脂部分を熱分解除去し捕集材を得た。得られた捕集
材を電子顕微鏡により観察したところ、骨格部分には4
〜5μm程度の微細孔が存在し、その微細孔の存在量は
骨格表面全体の約15%の面積であった。また、基体の
ポリウレタン樹脂が分解除去され中空骨格となり、骨格
部分の微細孔を通して中空骨格の外部と内部とが連通し
ていることが確認された。
EXAMPLES Examples of the present invention will be specifically described below. [Example] As a substrate porous structure having a three-dimensional network structure,
A conductive polyurethane treatment was applied to the surface of the skeleton by electroless nickel plating on a soft polyurethane foam without a cell film having a gap size of about 0.3 mm surrounded by the skeleton. This was immersed in a dispersion liquid containing polystyrene resin particles (particle diameter 4 to 5 μm) and an organic additive and then dried. This is followed by electroplating to form a nickel-chromium-iron-based metal film (composition nickel 42-48%, chromium 25-31%, iron 24-30%).
To form a porous structure having a three-dimensional network structure. The obtained porous structure was heat-treated in air at a temperature of about 600 ° C. to thermally decompose and remove the base resin portion to obtain a collecting material. When the obtained trapping material was observed with an electron microscope, it was found that 4
There were micropores of about 5 μm, and the amount of the micropores was about 15% of the entire skeleton surface. It was also confirmed that the polyurethane resin of the substrate was decomposed and removed to form a hollow skeleton, and the outside and inside of the hollow skeleton communicated with each other through the fine pores in the skeleton.

【0028】この捕集材の性能を評価するためにディー
ゼルエンジンの排気ガスを用いて微粒子低減効果を測定
した結果、圧力損失0.01kg/cm2 で捕集効率95.
4%であった。また、再生時の耐久性について評価する
ため微粒子を捕集した捕集材を空気中、700℃で熱処
理したが、溶融、亀裂や極度の酸化腐食は観察されなか
った。
In order to evaluate the performance of this trapping material, the particulate reduction effect was measured by using the exhaust gas of a diesel engine. As a result, the trapping efficiency was 95.000 at a pressure loss of 0.01 kg / cm 2.
It was 4%. Moreover, in order to evaluate the durability at the time of regeneration, the trapping material that trapped the fine particles was heat-treated in air at 700 ° C., but no melting, cracking, or excessive oxidative corrosion was observed.

【0029】[比較例]実施例においてポリエチレン樹
脂粒子の分散液による処理を行なわなかった以外、実施
例同様に行なった。骨格に微細孔のない三次元網状構造
の多孔質構造体を得た。これを実施例と同様の排気ガス
捕集試験を実施したところ、圧力損失は0.01kg/cm
2 と実施例と同様であったが捕集効率は89.3%と実
施例に比較して低いことが判明した。また、再生時の耐
久性については実施例と同様の好結果を得た。
[Comparative Example] The same procedure as in Example was carried out except that the treatment with the dispersion liquid of polyethylene resin particles was not carried out. A porous structure having a three-dimensional network structure without fine pores in the skeleton was obtained. When this was subjected to the same exhaust gas collection test as in the example, the pressure loss was 0.01 kg / cm.
2 was similar to that of the example, but the collection efficiency was 89.3%, which was lower than that of the example. Also, regarding the durability during reproduction, the same favorable results as in the example were obtained.

【0030】[0030]

【発明の効果】本発明のディーゼルエンジン排気用捕集
材は、中空骨格に微細孔を有する三次元多孔質構造体で
あるので、捕集効率が高く圧力損失も小さいという効果
を発揮する。また、本発明の方法によれば生産性高く本
発明のディーゼルエンジン排気用捕集材を製造すること
ができる。
EFFECTS OF THE INVENTION Since the diesel engine exhaust gas collecting material of the present invention is a three-dimensional porous structure having fine pores in the hollow skeleton, it exhibits the effect of high collection efficiency and small pressure loss. Further, according to the method of the present invention, it is possible to produce the diesel engine exhaust gas trapping material of the present invention with high productivity.

【0031】[0031]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のディーゼルエンジン排気用捕集材の中
空骨格同士が交差した部分の断面斜視図である。
FIG. 1 is a cross-sectional perspective view of a portion where hollow skeletons of a diesel engine exhaust collecting material of the present invention intersect with each other.

【図2】本発明のディーゼルエンジン排気用捕集材が三
次元網状構造である場合の代表的構造を示す部分拡大図
である。
FIG. 2 is a partially enlarged view showing a typical structure of the diesel engine exhaust gas collecting material of the present invention having a three-dimensional mesh structure.

【符号の説明】[Explanation of symbols]

1 骨格 2 微細孔 3 中空部分 4 交差部分 5 骨格に囲まれた間隙部分 1 Skeleton 2 Micropores 3 Hollow part 4 Crossing part 5 Gap part surrounded by skeleton

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 微細孔を有する中空骨格からなる三次元
多孔質構造体を用いることを特徴とするディーゼルエン
ジン排気用捕集材。
1. A collection material for diesel engine exhaust, comprising a three-dimensional porous structure comprising a hollow skeleton having fine pores.
【請求項2】 基体多孔質構造体の骨格表面の微細孔を
形成する部分を非導電性としたのち、電気メッキするこ
とを特徴とする請求項1記載のディーゼルエンジン排気
用捕集材の製造方法。
2. The method for producing a diesel engine exhaust gas collecting material according to claim 1, wherein the portion of the skeleton surface of the base porous structure that forms fine pores is made non-conductive and then electroplated. Method.
【請求項3】 三次元多孔質構造体が耐熱合金であるこ
とを特徴とする請求項1記載のディーゼルエンジン排気
用捕集材。
3. The diesel engine exhaust gas collecting material according to claim 1, wherein the three-dimensional porous structure is a heat-resistant alloy.
JP5150828A 1993-06-22 1993-06-22 Collection material for exhaustion of diesel engine and production thereof Pending JPH078727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5150828A JPH078727A (en) 1993-06-22 1993-06-22 Collection material for exhaustion of diesel engine and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5150828A JPH078727A (en) 1993-06-22 1993-06-22 Collection material for exhaustion of diesel engine and production thereof

Publications (1)

Publication Number Publication Date
JPH078727A true JPH078727A (en) 1995-01-13

Family

ID=15505289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5150828A Pending JPH078727A (en) 1993-06-22 1993-06-22 Collection material for exhaustion of diesel engine and production thereof

Country Status (1)

Country Link
JP (1) JPH078727A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293571C (en) * 2000-09-29 2007-01-03 东芝株式会社 Nuclear power electricity generating device
US7980068B2 (en) * 2005-12-29 2011-07-19 Tenneco Automotive Operating Company Inc. Woven metal fiber particulate filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293571C (en) * 2000-09-29 2007-01-03 东芝株式会社 Nuclear power electricity generating device
US7980068B2 (en) * 2005-12-29 2011-07-19 Tenneco Automotive Operating Company Inc. Woven metal fiber particulate filter

Similar Documents

Publication Publication Date Title
KR100277616B1 (en) Exhaust gas purification filter
DE602005002388T2 (en) Apparatus and method for purifying exhaust gas
KR100193356B1 (en) Method of producing a porous body
US7138168B2 (en) Honeycomb structure body and method for manufacturing the same
US4774217A (en) Catalytic structure for cleaning exhaust gas
JPS58101721A (en) Filter
CA2272314A1 (en) Gas filter, method for producing a gas filter and use of said gas filter
JPH02280843A (en) Manufacture of carrier for filter or catalyst
JPH06257422A (en) Particulate trap for diesel engine
KR20010072950A (en) Porous structures and methods and apparatus for forming porous structures
CA2039509C (en) Heat-resistant metal monolith and manufacturing method therefor
JPH078727A (en) Collection material for exhaustion of diesel engine and production thereof
JPH06306672A (en) Composite material-reinforcing member and its production and composite material
US5558760A (en) Filter/heating body produced by a method of spraying a shape
JP2841803B2 (en) Particle trap media for diesel engine exhaust
DE10343438B4 (en) Process for the production of ceramic particle filters and ceramic particle filters
JP2002320807A (en) Honeycomb filter and manufacturing method therefor
JPH06264286A (en) Metallic fiber structure and its production
JP3218845B2 (en) Method for manufacturing three-dimensional copper network structure
NL9102117A (en) Porous metal-containing laminate and method for its production
JP2005030280A (en) Filter
JPH06285377A (en) Metallic catalyst carrier and production thereof
CA2028283A1 (en) Filter material for filtering out soot particles
JPH06264287A (en) Metallic fiber and its production
CN211665430U (en) Active carbon fiber felt for hydrogen storage