JPH0786874B2 - Open channel water level / flow rate prediction method - Google Patents

Open channel water level / flow rate prediction method

Info

Publication number
JPH0786874B2
JPH0786874B2 JP13582483A JP13582483A JPH0786874B2 JP H0786874 B2 JPH0786874 B2 JP H0786874B2 JP 13582483 A JP13582483 A JP 13582483A JP 13582483 A JP13582483 A JP 13582483A JP H0786874 B2 JPH0786874 B2 JP H0786874B2
Authority
JP
Japan
Prior art keywords
point
calculation
water level
difference
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13582483A
Other languages
Japanese (ja)
Other versions
JPS6027983A (en
Inventor
真 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13582483A priority Critical patent/JPH0786874B2/en
Publication of JPS6027983A publication Critical patent/JPS6027983A/en
Publication of JPH0786874B2 publication Critical patent/JPH0786874B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/13Differential equations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Operations Research (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Complex Calculations (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、開水路(自由水面を有する水路)における流
れに沿つた各場所の各時刻における水位と流量とを予測
する、開水路水位・流量予測方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Use of the Invention] The present invention relates to an open channel water level / flow rate for predicting the water level and the flow rate at each time along each location along a flow in an open channel (a channel having a free water surface). Regarding prediction method.

〔発明の背景〕[Background of the Invention]

開水路における水理の記述式は、流量と水位とを状態量
とすると、一次元流の場合、次式となる。(本項につい
ては、たとえば、水理公式集(土木学会編)参照。) ここに、 Q:流量 (3) H:水位 (4) A:流水断面積 (5) B:水面幅 (6) i:水路底勾配 (7) q:横流入量 (8) g:重力の加速度 (9) n:粗度係数 (12) x:流下距離(流れに沿つた場所) (13) t:時間 (14) である。
In the case of one-dimensional flow, the descriptive expression of hydraulics in an open channel is as follows when the flow rate and water level are state quantities. (For more information on this item, see, for example, the Hydraulics Official Collection (JSCE).) Where: Q: flow rate (3) H: water level (4) A: cross section of flowing water (5) B: water surface width (6) i: channel bottom slope (7) q: lateral inflow (8) g: gravity Acceleration (9) n: Roughness coefficient (12) x: Downflow distance (place along the flow) (13) t: Time (14).

本方程式は、2従属変数(Q,H)・2独立変数(x,t)の
双曲型非線形連立1階偏微分方程式であるが、偏微分方
程式に関する特性曲線理論によれば、次の連立常微分方
程式に等価変換することができる。
This equation is a hyperbolic type nonlinear simultaneous first-order partial differential equation with two dependent variables (Q, H) and two independent variables (x, t). According to the characteristic curve theory of partial differential equations, the following simultaneous equations are It can be equivalently converted into an ordinary differential equation.

ここに、 である。 here, Is.

式(15),(17)を特性曲線、式(16),(18)を特性
方程式と呼ぶ。
Equations (15) and (17) are called characteristic curves, and equations (16) and (18) are called characteristic equations.

従来、このそれぞれの特性曲線上で特性方程式をデイジ
タル計算機で解くにあたり、距離xおよび時間tをいく
つかの固定された大きさを有する格子に分割し、方程式
をその格子間隔での差分方程式に変換した上で解く固定
差分格子型特性曲線法が実用に供されていた。
Conventionally, when solving a characteristic equation on each of these characteristic curves with a digital computer, the distance x and the time t are divided into several grids having a fixed size, and the equations are converted into difference equations at the grid intervals. The fixed-difference lattice type characteristic curve method, which is solved by the above method, has been put to practical use.

具体的には、第1図,第2図に示すように、距離方向を
いくつかのそれぞれ任意の間隔の格子(格子間隔が格子
jを中心として上流側Δx+j,下流側Δx-j;j=1,2,…
…;Δx+j=Δx-j-1;Δx-j=Δx+j+1)に分割し、時間
方向は等間隔の格子(格子間隔Δt)に分割し、距離格
子と時間格子の交点である格子点の状態量(流量および
水位)を最終的に求める。距離格子に狭まれた位置にあ
る点(図中RおよびS点)の物理量の値は両端格子点の
値を内挿することにより作成する。格子間隔Δxjおよび
Δtは、計算の安定性の条件、 ここに、 が全ての距離格子において、全時間にわたつて満足され
るように、事前に決める、ないしは、計算結果を見た上
で決める方法がとられてきた。計算ステツプのフローチ
ヤートを第3図に示す。
Specifically, FIG. 1, as shown in FIG. 2, the upstream side [Delta] x + j lattice (lattice spacing of the distance direction several respective arbitrary intervals around the grid j, downstream [Delta] x - j; j = 1,2, ...
...; Δx + j = Δx - j -1 ; Δx - j = Δx + j +1 ), and the time direction is divided into evenly spaced grids (grid spacing Δt) at the intersection of the distance grid and the time grid. The state quantity (flow rate and water level) of a certain grid point is finally obtained. The values of the physical quantities of the points (R and S points in the figure) located at the positions narrowed by the distance grid are created by interpolating the values of the grid points at both ends. The lattice spacings Δxj and Δt are the conditions for stability of calculation, here, For all distance grids, a method has been taken so that it is satisfied in advance over the whole time, or based on the calculation results. The flow chart of the calculation step is shown in FIG.

ステツプ301:状態量(流量・水位)の初期条件および境
界条件を設定する。
Step 301: Set initial condition and boundary condition of state quantity (flow rate / water level).

ステツプ302:空間(距離)差分格子間隔Δx±j,j=1,2,
……を設定する。
Step 302: Spatial (distance) difference grid spacing Δx ± j, j = 1,2,
... is set.

ステツプ303:時間差分格子間隔Δtを設定する。Step 303: Set the time difference grid interval Δt.

ステツプ304:格子j上に計算点Pを設定する。Step 304: Set a calculation point P on the grid j.

ステツプ305:格子j上の計算点Pにおける状態量を算出
する。
Step 305: Calculate the state quantity at the calculation point P on the grid j.

ステツプ3051:点Pにおける状態量QP,HPおよび現象伝播
速度 の第1近似値として同じ格子j上の1時間差分格子間隔
だけ前の点Qにおける状態量QQ,HQおよび現像伝播速度 を設定する。これらの値は計算開始時点では状態量の初
期条件から式(15),(17),(19),(20)により作
成する。
Step 3051: State quantities Q P , H P and phenomenon propagation velocity at point P As the first approximation value of the state quantity Q Q , H Q and the development propagation velocity at the point Q which is one hour difference on the same grid j To set. At the start of calculation, these values are created from the initial conditions of the state quantity using equations (15), (17), (19), and (20).

ステツプ3052:点P2を通る特性曲線 が1時間差分格子間隔前の時間差分格子と交わる点を+
−符号に応じてそれぞれR点およびS点とする。
Step 3052: Characteristic curve passing through point P2 Is a point that intersects the time difference grid one hour before the time difference grid interval +
-The R point and the S point are set according to the sign.

ステツプ3053:点Rおよび点Sにおける状態量を同じ時
間差分格子上の(j−1)点,点Q,(j+1)点の状態
量から内挿により作成する。
Step 3053: The state quantities at the points R and S are created by interpolation from the state quantities at the (j-1) point, the point Q, and the (j + 1) point on the same time difference grid.

ステツプ3054:点Pにおける状態量を(15)〜(25)式
を差分化した式を用いて算出する。すなわち、 を用いる。
Step 3054: The state quantity at the point P is calculated by using the equations (15) to (25) which are differentiated. That is, To use.

これらを整理すると、点Pにおける状態量を次式に従つ
て求める。
If these are arranged, the state quantity at the point P is obtained according to the following equation.

(i)点Pが境界以外の点(内点)の場合 (ii)点Pが上流端境界上の点の場合 (イ)境界上で水位が与えられている場合 (ロ)境界上で流量が与えられている場合 HP=HS+βS−ξS(QP−QS) (44) (iii)点Pが下流端境界上の点の場合 (イ)境界上で水位が与えられている場合、 (ロ)境界上で流量が与えられている場合 HP=HR+αR−ηR(QP−QR) (46) ステツプ306:上記ステツプ305で求めた点Pの状態量の
値とそれらの第1近似値との差が許容範囲内に入つたか
どうかを判別する。
(I) When the point P is a point (interior point) other than the boundary (Ii) When point P is on the upstream boundary (a) When the water level is given on the boundary (B) when the flow rate is given on the boundary H P = H S + β S -ξ S (Q P -Q S) (44) (iii) optionally point P is a point on the downstream end boundaries (i) If the water level is given on the boundary, (B) when the flow rate is given on the boundary H P = H R + α R -η R (Q P -Q R) (46) step 306: the value of the state quantity of the point P obtained in the above step 305 It is determined whether or not the difference between these first approximate values is within the allowable range.

ステツプ307:許容範囲内に入らない場合は、上記ステツ
プ305で求めた点Pの状態量およびその状態量から求め
た現象伝播速度を点Pにおけるそれらの第2近似値と
し、上記ステツプ305において第1近似値を第2近似値
でおきかえてステツプ305,ステツプ306を繰り返す。以
後、近似値をより高次の近似値でおきかえて同様に繰り
返す。
Step 307: If the value does not fall within the allowable range, the state quantity of the point P obtained in the above step 305 and the phenomenon propagation velocity obtained from the state quantity are set to the second approximate value of those at the point P, and in the above step 305, The first approximation value is replaced with the second approximation value and steps 305 and 306 are repeated. After that, the approximation value is replaced with a higher order approximation value and the same procedure is repeated.

ステツプ308:許容範囲に入る場合には、その時の状態量
を点Pにおける値とし、次の計算点に関し上記ステツプ
305以降のステツプを行なう。計算点の更新は、まず時
間格子を固定しその格子上の空間格子の並び順に更新
し、それが終つたら1時間間隔先の時間格子上の空間格
子の並び順に更新する、というように続けていく。
Step 308: When it is within the allowable range, the state quantity at that time is set to the value at the point P, and the above-mentioned step is performed for the next calculation point.
Steps after 305 are performed. To update the calculation points, first fix the time grid, update the order of spatial grids on that grid, and then update the order of spatial grids on the time grid one hour ahead. To go.

ステツプ309:全格子点を計算した後、結果を出力し終了
する。
Step 309: After calculating all grid points, output the result and finish.

以上の計算の流れにおいて、点Pの現象伝播速度の近似
値として+方向は点Pと点R,一方向は点Pと点Sとの平
均値をとつたり、許容範囲に入るかどうかの判定に現象
伝播速度をも使うなど、いくつかの変形をとり入れた方
法もあるが、基本的には、空間差分間隔および時間差分
間隔を事前に固定した上でその固定された各格子点の状
態量および現象伝播速度で規定される特性曲線を繰り返
し収束計算により決定するという点で共通している。
In the above calculation flow, as an approximate value of the phenomenon propagation velocity at the point P, the average value of the points P and R in the + direction and the average value of the points P and S in the one direction are taken, and it is determined whether or not it is within the allowable range. There is also a method that incorporates some modifications, such as using the phenomenon propagation velocity for judgment, but basically, the spatial difference interval and the time difference interval are fixed in advance, and then the state of each fixed grid point is fixed. It is common in that the characteristic curve defined by the quantity and the phenomenon propagation velocity is determined by iterative convergence calculation.

以上に述べた従来の固定差分格子型特性曲線法には下記
の次点があつた。
The conventional fixed difference grid type characteristic curve method described above has the following points.

(1)離散形式で記述された差分方程式(29)〜(46)
をもとの連続形式で記述された常微分方程式(15)〜
(25)に精度高く一致させるためには、空間差分格子間
隔Δx±jおよび時間差分格子間隔Δtを十分小さくする
必要があり、格子点数が増え、それに伴なつて計算量が
膨大になり計算時間がかかる。
(1) Difference equation described in discrete form (29) to (46)
Ordinary differential equations described in continuous form based on (15) ~
In order to match (25) with high accuracy, it is necessary to make the spatial difference grid interval Δx ± j and the time difference grid interval Δt sufficiently small, and the number of grid points increases, which in turn increases the amount of calculation and increases the calculation time. Takes.

差分方程式の計算の安定性の条件は式(26),(27)で
あり、差分方程式としての解の厳密性は式(26),(2
7)の等号条件が満足された時であるので、Δx±jおよ
びΔtはこれらの条件さえ満足すれば良く、十分小さく
する必要性はないように思われるが、もとの常微分方程
式には次の条件式、 Δx±j→0 (47) Δt→0 (48) も同時に満足されないと一致しないため、差分方程式と
しての厳密性は保てても常微分方程式としての厳密性は
必ずしも保証されないことによる。
The conditions for the stability of the calculation of the difference equation are Equations (26) and (27), and the strictness of the solution as the difference equation is Equations (26) and (2
Since it is the time when the equal sign condition of 7) is satisfied, Δx ± j and Δt only need to satisfy these conditions, and it seems that there is no need to make them sufficiently small. Does not match unless the following conditional expression, Δx ± j → 0 (47) Δt → 0 (48), is satisfied at the same time, so the strictness as an ordinary differential equation is always guaranteed even though the strictness as a difference equation can be maintained. It depends on what is not done.

(2)差分方程式の計算の安定性の条件は式(26),
(27)が全ての空間格子において、全時間にわたつて満
足されることであるが、両式右辺の は解こうとする問題毎に異なり、また、同じ問題でも時
間的に変化するため、全格子点においてどんな問題に対
してもこれらの条件が満足されるようにΔx±j,Δtを
事前に決めるのは難しく、問題毎に何回か計算を行なつ
て決めるという試行錯誤の手間がかかる。更に問題によ
つてはこのようにしても全時間にわたつて安定となるΔ
x±j,Δtが決まらない可能性もある。
(2) The condition for the stability of the calculation of the difference equation is
(27) is to be satisfied for all time in all spatial grids. Is different for each problem to be solved, and even the same problem changes with time, so Δx ± j, Δt are determined in advance so that these conditions are satisfied for all problems at all grid points. Is difficult, and it takes a lot of trial and error to make a calculation for each problem several times to decide. Further, depending on the problem, even if this method is used, it will be stable over the entire time Δ
x ± j, Δt may not be determined.

(3)差分方程式としての解の厳密性は式(26),(2
7)の等号条件が満足された時であり、安定条件は満足
されても等号条件から離れると格子点P以外の点(内挿
点RおよびS)の情報を計算に使用するため厳密性が悪
くなる、すなわち、精度が悪くなる。悪くなる程度は内
挿点の位置(すなわち、現象伝播速度、 と格子間隔とに依存するため格子点毎に異なり均一性は
保証されない。
(3) The strictness of the solution as a difference equation is expressed by equations (26) and (2
When the equality condition of 7) is satisfied, and even if the stability condition is satisfied, if it deviates from the equality condition, the information of points (interpolation points R and S) other than the grid point P is used for calculation. Performance deteriorates, that is, accuracy deteriorates. The degree of deterioration depends on the position of the interpolation point (that is, the phenomenon propagation velocity, Since it depends on and the grid spacing, it differs for each grid point and the uniformity is not guaranteed.

Δx±jとΔtを安定性が満足される範囲で十分小さくと
ることにより絶対値で測つた均一性は出せるようになる
が、その結果上記(1)の場合と同様、格子点数が増え
るため、計算量が膨大になり計算時間がかかる。
By making Δx ± j and Δt sufficiently small within the range where stability is satisfied, the uniformity measured by the absolute value can be obtained, but as a result, the number of grid points increases as in the case of (1) above. The amount of calculation becomes enormous and the calculation takes time.

(4)格子の設定は c≧v≧0 (49) なる条件が満足される場合、すなわち、 なる条件が満足される場合を考えてなされている。この
条件は、流れの向きが正方向でかつ常流ないしは限界流
の場合である。
(4) Lattice setting is c ≧ v ≧ 0 (49) When the condition is satisfied, that is, The following conditions are satisfied. This condition is a case where the flow direction is a forward direction and is a normal flow or a limit flow.

従つて、 v>c≧0 (52) 又は v≦0 (53) なる条件が満足される場合、すなわち、 又は、 なる条件が満足される場合にはこのままでは計算が正常
にできない。この条件は、流れの向きが正方向の射流な
いしは流れの向きが逆方向の場合に対応する。
Therefore, when the condition that v> c ≧ 0 (52) or v ≦ 0 (53) is satisfied, that is, Or If the above condition is satisfied, the calculation cannot be performed normally as it is. This condition corresponds to the case where the flow direction is the positive flow direction or the flow direction is the reverse direction.

以上のことから、射流が発生したり、流れが逆向きにな
つたり、常流や射流が混在したりする問題には適用でき
ない。
From the above, it cannot be applied to the problems such as the generation of a jet flow, the flow in the opposite direction, and the mixture of a normal flow and a jet flow.

〔発明の目的〕[Object of the Invention]

本発明の目的は、以上に述べた従来方法の欠点のうち第
1,2,3,4番目を除去し、全計算点にわたり、もとの微分
方程式の解との比較において、均一高精度かつ安定に少
ない計算量で、全計算点にわたり、差分方程式の解との
比較において、均一高精度かつ安定に少ない計算量で、
射流や逆向きの流れなどを混在する場合でも、計算する
ことのできる、開水路水位・流量予測方法を提供するこ
とにある。
The object of the present invention is to solve the above-mentioned disadvantages of the conventional method.
By removing the 1st, 2nd, 3rd, and 4th points, the solution of the differential equation is uniformly and highly accurately and stably with a small amount of calculation in comparison with the solution of the original differential equation over all calculation points. In comparison of, uniform and highly accurate and stable with a small amount of calculation,
It is to provide an open channel water level / flow rate prediction method that can calculate even when mixed with superficial flow and reverse flow.

〔発明の概要〕[Outline of Invention]

上記目的を達成するため本発明においては、差分方程式
系の現象伝播速度と差分速度とが等しくなるように、計
算を進める途上で差分速度を時々刻々適応させるととも
に、適応は空間差分間隔と時間差分間隔の双方を誤差が
所定範囲内に入る程度に同時に小さくするようにした点
に特徴がある。
In order to achieve the above-mentioned object, in the present invention, the difference velocity is adapted every moment during the calculation so that the phenomenon propagation velocity and the difference velocity of the difference equation system are equal, and the adaptation is the spatial difference interval and the time difference. The feature is that both of the intervals are made small at the same time so that the error falls within a predetermined range.

〔発明の実施例〕Example of Invention

まず、本発明の原理について以下に説明する。本発明で
は、開水路においては、保存物理量(エネルギーや物
質)およびそれらに付随して起こる物理現象(流量や水
位等の状態量の変化)が有限の速度で伝播するという物
理的事実を利用する。この有限の現象伝播速度が実は
(21)式における である。
First, the principle of the present invention will be described below. In the present invention, the physical fact that the stored physical quantity (energy or substance) and the physical phenomenon (change in state quantity such as flow rate or water level) accompanying them are propagated at a finite velocity in the open channel is used. . This finite phenomenon propagation velocity is actually Is.

一方、(26),(27)式の計算の安定条件は、差分方程
式系の現象伝播速度 と差分速度(差分格子の空間的格子間隔と時間的格子間
隔との比) との関係を示したものであり、次の様に物理的に解釈す
ることができる。すなわち、格子間内挿点(R点,S点)
を使わずに格子点だけの情報を使う場合、 (1)差分速度とは差分方程式で数値計算する時に現象
が差分格子上を伝播する速度である。このことはすなわ
ち、計算点の状態量をΔt時間前の隣接格子点の状態量
を使つて算出するという差分方程式の構造が、隣接格子
点のエネルギーや物質が計算点に上記差分速度で輸送・
伝播されるということを基本的仮定として含んでいるこ
とを意味する。
On the other hand, the stability condition for the calculation of Eqs. (26) and (27) is the phenomenon propagation velocity of the difference equation system. And differential velocity (ratio of spatial grid spacing and temporal grid spacing of difference grid) It shows the relationship with and can be physically interpreted as follows. That is, interpolated points (R point, S point)
When only the information of the grid points is used without using (1), the differential velocity is the velocity at which the phenomenon propagates on the differential lattice when numerically calculating with the differential equation. This means that the structure of the difference equation in which the state quantity at the calculation point is calculated using the state quantity at the adjacent grid point before Δt time is such that the energy or substance at the adjacent grid point is transported to the calculation point at the above-mentioned difference velocity.
It is meant to include the basic assumption of being propagated.

従つて、 (2)安定条件が満足されない場合には、 エネルギーや物質が差分方程式系の保存則に従つて算出
した現象伝播速度よりも小さい速度で差分格子上を輸送
・伝播されると計算される(この場合、第4図に示すよ
うに、特性曲線(矢印のついた線)のどちらか一方は点
線および点Qがのつている時間一定線で囲まれた三角形
の外側に出る。)ため、結果として微小領域にエネルギ
ーや物質が差分方程式系の保存則を破つて蓄積される形
になる。これは、強制外力がその微小領域に加えられて
いなければ自然には起こり得ない程高いエネルギー密度
や物質密度を隣接領域の応対量計算のための境界条件と
して人工的に与えることに相当する。そのため、以後の
隣接領域の状態量計算では、差分方程式系における保存
則を満足させるために、現実の現象では起こり得ない値
を算出する可能性がある。この値がさらに以後の状態量
計算における境界条件として使われるので、悪循環とな
り、計算が徐々に不安定になる可能性がある。このと
き、計算誤差はもちろん蓄積される。
Therefore, (2) If the stability condition is not satisfied, It is calculated that energy and matter are transported and propagated on the difference grid at a velocity smaller than the phenomenon propagation velocity calculated according to the conservation law of the difference equation system (in this case, as shown in Fig. 4, the characteristic curve Either one of the (line with arrow) appears outside the triangle surrounded by the dotted line and the time constant line with the point Q.) As a result, energy and matter are stored in the micro region in the difference equation system. It will break the rules and be accumulated. This is equivalent to artificially giving a high energy density or material density that cannot occur naturally unless a forced external force is applied to the minute region, as a boundary condition for calculating the response amount of the adjacent region. Therefore, in the subsequent calculation of the amount of state of the adjacent region, there is a possibility of calculating a value that cannot occur in an actual phenomenon in order to satisfy the conservation law in the difference equation system. Since this value is used as a boundary condition in the subsequent calculation of the state quantity, it may become a vicious circle, and the calculation may gradually become unstable. At this time, the calculation error is of course accumulated.

(3)不等号の安定条件が満足される場合には、 エネルギーや物質が差分方程式系の現象伝播速度よりも
大きい速度で早目早目に差分格子上を輸送・伝播される
(分散される)(エネルギーや物質密度が低ければ現実
に起こり得る現象)ため、ゆらぎが現実より小さくなる
効果を表わし、計算は安定する。但し、計算誤差は蓄積
される。
(3) If the inequality sign stability condition is satisfied, Energy and matter are transported and propagated (dispersed) on the difference lattice at a speed faster than the phenomenon propagation speed of the difference equation system (a phenomenon that can actually occur if energy and matter density are low) , It shows the effect that the fluctuation becomes smaller than the reality, and the calculation is stable. However, the calculation error is accumulated.

(4)等号の安定条件(差分方程式としての厳密性条
件)が満足される場合には、 エネルギーや物質が差分方程式系の現象伝播速度と一致
する速度で差分格子上を輸送・伝播されるため、これに
起因する不安定性と差分方程式の正解からの誤差は解消
する。
(4) When the stability condition of the equal sign (strictness condition as difference equation) is satisfied, Since energy and matter are transported and propagated on the difference grid at a velocity that matches the phenomenon propagation velocity of the difference equation system, the instability caused by this and the error from the correct solution of the difference equation are eliminated.

上記の物理的解釈に基づけば、差分方程式系の現象伝播
速度と差分速度が等しければ、差分方程式としての計算
の安定性と厳密性が保証されると言える。
Based on the above physical interpretation, it can be said that if the phenomenon propagation velocity and the difference velocity of the difference equation system are equal, the stability and rigor of the calculation as the difference equation are guaranteed.

本発明の方法は、差分方程式系の現象伝播速度と差分速
度とが等しくなるように、計算を進める途上で差分速度
を時々刻々適応させていく適応差分(格子)型特性曲線
法を実現させ、差分方程式の計算の安定性と厳密性を有
する解を得られるようにしたものである。差分速度は であるのでその適応のさせ方には、Δx±jを変化させる
空間差分適応型とΔtを変化させる時間差分適応型(以
上、特願昭58−40679号参照)、およびΔx±jとΔtの
双方を変化させる空間・時間差分適応型とあり、本発明
は最後の空間・時間差分適応型に関するものである。
The method of the present invention realizes an adaptive differential (lattice) type characteristic curve method in which the differential velocity is adapted every moment during the calculation so that the phenomenon propagation velocity of the differential equation system becomes equal to the differential velocity. This is to make it possible to obtain a solution that has stability and rigor in the calculation of the difference equation. Differential speed is Therefore, the method of adaptation is as follows: spatial difference adaptive type that changes Δx ± j, time difference adaptive type that changes Δt (above, see Japanese Patent Application No. 58-40679), and Δx ± j and Δt. There is a space-time difference adaptive type that changes both, and the present invention relates to the last space-time difference adaptive type.

本発明の原理をもう少し詳しく説明する。The principle of the present invention will be described in more detail.

微分方程式と差分方程式を一致させるのには、形式的に
は、空間的差分間隔Δx±jおよび時間的差分間隔Δtに
関する差分方程式の安定厳密性制約条件を満足しつつ、
Δx±jとΔtを同時に0に近づければ良いことは既に述
べた。これは、方程式を連続形式から離散形式に変換す
る差分化の近似方式が1次,2次等、どのようなものであ
れ、近似誤差のオーダーが、Δx±jとΔtの関数で表わ
されていてΔx±j→0,Δt→0にした時に、その関数値
が0になるような差分化の仕方であれば成立する。とこ
ろで、デイジタル計算機による数値計算では、Δx±jや
Δtを0にすることはできず有限差分とせざるを得な
い。では、どこまでΔx±jやΔtを小さくすれば十分な
一致性を得られるかという問題が生ずる。特願昭58−40
679号においては、Δx±jを予め与えれば、差分方程式
としての計算安定性と厳密性の要請を満足させる適応差
分法では、時間的には必要最小限の計算点しか発生させ
ないことを述べた。これは、Δx±jが決まるとΔtは各
時刻,各場所で必然的に決まつてしまう(すなわち、時
間に関する分解能が決まつてしまう)ことを意味する
が、もう一つ、適応差分法にはΔx±jの決め方に関する
自由度が1つ残つていることを意味する。この自由度に
一致性の問題を解決する鍵があると考える。
To match the differential equation and the difference equation, formally, while satisfying the stability strictness constraint condition of the difference equation with respect to the spatial difference interval Δx ± j and the temporal difference interval Δt,
It has already been stated that Δx ± j and Δt should be close to 0 at the same time. This is because the order of approximation error is expressed by the function of Δx ± j and Δt, regardless of the approximation method of the difference that transforms the equation from continuous form to discrete form, such as first-order, second-order, etc. However, when Δx ± j → 0 and Δt → 0, the function value becomes 0. By the way, in the numerical calculation by the digital computer, Δx ± j and Δt cannot be set to 0, and the difference must be finite. Then, there arises a problem of how much Δx ± j and Δt can be reduced to obtain sufficient matching. Japanese Patent Application Sho 58-40
In No. 679, it was stated that the adaptive difference method satisfying the requirements of calculation stability and strictness as a difference equation can generate only the minimum necessary calculation points in time if Δx ± j is given in advance. . This means that when Δx ± j is determined, Δt is inevitably determined at each time and each place (that is, the resolution with respect to time is also determined). Means that there is one degree of freedom left regarding how to determine Δx ± j. We believe that this degree of freedom has the key to solving the problem of conformity.

微分方程式と差分方程式との一致性を、時間空間領域に
おける解の振舞いの面から考えると、第5図に示すよう
に、その領域内での連続形式で記述された物理現象(現
実の物理現象とは必ずしも一致しないことに注意)を表
わす状態量がつくる曲面(実線で示した曲面)50が、離
散形式で記述された物理現象に応じた曲面(点線で示
す)51上の各計算点52(●印)での状態量の値を時間的
・空間的に補間(内挿・外挿)してつくつた曲面53(破
線で示した曲面)と許容誤差内の距離54にある、という
ことである。
Considering the agreement between the differential equation and the difference equation from the viewpoint of the behavior of the solution in the space-time domain, as shown in FIG. 5, a physical phenomenon described in a continuous form in that domain (actual physical phenomenon Note that the curved surface (the curved surface shown by the solid line) 50 that represents the state quantity that expresses There is a curved surface 53 (curved surface indicated by a broken line) formed by interpolating (interpolating / extrapolating) the value of the state quantity at (●) at a distance 54 within the allowable error. Is.

第5図において、各曲面上の矢印55は状態量変化ベクト
ルを表わす。
In FIG. 5, an arrow 55 on each curved surface represents a state quantity change vector.

ここで、補間式がうまくできていれば(すなわち、記述
された物理現象に忠実であれば)、計算点の密度は低く
ても良いが、実際上はそのような補間式を作れないた
め、補間式を低次にする代りに計算点の密度を高くす
る。一方、領域内ではただ一種の補間式しか用いないと
すれば、第6図に示すように、計算点の密度は状態量変
化曲率の大きい時空点(図中601)では高く、変化曲率
の小さいところ(図中602)では低くすることが補間の
誤差のばらつきを減らすことになるので望ましい。
Here, if the interpolation formula is well formed (that is, if it is faithful to the described physical phenomenon), the density of calculation points may be low, but in practice such an interpolation formula cannot be created, Instead of lowering the interpolation formula, the density of calculation points is increased. On the other hand, if only one kind of interpolation formula is used in the region, the density of the calculation points is high at the space-time point (601 in the figure) where the state quantity change curvature is large, and the change curvature is small, as shown in FIG. However (at 602 in the figure), it is desirable to lower the value because it reduces variations in interpolation error.

適応差分法は、状態量そのものの変化ではないが、その
原因となる現象伝播速度に関しそれが大きい時空点では
計算点の密度を低く、小さい時空点では計算点の密度が
高くなるように、時間軸方向の密度に関して自動的に適
応させるようにしたものである。ただ適応差分法ではΔ
x±jを現象に依存させずに固定したため、その差分方程
式としての誤差のばらつきは減らすようになつてはいる
が、もとの微分方程式との一致性は空間方向の補間の誤
差を発生させるΔx±jの大きさに依存する。これらのこ
とは逆に、許容誤差を指定してやれば、それを満足する
計算点のばらつかせ方、すなわち、Δx±jとΔtの決め
方を、補間方式を考慮して作り出せることを意味する。
またそれは、許容誤差が決まれば、時間的,空間的な分
解能が必然的に定まることを意味する。
The adaptive difference method is not a change of the state quantity itself, but the density of the calculation points is low at the space-time point where the phenomenon propagation velocity is large and the density of the calculation point is high at the small space-time point. It is adapted to automatically adjust the axial density. However, in the adaptive difference method Δ
Since x ± j is fixed without depending on the phenomenon, the variation of the error as the difference equation is reduced, but the consistency with the original differential equation causes an error in the interpolation in the spatial direction. Depends on the size of Δx ± j. On the contrary, if the allowable error is specified, it means that the calculation points that satisfy the allowable error, that is, the methods of determining Δx ± j and Δt can be created in consideration of the interpolation method.
Further, it means that if the allowable error is determined, the temporal and spatial resolution is inevitably determined.

特性曲線法では特性曲線に沿つて現象が伝播し状態量が
変化すると考える。従つて、連続形式系の状態量曲面を
離散形式系の状態量曲面とが一致するには、その前に2
つの系の特性曲線自体が一致する必要がある。
In the characteristic curve method, it is considered that the phenomenon propagates along the characteristic curve and the state quantity changes. Therefore, in order for the state quantity surface of the continuous form system to agree with the state quantity surface of the discrete form system, 2
The characteristic curves of the two systems must match.

差分型特性曲線法では、第7図に示すように、各計算点
を通る特性曲線(701,703)を直線(702,704)とみな
し、その直線上に計算に必要な点(705,706)を収束計
算にて求める。これは特性曲線を区分線形近似すること
に相当する。またその際、それらの必要点の状態量の値
を隣接計算点(707,708,709)の状態量の値から線形内
挿補間で作り、作られた値を用いて計算点の状態量を算
出する。従つてこのプロセスでは、同一特性曲線を区分
線形近似する時、および、特性曲線間(隣接計算点間)
で値を内挿する時に誤差が発生する。前者は、主として
連続形式と離散形式の一致性に直接関連する誤差、後者
は、主として特性曲線間の補間誤差の一様性を通じて間
接的に一致性に関連する誤差、とみなすことができる。
これらの誤差を小さくできれば、離散形式の解を連続形
式の解に近づけられると言える。本発明はこれらの誤差
を低減する方法に関するものである。同一特性曲線の区
分線形近似に起因する誤差の低減は一般に曲線を区分線
形近似するとき、近似誤差を減らすには、その曲線をで
きるだけ細かく区分すれば良い。その際、等間隔に区分
すると近似誤差が場所により異なり、許容誤差以下にす
るには、不必要に細かく区分せねばならない場所がで
き、計算量の増大につながる。そこで、誤差の均一化を
図るために、曲線の勾配変化がゆるやかなところは粗
く、急なところは細かく区分する方法が考えられる。本
発明でもこの考えを採用するが、課題となるのは、その
形が未知な連続形式の特性曲線に関してこれを行なうこ
とである。
In the differential characteristic curve method, as shown in FIG. 7, the characteristic curve (701,703) passing through each calculation point is regarded as a straight line (702,704), and the point (705,706) necessary for calculation is calculated on the straight line by the convergence calculation. Ask. This is equivalent to piecewise linear approximation of the characteristic curve. At that time, the value of the state quantity of those necessary points is created by linear interpolation from the value of the state quantity of the adjacent calculation points (707,708,709), and the state quantity of the calculation point is calculated using the created value. Therefore, in this process, when performing piecewise linear approximation of the same characteristic curve, and between characteristic curves (between adjacent calculation points)
An error occurs when the value is interpolated by. The former can be regarded mainly as an error directly related to the consistency between the continuous form and the discrete form, and the latter can be regarded as an error mainly related to the consistency indirectly through the uniformity of the interpolation error between the characteristic curves.
If these errors can be reduced, it can be said that the discrete solution can be made closer to the continuous solution. The present invention relates to a method of reducing these errors. In order to reduce the error caused by the piecewise linear approximation of the same characteristic curve, generally, when the curve is piecewise linearly approximated, the approximation error can be reduced by dividing the curve as finely as possible. At that time, if the distance is divided into equal intervals, the approximation error differs depending on the place, and in order to make it less than the allowable error, there are places that need to be divided unnecessarily finely, which leads to an increase in the amount of calculation. Therefore, in order to equalize the error, a method in which a gentle change in the slope of the curve is coarse and a sharp change is finely divided can be considered. The present invention also employs this idea, but the challenge is to do this for a continuous type characteristic curve of unknown shape.

今、前提条件として、Δx±jを小さくしていけば適応差
分法を用いることにより、離散形式の特性曲線は連続形
式のそれに一致するものとする。また、第8図に示すよ
うに、もし特性曲線を許容誤差内で線形近似できるΔx
±j(図でΔx′)があつたとすると、それより小さい
Δx±j(図でΔx)もまた許容誤差内で線形近似でき、
かつ、双方の場合の特性曲線の勾配 (図で801,802)にはほとんど差がなく、それらは連続
形式の勾配(図で803)とも許容誤差の範囲でしか異な
らない。これら2つのことからΔx±jを連続形式との一
致性が言える程度の小さい値から徐々に大きくしていつ
たとすると、 が小さい時の値から許容誤差以上ずれない限りは連続形
式との一致性がその誤差の範囲内で保たれるということ
ができ、未知の連続形式の特性曲線でも許容誤差内で区
分線形近似できることになる。
Now, as a precondition, if Δx ± j is made smaller, the adaptive difference method is used so that the characteristic curve in the discrete form matches that in the continuous form. Moreover, as shown in FIG. 8, if the characteristic curve can be linearly approximated within the allowable error, Δx
If ± j (Δx 'in the figure) is given, smaller Δx ± j (Δx in the figure) can also be linearly approximated within the tolerance,
And the slope of the characteristic curve in both cases (801, 802 in the figure) there is little difference, and they differ only in the range of the tolerance with the continuous type gradient (803 in the figure). From these two things, if Δx ± j is gradually increased from a small value that can be said to be consistent with the continuous form, It can be said that the consistency with the continuous form is maintained within the error range as long as it does not deviate from the value when the value is small by more than the allowable error, and even the characteristic curve of the unknown continuous form can be piecewise linearly approximated within the allowable error. become.

ところで一方、連続形式と離散形式の特性曲線が許容誤
差の範囲内で一致していたとすると、 は特性曲線の勾配変化が緩やかな点では同じΔx±jに対
して変化が少なく、逆に、勾配変化が急な点では変化が
大きいため、離散形式の同一特性曲線上の隣接2点間に
おける の相異がどの点でも許容誤差内に収まるようにΔx±jを
大小種々調整すれば、勾配変化の緩急に応じた必要最小
のΔx±jを見出すことができる。
On the other hand, if the continuous type and the discrete type characteristic curves match within the allowable error range, Is small for the same Δx ± j at the point where the slope of the characteristic curve is gradual, and conversely is large at the point where the slope is abrupt, so that between two adjacent points on the same characteristic curve in the discrete form If Δx ± j is adjusted to various values so that the difference in Δ is within the permissible error at any point, the minimum required Δx ± j according to the steepness of the gradient change can be found.

従つてもし、数値計算において、Δx±jの初期値を十分
小さくとり、以後の計算途上でこの調整を常時行なつて
いれば、連続形式と離散形式の特性曲線を必要最小のΔ
x±jとΔtで区分線形近似することができる。
Therefore, if the initial value of Δx ± j is set to a sufficiently small value in the numerical calculation and this adjustment is constantly performed during the subsequent calculations, the continuous and discrete characteristic curves must have the minimum required Δ
A piecewise linear approximation can be made with x ± j and Δt.

このΔx±jの調整にあたつては、吸束計算を用いるが、
その初期値としては近隣点の調整済の値を用いれば、特
性曲線の勾配変化の緩急が急激に変化しない限り の変化率が大きく変動しない限り)、収束が早くなる可
能性が高く、計算量増加も抑止できる。
The absorption calculation is used to adjust Δx ± j.
If the adjusted value of the neighboring points is used as the initial value, as long as the slope of the characteristic curve does not change rapidly. As long as the rate of change of does not change significantly), there is a high probability that convergence will be faster, and an increase in the amount of calculation can be suppressed.

以上述べたことを考慮し、具体的には次の手順で区分線
形近似に起因する誤差を低減する。
Taking the above into consideration, specifically, the error caused by the piecewise linear approximation is reduced by the following procedure.

下記(A1)〜(A7)はあるΔ▲x+ P▼で規定される計算
点Pおよび点Pに関連する諸量を収束計算で求めるこ
と、(A8)以降はΔ▲x+ P▼の必要最小限の大きさを求
めることに関する。
In the following (A1) to (A7), the calculation point P defined by certain Δ ▲ x + P ▼ and various quantities related to the point P are calculated by convergence calculation. After (A8), Δ ▲ x + P ▼ Regarding finding the minimum required size.

第9図において、 (A1)t=t0における状態量は与えられているか、又
は、内挿により算出できるものとする。
In FIG. 9, it is assumed that the state quantity at (A1) t = t 0 is given or can be calculated by interpolation.

(A2)t=t0における現象伝播速度は状態量から算出で
きるものとする。
(A2) The phenomenon propagation velocity at t = t 0 can be calculated from the state quantity.

(A3)t=t0における必要最小のΔx±jは与えられてい
るか、又は、内挿により許容誤差内の精度で算出できる
ものとする。
(A3) The minimum required Δx ± j at t = t 0 is given or can be calculated by interpolation with an accuracy within the allowable error.

(A4)点R(x0,t0)を通る特性曲線上にある計算点P
(x0+Δ▲x+ P▼,t0+Δt)を決めるためのΔ▲x+ P
▼の初期値として近接計算点のΔx±jをとる。
(A4) Calculation point P on the characteristic curve that passes through point R (x 0 , t 0 ).
To determine the (x 0 + Δ ▲ x + P ▼, t 0 + Δt) Δ ▲ x + P
As the initial value of ▼, take Δx ± j at the proximity calculation point.

(A5)点Rの現象伝播速度 の勾配を有し、点Rを通る直線と直線x=x0+Δ▲x+ P
▼との交点を点Pの第1近似とし、点Q(x0+Δ▲x+ P
▼,t0)の状態量を点Pの状態量の第1近似として点P
の現象伝播速度 の第1近似を算出する。
(A5) Phenomenon propagation speed at point R A straight line that has a gradient of and passes through the point R and a straight line x = x 0 + Δ ▲ x + P
Let the intersection with ▼ be the first approximation of the point P, and set the point Q (x 0 + Δ ▲ x + P
, T 0 ) as the first approximation of the state quantity at point P
Phenomenon propagation speed Compute a first approximation of

(A6)点Pの の第1近似を(A5)の点Rの の代りに用いて、x=x0+Δ▲x+ P▼上に点Pの第2近
似を作るとともに、 の第1近似から点Sの第1近似をt=t0上に作り、点R,
点Sの状態量から点Pの状態量の第2近似を算出し、ま
た第2近似を用いて現象伝播速度 の第2近似を算出する。
(A6) Point P The first approximation of the point R of (A5) Instead of, make a second approximation of point P on x = x 0 + Δ ▲ x + P ▼, and The first approximation of the point S is made on t = t 0 from the first approximation of
A second approximation of the state quantity at the point P is calculated from the state quantity at the point S, and the phenomenon propagation velocity is calculated using the second approximation. The second approximation of is calculated.

(A7)同様な方法で近似を高め、点Pに関する値を収束
させ、そのときの状態量および現象伝播速度 および差分速度 を空間的差分間隔Δ▲x+ P▼の初期値に関する離散形式
の解とする。
(A7) A similar method is used to improve the approximation and converge the value related to point P, and the state quantity and phenomenon propagation speed at that time And differential speed Be the solution in the discrete form with respect to the initial value of the spatial difference interval Δ ▲ x + P ▼.

(A8)次に、第10図に示すように、Δ▲x+ P▼をその初
期値(図中点P9に相当するΔ▲x+ P▼)より小さくした
場合につき、上記と同様の方法で離散形式の解を求める
(図中点P3に相当)。Δ▲x+ P▼をどの程度小さくする
かは収束加速とのかねあいを考えて別に定める。
(A8) Next, as shown in FIG. 10, Δ ▲ x + P ▼ the initial value per case of less than (corresponding to Δ ▲ x + P ▼ Figure midpoint P 9), similar to the above Method to find a discrete solution (corresponding to point P 3 in the figure). How small ΔΔx + P ▼ is to be set separately in consideration of convergence acceleration.

(A9)上記(A7)および(A8)で求めた状態量および/
又は現象伝播速度の相異が許容誤差範囲よりも大きいか
否かを比較判別する。
(A9) State quantity obtained in (A7) and (A8) above and /
Alternatively, it is determined whether or not the difference in phenomenon propagation speed is larger than the allowable error range.

(A10)上記(A9)で許容誤差範囲よりも大きければ、
点Rおよび小さいΔ▲x+ P▼に対応する点Pの2つの点
(図中点P9,P3)は同一特性曲線上に存在しないと考
え、上記(A8)の場合よりさらにΔ▲x+ P▼を小さくし
(図中点P2に相当するΔ▲x+ P▼)、許容誤差内に入る
(図中点P3,P2)までこれを繰り返す。
(A10) If it is larger than the allowable error range in (A9) above,
It is considered that the two points (points P 9 and P 3 in the figure) of the point R and the point P corresponding to the small Δ ▲ x + P ▼ do not exist on the same characteristic curve, and ΔΔ is further increased than in the case of (A8) above. x + P ▼ is reduced (Δ ▲ x + P ▼ corresponding to the point P 2 in the figure), and this is repeated until it is within the allowable error (points P 3 and P 2 in the figure).

(A11)上記(A9)で許容誤差範囲よりも小さくなれ
ば、点Rおよび小さいΔ▲x+ P▼に対応する点P(図中
点P2)の2つの点は同一特性曲線上にあり、かつ、連続
形式の解を許容誤差範囲内で近似しているとみなし、Δ
▲x+ P▼をこれら2つの場合(図中点P2,P3に相当する
Δ▲x+ P▼)よりも大きい値(図中点P4に相当するΔ▲
+ P▼)にし、上記と同様な方法で離散形式の解を求
め、(A9)と同様な比較判別をする。これを許容誤差範
囲以上の相異が出る(図中点P5相当)手前(図中点P4
当)まで繰り返し、Δ▲x+ P▼を大きくし続ける。Δ▲
+ P▼を1回にどの程度大きくするかは収束加速とのか
ね合いを考えて別に定める。
(A11) If it becomes smaller than the allowable error range in (A9) above, two points, point R and point P (point P 2 in the figure) corresponding to a small Δ ▲ x + P ▼, are on the same characteristic curve. , And the continuous solution is regarded as approximating within the allowable error range, and Δ
▲ x + P ▼ is larger than these two cases (Δ ▲ x + P ▼ corresponding to points P 2 and P 3 in the figure) (Δ ▲ corresponding to point P 4 in the figure).
x + P ▼), a discrete form solution is obtained by the same method as described above, and the same comparison and determination as in (A9) is performed. This is repeated until the difference exceeding the allowable error range (corresponding to point P 5 in the figure) appears (corresponding to point P 4 in the figure), and ΔΔx + P ▼ is continuously increased. Δ ▲
How much x + P ▼ is increased at one time is determined separately in consideration of the convergence acceleration.

(A12)上記により、連続形式と許容誤差範囲内で一致
する離散形式の解を得るのに必要最小のΔ▲x+ P▼(図
中点P4相当)およびΔ▲x- P▼が定まる。
(A12) From the above, the minimum Δ ▲ x + P ▼ (corresponding to point P 4 in the figure) and Δ ▲ x - P ▼ required to obtain a discrete-form solution that matches the continuous form within the allowable error range are determined. .

(A13)上記(A11)において、3つ以上のΔ▲x+ P
(図中点P4,P3,P2相当)に関して比較判別し、連続して
3点以上が許容誤差に入つた時に、最小のΔ▲x+ P
(図中点P2相当)に対応する点P(図中点P2)と点Rと
が同一特性曲線上に存在する、という具合に条件を厳し
くする方法を実際には採用する。これにより、離散形式
(差分方程式)は満足するが連続形式(微分方程式)は
満足しない解を採用する危険性を低くする。
(A13) In (A11) above, three or more Δ ▲ x + P
(Equivalent to points P 4 , P 3 , P 2 in the figure) is compared and discriminated, and when three or more points are continuously within the allowable error, the minimum Δ ▲ x + P
(Figure midpoint P 2 or equivalent) corresponding points P (Figure midpoint P 2) and the point R are on the same characteristic curve actually adopted is a method for strict conditions so on. This reduces the risk of adopting a solution that satisfies the discrete form (difference equation) but not the continuous form (differential equation).

(A14)上記(A4)において、全ての計算の開始時点に
おいては、Δ▲x+ P▼の初期値として連続形式と離散形
式との一致が成立する程度の小さい値を与える。
(A14) In the above (A4), at the start of all calculations, a small value is provided as the initial value of Δ ▲ x + P ▼ such that the continuous form and the discrete form are matched.

上記手順の(A9)において、許容誤差との比較判別を特
性曲線の勾配を示す現象伝播速度で行なうだけでなく、
状態量を使つて行なうこともあり得るようにしてある
が、これは、前に述べたように、数値計算における最終
的な誤差の評価は、もとの微分方程式における従属変数
すなわち状態量に関してなされるべきと考えるためであ
る。
In (A9) of the above procedure, not only the comparison with the permissible error is performed by the phenomenon propagation velocity indicating the slope of the characteristic curve,
Although it is possible to use state quantities, this is because the final evaluation of the error in numerical calculation is done with respect to the dependent variable or state quantity in the original differential equation, as described above. This is to think that it should be done.

第9図において、黒点91はいずれも計算点を示す。In FIG. 9, all black dots 91 indicate calculation points.

特性曲線間の内挿誤差の低減 一般に曲線と曲線との間の点の値を曲線上の点の値から
線形内挿補間するとき、内挿誤差を減らすには、曲線の
密度をできるだけ高くすれば良い。その際、第11図に示
すように、隣接する少なくとも2曲線上にある近接3点
(点1101,1102,1103)から成る三角形の内部にある任意
点(点1104)の値(4′)と、その値を前記近接3点の
値(1′,2′,3′)から線形内挿により算出した値
(4″)との差(1105)が、許容誤差範囲内に入る程度
の曲線の密度であれば良い。
Reducing interpolation error between characteristic curves Generally, when linearly interpolating the value of a point between curves from the value of a point on the curve, the density of the curve should be as high as possible to reduce the interpolation error. Good. At that time, as shown in FIG. 11, the value (4 ′) of an arbitrary point (point 1104) inside a triangle composed of three adjacent points (points 1101, 1102, 1103) on at least two adjacent curves is defined as , The difference (1105) between the value and the value (4 ″) calculated by linear interpolation from the values (1 ′, 2 ′, 3 ′) at the three adjacent points is within the allowable error range. Any density will do.

特性曲線の場合についても上記の許容誤差からくる要請
を満足するような隣接特性曲線(隣接計算点)の発生方
法について、第12図を用いて、以下に述べる。
Also in the case of the characteristic curve, a method of generating the adjacent characteristic curve (adjacent calculation points) that satisfies the requirement given by the above-mentioned tolerance will be described below with reference to FIG.

今、第12図において、前提条件として、前に述べた方法
を用いて、同一特性曲線が許容誤差範囲内で区分線形近
似されており、その特性曲線 とt=t0で囲まれる三角形PRSの内点の状態量は線形内
挿により許容誤差範囲内で算出できるとする。ここでの
課題は、三角形PRSの外側に新計算点P′をつくるとき
に、点P′とそれに近接する少なくとも1点は別の特性
曲線上にある既知の2点とから成る三角形内部の任意点
の値(現象伝播速度および/又は状態量)がその三角形
の3端点の値からの内挿値と許容誤差範囲内で一致する
ようにすることである。三角形PRSの外側に新計算点
P′を作るにあたり、点Pと同一特性曲線上に存在させ
たい場合には、点P′に関する点R′を線分RP上に置け
ば良く、その方法については前に述べた。ここでは三角
形PRS内の線分PR上以外に点R′を置いて点P′を点P
と異なる特性曲線上にのせる場合を考える。
Now, referring to FIG. 12, as a precondition, the same characteristic curve is piecewise linearly approximated within the allowable error range by using the method described above. It is assumed that the state quantity of the inner point of the triangle PRS surrounded by and t = t 0 can be calculated within the allowable error range by linear interpolation. The problem here is that when a new calculation point P'is created outside the triangle PRS, an arbitrary point inside the triangle consisting of the point P'and at least one point in the vicinity of the point P'is known to be on another characteristic curve. The point values (phenomenon propagation velocity and / or state quantity) are to be matched with the interpolated values from the values of the three endpoints of the triangle within the allowable error range. When making a new calculation point P ′ outside the triangle PRS, if it is desired to exist on the same characteristic curve as the point P, the point R ′ relating to the point P ′ should be placed on the line segment RP. As mentioned before. Here, a point R'is placed on a point other than the line segment PR in the triangle PRS, and the point P'is changed to the point P.
Consider a case where it is placed on a characteristic curve different from.

具体的には次の手順で特性曲線間の内挿誤差を低減す
る。
Specifically, the following procedure reduces the interpolation error between characteristic curves.

(B1)点R′が存在する時刻線(t=t1)として、その
時点で一番遅れた既計算点が存在する時刻線を選び、そ
の線上では状態量は与えられているものとする。
(B1) As the time line (t = t 1 ) at which point R ′ exists, select the time line at which the most delayed pre-calculated point exists at that time, and the state quantity is given on that line. .

(B2)三角形PRS内の線分PSの近傍の点R′から、点P
の空間的差分間隔Δ▲x+ P▼を初期値とした位置に、点
R′と同一特性曲線上に存在する点P′および点P′を
通るもう一方の特性曲線上の点S′を前述の方法に従つ
て求める。新しくできた三角形P′R′S′内の任意点
の値は3端点の値から内挿により許容誤差範囲内で算出
できると考える。
(B2) From the point R ′ near the line segment PS in the triangle PRS to the point P
At a position with the spatial difference interval Δ ▲ x + P ▼ of which is the initial value, a point P ′ existing on the same characteristic curve as the point R ′ and a point S ′ on the other characteristic curve passing through the point P ′. Obtained according to the method described above. It is considered that the value of an arbitrary point in the newly formed triangle P'R'S 'can be calculated from the values of the three end points by interpolation within the allowable error range.

(B3)線分P′P,PS,P′R′で囲まれた三角形内部に任
意点(たとえば線分P′P上の点P)をとり、その点
の値を点R′が存在するt=t1上の値から、Δtを固定
し、Δx±jを求める空間的適応差分法(特願昭58−4067
9号参照)によつて算出する。
(B3) An arbitrary point (for example, the point P on the line segment P'P) is set inside the triangle surrounded by the line segments P'P, PS, P'R ', and the value of the point is the point R'. Spatial adaptive difference method for determining Δx ± j by fixing Δt from the value on t = t 1 (Japanese Patent Application No. 58-4067).
(See No. 9).

(B4)算出された値が前記三角形の端点の値から線形内
挿により作られた値と許容誤差範囲内で一致するか否か
を調べる。
(B4) It is checked whether or not the calculated value matches the value created by linear interpolation from the values of the end points of the triangle within an allowable error range.

(B5)一致すれば点P′は許容誤差の要請を満足する点
とみなす。
(B5) If they match, the point P'is regarded as a point that satisfies the requirement of the allowable error.

(B6)一致しなければ三角形PRS内の点でt=t1上点R
を境にして点R′と反対側に点R′を置き、点P′
を作成したと同様な方法で点P′を作成する。
(B6) If they do not match, t = t 1 upper point R at a point in the triangle PRS
The point R'is placed on the opposite side of the point R ', and the point P'
The point P'is created by the same method as that used for creating.

(B7)点P′に関しても点P′に関しても行なつたと
同様なテストを行ない、許容誤差範囲内での一致がみら
れるまでこれらのステツプを繰り返す。
(B7) The same test as that performed for the point P ′ and the point P ′ is performed, and these steps are repeated until a match is found within the allowable error range.

(B8)もし点P′又は点P′等に関し一致がみられた
ときの処理を点P′の場合を例にとつて(B9)に述べ
る。
(B8) If the points P'or P ', etc. are found to be in agreement, the processing will be described in (B9) by taking the case of the point P'as an example.

(B9)点P′を境にして点Pと空間的に反対側で時間的
にはt>t1にあり、かつ、三角形P′R′S′の外側に
ある点P′との最近接既計算点をP″としたとき、線分
P′P″,P′S′,P″R″で囲まれた三角形内部に任意
点(たとえば、線分P′P″上の点)をとり、その点に
関して点Pに関して行なつたと同様なテストを行な
い、許容誤差の条件を満足するまで点P′と点P″との
間に点P′と同様な点を同様な方法で作成する。
(B9) point P 'on the opposite side to the time-space and the point P to the boundary of is in the t> t 1, and triangular P'r'S' nearest the P 'point on the outside of When the calculated point is P ″, an arbitrary point (for example, a point on the line segment P′P ″) is set inside the triangle surrounded by the line segments P′P ″, P ′S ′ and P ″ R ″. At that point, the same test as that performed at the point P is performed, and a point similar to the point P'is created between the points P'and P "until the condition of the tolerance is satisfied.

以上のステツプを終えると、点P,点P″および新たに作
られた点P′や点P′に関し、任意の隣接2点をとり
出して考えると、時間的に遅れた点を通る時刻線上の値
は、時間的に進んだ点を通る特性曲線とその時刻線との
交点と時間的に遅れた点との間では、許容誤差範囲内で
線形内挿により算出可能になる。
After the above steps are completed, regarding the points P, P ″, and the newly created points P ′ and P ′, if any two adjacent points are taken out and considered, on the time line passing through the points that are delayed in time. The value of can be calculated by linear interpolation within the allowable error range between the intersection of the characteristic curve passing through the point advanced in time and its time line and the point delayed in time.

(B10)ステツプ(B1)に戻り、次の計算点に進む。(B10) Return to step (B1) and proceed to the next calculation point.

(B11)t1=0の場合には、はじめに計算点Pを作り、
次に点P′を作り同様に行なえば良いが、点P″に相当
する点がないので、点P′を作る要領で点P″相当の点
を作つていく。
(B11) If t 1 = 0, first create a calculation point P,
Next, a point P ′ may be created and the same procedure may be performed. However, since there is no point corresponding to the point P ″, a point corresponding to the point P ″ is created in the same manner as the point P ′.

つぎに、本発明の一実施例を第13図により説明する。Next, an embodiment of the present invention will be described with reference to FIG.

本発明による、開水路水位・流量予測方法は、状態量
(流量・水位)初期条件・境界条件設定部1、 空間差分間隔初期試用値設定部2、 計算基準原点Rの設定・更新部3、 特性曲線間の内挿誤差が小さい計算点P′作成部4、 計算終了判定部5、 出力部6、 特性曲線の区分線形近似に起因する誤差が小さい計算点
P作成部41、 収束判定部A 42、 計算基準原点R′の変更部43、 差分形式の安定厳密性を満足する点Piの作成部411、 収束判定部B 412、 空間差分間隔変更部413、 点Piの状態量等の計算部4111、 時間差分間隔適応部4112、 収束判定部C 4113、 とから構成される。
An open channel water level / flow rate prediction method according to the present invention includes a state quantity (flow rate / water level) initial condition / boundary condition setting unit 1, a spatial difference interval initial trial value setting unit 2, a calculation reference origin R setting / updating unit 3, Calculation point P'creation part 4 with small interpolation error between characteristic curves, calculation end judgment part 5, output part 6, calculation point P'creation part 41 with small error due to piecewise linear approximation of characteristic curve, convergence judgment part A 42, a changing unit 43 of the calculation reference origin R ′, a creating unit 411 of a point P i that satisfies the stability strictness of the difference form, a convergence determining unit B 412, a spatial difference interval changing unit 413, a state quantity of the point P i , etc. The calculation unit 4111, the time difference interval adaptation unit 4112, and the convergence determination unit C 4113 are included.

本発明による方法の動作を以下に説明する。The operation of the method according to the invention is described below.

まず、(C1)状態量(流量・水位)初期条件・境界条件
設定部1において、計算しようとする時間・空間領域上
の初期条件と境界条件を設定する。また、(C2)空間差
分間隔初期試用値設定部2において、空間差分間隔Δx+
jの初期試用値を設定する。
First, (C1) state quantity (flow rate / water level) initial condition / boundary condition setting unit 1 sets initial conditions and boundary conditions in the time / space domain to be calculated. In (C2) Spatial difference interval initial trial value setting unit 2, the spatial difference interval Δx +
Set the initial trial value for j .

次に、(C3)Δx+ jの初期試用値を用い、41において、
微分形式の安定厳密性を許容誤差の範囲で満足する、原
点(点R)を通る特性曲線上の点Pおよび点Pを通るも
う一つの特性曲線上の点Sを求める。これは、あるΔx+
jに関して差分形式の安定厳密性を満足する解を411にお
いて時間差分間隔を適応させる方法によつて収束計算で
求め、その解が微分形式の解に収束するように、412に
おける判定結果をみて413において空間差分間隔Δx+jを
変化させ繰り返し計算する方法による。
Then, using the initial trial value of (C3) Δx + j , at 41,
A point P on the characteristic curve passing through the origin (point R) and a point S on another characteristic curve passing through the point P, which satisfy the stability strictness of the differential form within the range of the allowable error, are obtained. This is a Δx +
A solution satisfying the stable strictness of the difference form with respect to j is obtained by a convergence calculation by the method of adapting the time difference interval at 411, and the decision result at 412 is checked so that the solution converges to the solution of the differential form. In the method, the spatial difference interval Δx + j is changed and the calculation is repeated.

上記411における時間差分間隔を適応させる方法におい
ては、与えられた点Piに関してその状態量や現象伝播速
度を4111において計算し、その現象伝播速度に時間差分
間隔Δtを4112において適応させ、その結果、状態量や
現象伝播速度が収束してくるのを4113において判定して
制御を次に渡す。
In the method of adapting the time difference interval in the above 411, the state quantity and the phenomenon propagation velocity are calculated at 4111 for a given point P i , and the time difference interval Δt is adapted at 4112 to the phenomenon propagation velocity, and the result is obtained. , 4113 determines that the state quantity and the phenomenon propagation speed have converged, and then passes control.

上記(C3)により、(C4)空間差分間隔Δx±jおよび時
間差分間隔Δtが微分形式の安定厳密性を許容誤差の範
囲で満足するように適応調整される。
By (C3) above, (C4) the spatial difference interval Δx ± j and the time difference interval Δt are adaptively adjusted so as to satisfy the stability strictness of the differential form within the allowable error range.

次に、(C5)点Sを新しい計算点算出のための点Rと
し、上記(C4)で調整されたΔx+jを初期値として(C
3)と同様に新計算点の点Pと点Sを求める。
Next, point (C5) S is set as point R for calculating a new calculation point, and Δx + j adjusted in (C4) above is set as an initial value (C
Similar to 3), find points P and S of the new calculation points.

(C6)上記(C5)を空間方向の端点がくるまで繰り返
す。
(C6) Repeat the above (C5) until the end point in the spatial direction comes.

次に、(C7)前述の方法で、41において特性曲線間の内
挿誤差に関する許容誤差からの要請を満足するように新
たな計算点を(C6)までで求めた各計算点の間に作成す
る。これは、計算基準原点R′を43において変更したも
のに関して上記(C3)の方法を収束判定を42にて行ない
ながら繰り返すことによる。
Next, (C7) Create new calculation points between each calculation point obtained up to (C6) so as to satisfy the requirement from the allowable error regarding the interpolation error between the characteristic curves in 41 by the above method. To do. This is because the method of (C3) is repeated while the convergence reference is made at 42 with respect to the calculation reference origin R'changed at 43.

次に、(C8)時間的に一番遅れ、かつ隣接計算点からの
特性曲線で覆われていない点を探し、その点が点R′が
存在する時刻線上に存在するものとし、前述の方法で新
計算点を3において作成する。
Next, (C8) a point which is the latest in time and is not covered by the characteristic curve from the adjacent calculation point is searched for, and the point is assumed to be on the time line where the point R ′ exists, and the method described above is used. Create a new calculation point in 3.

このとき、場合によつては新計算点の特性曲線が隣接計
算点やその外側の計算点を覆うように作られることもあ
り、計算点の数が減少する効果となる。
At this time, in some cases, the characteristic curve of the new calculation point may be made to cover the adjacent calculation points and the calculation points outside thereof, which has the effect of reducing the number of calculation points.

次に、(C9)上記(C8)を全計算領域を計算し終るまで
繰り返し、その判定を5で行なつて結果を6で出力す
る。
Next, (C9) The above (C8) is repeated until the calculation of all the calculation areas is completed, the judgment is made at 5, and the result is outputted at 6.

〔発明の効果〕〔The invention's effect〕

本発明によれば、 (1)差分方程式の安定厳密解の条件が、点R,点Sの内
挿誤差の範囲内で満足されるように、時間および空間差
分間隔を各場所,各時刻毎に変化適応させているため、
全計算点にわたり、安定かつ均一高精度の計算を実現で
きる。
According to the present invention, (1) the time and space difference intervals are set at each place and each time so that the condition of the stable exact solution of the difference equation is satisfied within the range of the interpolation error of the points R and S. To adapt to
Stable, uniform and highly accurate calculation can be realized over all calculation points.

(2)現象伝播速度 の大小関係,正負関係に制約をつけていないため、常流
・限界流・射流や流れの正逆の向き、および、それらの
混在状態も正確に計算できる。
(2) Phenomenon propagation speed Since there is no restriction on the magnitude relationship and the positive / negative relationship of, the normal flow, the limit flow, the forward and reverse directions of the superficial flow and the flow, and their mixed state can be accurately calculated.

(3)現象変化の緩急(現象伝播速度の大小)に応じて
必要最小限の時間および空間差分を施こすため、安定条
件を満足させるために微細格子で全計算領域を覆つた固
定差分格子法に比べ、計算点数が大幅に減少し、マイク
ロコンピュータによるオンライン計算制御にも適用可能
である。
(3) Fixed-difference grid method in which the entire calculation area is covered with a fine grid in order to satisfy the stability condition in order to apply the minimum necessary time and space difference according to the change in the phenomenon (the magnitude of the phenomenon propagation speed). Compared with, the number of calculation points is significantly reduced, and it can be applied to online calculation control by a microcomputer.

【図面の簡単な説明】[Brief description of drawings]

第1図は固定差分格子型特性曲線法の概略説明図、第2
図は固定差分格子型特性曲線法の詳細説明図、第3図は
固定差分格子型特性曲線法の計算の流れ図、第4図は計
算が不安定になる場合の例、第5図は連続形式と離散形
式との一致性の説明図、第6図は補間誤差の均一化の説
明図、第7図は差分型特性曲線法における誤差の説明
図、第8図は連続形式特性曲線と離散形式特性曲線の一
致の説明図、第9図は与えられた空間差分間隔に対応す
る計算の説明図、第10図は必要最小限の空間差分間隔の
算出の説明図、第11図は曲線間任意点上の値の補間の説
明図、第12図は特性曲線間補間誤差の低減方法の説明
図、第13図は本発明の一実施例、である。
FIG. 1 is a schematic explanatory view of a fixed difference grid type characteristic curve method, and FIG.
The figure is a detailed explanatory diagram of the fixed difference grid type characteristic curve method. Fig. 3 is a flow chart of calculation of the fixed difference grid type characteristic curve method. Fig. 4 is an example when the calculation becomes unstable. Fig. 5 is a continuous type. And FIG. 6 are explanatory diagrams of matching between the discrete type and the discrete type, FIG. 6 is an explanatory diagram of equalizing the interpolation error, FIG. 7 is an explanatory diagram of the error in the differential type characteristic curve method, and FIG. 8 is a continuous type characteristic curve and the discrete type. FIG. 9 is an explanatory diagram of coincidence of characteristic curves, FIG. 9 is an explanatory diagram of calculation corresponding to a given spatial difference interval, FIG. 10 is an explanatory diagram of calculation of a minimum required spatial difference interval, and FIG. 11 is an arbitrary curve interval. FIG. 12 is an explanatory diagram of interpolation of a value on a dot, FIG. 12 is an explanatory diagram of a method of reducing an interpolation error between characteristic curves, and FIG. 13 is an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】開水路の水位ないしは流量の測定ステッ
プ、 上記測定ステップで得られた水位ないしは流量を境界条
件と初期条件として設定するステップ、 開水路の水位と流量の状態を記述する差分方程式におけ
る空間差分格子間隔の初期試用値を設定するステップ、 水位と流量の状態を予測計算する基準となる場所と時刻
の原点を設定・更新するステップ、 水位と流量の予測計算に用いる特性曲線の間の内挿誤差
が小さい場所と時刻の計算点を作成する第1の作成ステ
ップ、 予測計算の終了判定ステップ、 判定の結果の水位と流量の予測値を出力するステップ、
とを備え、 上記第1の作成ステップは、 水位と流量の予測計算に用いる特性曲線の区分線形近似
に起因する計算誤差が小さい場所と時刻の計算点を作成
する第2の作成ステップ、 上記区分線形近似に起因する計算誤差が小さい値に収束
したかを判定する第1の収束判定ステップ、 上記第1の収束判定ステップで収束しない場合に予測計
算する基準となる場所と時刻の原点を変更するステッ
プ、 とから構成され、 上記第2の作成ステップは、 水位と流量の状態を記述する離散的物理モデルである差
分方程式の安定厳密性を満足する場所と時刻の点を作成
する第3の作成ステップ、 上記安定厳密性が満足されたかを判定する第2の収束判
定ステップ、 上記第2の収束判定ステップで収束しない場合に上記差
分方程式の空間差分格子間隔を変更するステップ、とか
ら構成され、 上記第3の作成ステップは、 水位と流量を予測計算する計算点の水位、流量、輸送・
伝播速度を計算するステップ、 上記計算された輸送・伝播速度と上記空間的差分格子間
隔との関係から、空間的差分格子間隔と時間的差分間隔
との比が、輸送・伝播速度の絶対値に等しいかそれより
大きくなるように、時間的差分格子間隔を適応的に計算
するステップ、 水位と流量および輸送・伝播速度が上記のステップを通
った後、収束したか否かを判定し、収束していなければ
上記計算された時間的差分格子を用いて水位、流量、輸
送・伝播速度を再度計算させるステップに制御を渡す第
3の収束判定ステップ、 とから構成されることを特徴とする開水路水位・流量予
測方法。
1. A step of measuring the water level or flow rate of an open channel, a step of setting the water level or flow rate obtained in the above measuring step as boundary conditions and initial conditions, and a difference equation for describing the state of the water level and flow rate of the open channel. Between the step of setting the initial trial value of the spatial difference grid interval, the step of setting / updating the origin of time and the reference point for the prediction calculation of the water level and discharge state, and the characteristic curve used for the prediction calculation of the water level and discharge The first creation step of creating a calculation point of a place and time where the interpolation error is small, the step of determining the end of the prediction calculation, the step of outputting the predicted value of the water level and the flow rate of the result of the determination
And a second creating step for creating a calculation point at a place and time where a calculation error caused by a piecewise linear approximation of a characteristic curve used for predictive calculation of water level and discharge is small. The first convergence determination step for determining whether or not the calculation error due to the linear approximation has converged to a small value, and when the convergence does not occur in the first convergence determination step, the place to be the reference for predictive calculation and the origin of the time are changed. The second creating step is a third creating a point at a place and time that satisfies the stability strictness of the difference equation, which is a discrete physical model that describes the state of water level and discharge. Step, a second convergence determination step of determining whether the above-mentioned stability rigor is satisfied, and a spatial difference grid interval of the above difference equation is changed if the convergence does not occur in the second convergence determination step. The step of, consist city, the third creation step, the water level of calculation points to predict calculate water levels and flow rates, flow rates, transport and
Calculating the propagation velocity, from the relationship between the calculated transport / propagation velocity and the spatial difference grid interval, the ratio of the spatial difference grid interval and the temporal difference interval becomes the absolute value of the transport / propagation speed. The steps of adaptively calculating the temporal difference grid interval so that they are equal to or larger than that, determining whether or not the water level and flow rate and transport / propagation velocity have converged after passing through the above steps, and converging If not, a third convergence determination step of passing control to the step of recalculating the water level, the flow rate, and the transportation / propagation velocity using the calculated temporal difference grid, and an open channel. Water level / flow rate prediction method.
JP13582483A 1983-07-27 1983-07-27 Open channel water level / flow rate prediction method Expired - Lifetime JPH0786874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13582483A JPH0786874B2 (en) 1983-07-27 1983-07-27 Open channel water level / flow rate prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13582483A JPH0786874B2 (en) 1983-07-27 1983-07-27 Open channel water level / flow rate prediction method

Publications (2)

Publication Number Publication Date
JPS6027983A JPS6027983A (en) 1985-02-13
JPH0786874B2 true JPH0786874B2 (en) 1995-09-20

Family

ID=15160647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13582483A Expired - Lifetime JPH0786874B2 (en) 1983-07-27 1983-07-27 Open channel water level / flow rate prediction method

Country Status (1)

Country Link
JP (1) JPH0786874B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979322B2 (en) * 2006-09-29 2012-07-18 株式会社日立エンジニアリング・アンド・サービス Inundation simulation device and program

Also Published As

Publication number Publication date
JPS6027983A (en) 1985-02-13

Similar Documents

Publication Publication Date Title
Bhallamudi et al. Numerical modeling of aggradation and degradation in alluvial channels
US7050866B2 (en) Dynamic controller for controlling a system
US8311673B2 (en) Method and apparatus for minimizing error in dynamic and steady-state processes for prediction, control, and optimization
Vyhlidal et al. Mapping based algorithm for large-scale computation of quasi-polynomial zeros
US5255212A (en) Method of predicting a physical quantity of a fluid or a magnetofluid
US20060229743A1 (en) Method and apparatus for attenuating error in dynamic and steady-state processes for prediction, control, and optimization
Bautista et al. Volume compensation method for routing irrigation canal demand changes
US10450841B2 (en) Methods for statistical prediction of well production and reserves
Reyes et al. A variable high-order shock-capturing finite difference method with GP-WENO
Shen Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads
MacDonald et al. Comparison of some steady state Saint-Venant solvers for some test problems with analytic solutions
CN109147324A (en) A method of the traffic congestion probability forecast based on user feedback mechanisms
Bogle et al. Stochastic optimization of a water supply system
RU2697433C1 (en) Method for automatic determination of ionospheric layers parameters by ionograms
JPH0786874B2 (en) Open channel water level / flow rate prediction method
US5699284A (en) Thermal design method for structures and optimum numerical calculation devices for such designs
Bora et al. A semi-coupled model for morphological flow simulation in river bend
CN115526120A (en) Sediment model parameter optimization and sediment transport process simulation method and device
CN115563907A (en) Hydrodynamic model parameter optimization and water level flow change process simulation method and device
Frey et al. Minimum-area confidence sets for a normal distribution
Sanfelici Galerkin infinite element approximation for pricing barrier options and options with discontinuous payoff
Franz et al. Full equations utilities (FEQUTL) model for the approximation of hydraulic characteristics of open channels and control structures during unsteady flow
US9632905B2 (en) Data-agnostic adjustment of hard thresholds based on user feedback
Thorpe The stability of statically unstable layers
CN110619160B (en) Implicit solution method based on accompanying residual sorting