JPH0786695A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH0786695A
JPH0786695A JP23004093A JP23004093A JPH0786695A JP H0786695 A JPH0786695 A JP H0786695A JP 23004093 A JP23004093 A JP 23004093A JP 23004093 A JP23004093 A JP 23004093A JP H0786695 A JPH0786695 A JP H0786695A
Authority
JP
Japan
Prior art keywords
layer
active layer
quantum well
concentration
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23004093A
Other languages
Japanese (ja)
Other versions
JP3381976B2 (en
Inventor
Mitsuhiro Kushibe
光弘 櫛部
Keiji Takaoka
圭児 高岡
Masahisa Funamizu
将久 船水
Masaaki Onomura
正明 小野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23004093A priority Critical patent/JP3381976B2/en
Publication of JPH0786695A publication Critical patent/JPH0786695A/en
Application granted granted Critical
Publication of JP3381976B2 publication Critical patent/JP3381976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a semiconductor laser device which is capable of reducing a threshold, and minimizing temperature dependence of device characteristics by using a GaInAs strained quantum well structure which is easy to control a wavelength. CONSTITUTION:This invention relates to a semiconductor laser device which clamps an active layer 13 which is designed under strained quantum wall structure which laminates a GaInAsP barrier layer 13a and a GaInAs wall layer 13b with an InP clad layer 11 and a p type InP clad layer 15 and further inserts GaInAsP optical guide layers 12 and 14 between each of the clad layers 11 and 15. The active layer 13 is formed based on metal organic vapor deposition. Moreover, impurities, such as Si are added to the active layer 13 and the optical guide layer 14 where the concentration of Si is set to: 1X10<16>cm<-3> to 5X10<17>cm<-3>.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信や情報処理に用
いる半導体レーザ装置に係わり、特に量子井戸構造の活
性層を有する半導体レーザ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device used for optical communication and information processing, and more particularly to a semiconductor laser device having an active layer having a quantum well structure.

【0002】[0002]

【従来の技術】近年、情報処理や光通信などの光源とし
て、各種化合物半導体材料を用いた半導体レーザが開発
されており、その高性能化が望まれている。特に、低し
きい値特性、温度に対して出力変動の小さい特性、高信
頼性に対する要求は強く、その研究開発が盛んに行われ
ている。
2. Description of the Related Art In recent years, semiconductor lasers using various compound semiconductor materials have been developed as a light source for information processing, optical communication, etc., and higher performance is desired. In particular, there are strong demands for low threshold characteristics, characteristics with small output fluctuations with respect to temperature, and high reliability, and research and development have been actively conducted.

【0003】低しきい値で発振する半導体レーザを実現
するには、活性層に量子井戸構造を導入することが行わ
れ、特に最近においては量子井戸構造の井戸層がクラッ
ド層と格子定数の異なる歪み量子井戸構造を導入するこ
とが行われている。1.5μm帯のレーザの場合に活性
層に歪みを導入する場合には、基板よりも格子定数を大
きくすることでしきい値を下げる効果を実現する場合が
多い。この場合、量子井戸構造の井戸層としては、格子
整合している場合に比べてInAsに組成の近いGaI
nAs層が用いられる。
In order to realize a semiconductor laser that oscillates at a low threshold value, a quantum well structure is introduced into an active layer, and recently, a well layer having a quantum well structure has a lattice constant different from that of a cladding layer. Introduction of strained quantum well structures has been carried out. In the case of introducing strain into the active layer in the case of a 1.5 μm band laser, the effect of lowering the threshold value is often realized by making the lattice constant larger than that of the substrate. In this case, the well layer of the quantum well structure has a GaI composition closer to that of InAs than in the case of lattice matching.
An nAs layer is used.

【0004】歪み量子井戸構造を導入すると、しきい電
流密度が下がるので、レーザ特性の温度依存性を大きく
する量子井戸内でのキャリアの量を低減することにな
り、温度による特性の変動を小さくすることが期待でき
る。しかし、実際にはしきい電流は下がるものの、温度
に対する依存性は必ずしも小さくないことが明らかにな
ってきている。
When the strained quantum well structure is introduced, the threshold current density is lowered, so that the amount of carriers in the quantum well, which increases the temperature dependence of the laser characteristics, is reduced, and the fluctuation of the characteristics due to temperature is reduced. Can be expected to do. However, although the threshold current actually decreases, it has become clear that the dependence on temperature is not necessarily small.

【0005】一方、1.3μm帯のレーザや量子井戸構
造の井戸層の幅を広くして比較的P組成の高いGaIn
AsPを井戸層に用いて1.5μm帯のレーザを作製し
た場合には、温度特性を容易に改善されることが知られ
ている。しかし、このような構造では、井戸層に蒸気圧
の高いV族元素を二種類含むGaInAsPを用いるた
めに、組成や発振波長が制御しにくいという問題があっ
た。
On the other hand, the width of the 1.3 μm band laser or the well layer of the quantum well structure is widened to make GaIn having a relatively high P composition.
It is known that the temperature characteristics can be easily improved when a laser in the 1.5 μm band is manufactured by using AsP in the well layer. However, in such a structure, since GaInAsP containing two kinds of group V elements having high vapor pressure is used for the well layer, it is difficult to control the composition and the oscillation wavelength.

【0006】これらの問題を、以下に詳しく説明する。
低しきい値の1.5μm帯の半導体レーザの場合に活性
層に歪みを導入する場合においては、井戸層として基板
に格子整合している場合に比べてInAsに組成の近い
GaInAs層が用いられる場合が多い。このとき、し
きい電流密度が下がるのに、レーザ特性の温度依存性が
小さくなりにくい。この点については、クラッド層或い
は基板中に用いられているZnが拡散し、Znの拡散係
数の小さいGaInAs層中にZnが蓄積してしまうと
同時に深いレベルが形成されるためと考えられる。特に
この問題は、量子井戸構造においては井戸層の厚さが薄
いので、Znの蓄積効果が大きく、その影響が顕著とな
る。
These problems will be described in detail below.
In the case of introducing strain into the active layer in the case of a low threshold 1.5 μm band semiconductor laser, a GaInAs layer having a composition closer to InAs is used as a well layer than in the case of lattice matching with the substrate. In many cases. At this time, although the threshold current density decreases, the temperature dependence of the laser characteristics is less likely to decrease. It is considered that this is because Zn used in the clad layer or the substrate diffuses, and Zn accumulates in the GaInAs layer having a small Zn diffusion coefficient, and at the same time, a deep level is formed. Particularly, this problem is significant in the effect of accumulating Zn because the thickness of the well layer is thin in the quantum well structure, and the effect is remarkable.

【0007】一方、n型の不純物が添加されている領域
ではp型不純物の拡散係数が小さくなる。特に、p型の
不純物濃度以上にn型の不純物が添加されていると、p
型不純物の拡散係数は小さくなる。InP中でのZnの
拡散は2段拡散型であり、低濃度の拡散フロントは濃度
が1015cm-3程度以下で急激に濃度が下がる。このた
め、量子井戸構造中でのn型不純物がこの値を越えた一
定以上の濃度であるとZnの拡散が抑制でき、GaIn
As層へのZnの蓄積や深いレベルの発生を低減するこ
とができる。
On the other hand, the diffusion coefficient of the p-type impurity is small in the region to which the n-type impurity is added. In particular, if an n-type impurity is added at a concentration higher than the p-type impurity concentration, p
The diffusion coefficient of the type impurities becomes small. The diffusion of Zn in InP is a two-stage diffusion type, and the concentration of the low-concentration diffusion front drops sharply when the concentration is about 10 15 cm −3 or less. Therefore, if the concentration of the n-type impurity in the quantum well structure exceeds this value and exceeds a certain level, the diffusion of Zn can be suppressed, and GaIn
Accumulation of Zn in the As layer and generation of deep level can be reduced.

【0008】活性層の量子井戸構造を形成する際にはI
nP系の場合、気相成長法、特に有機金属気相成長法で
高品質の結晶の成長が可能である。この方法でGaIn
Asを成長すると、バックグラウンドの不純物はSiが
最も主要な元素であり、n型となり、不純物濃度は10
15cm-3以下となるのが普通である。また、歪み量子井
戸構造を用いた場合には井戸層のGaInAs組成がI
nAsに近くなるが、このような組成の層ではSiが不
純物として取り込まれにくく、バックグラウンドのSi
濃度は更に低いものとなる。このため、Znの拡散及び
蓄積が起こり易くなる。
When forming the quantum well structure of the active layer, I
In the case of nP type, high quality crystal can be grown by a vapor phase growth method, particularly a metal organic vapor phase growth method. GaIn
When As is grown, Si is the main element in the background and becomes n-type, and the impurity concentration is 10
It is usually less than 15 cm -3 . When the strained quantum well structure is used, the GaInAs composition of the well layer is I.
Although it is close to nAs, Si is difficult to be taken in as impurities in the layer having such a composition, and Si in the background
The concentration will be even lower. Therefore, Zn is likely to diffuse and accumulate.

【0009】[0009]

【発明が解決しようとする課題】このように従来、Ga
InAs層を用いて歪み量子井戸構造を導入しても、温
度に対する依存性が小さくできないという問題、さらに
はP組成の高いGaInAsPを量子井戸構造の井戸層
として用いるとレーザの波長制御が難しくなるという問
題があった。
As described above, the conventional Ga
Even if a strained quantum well structure is introduced using an InAs layer, the dependence on temperature cannot be reduced. Furthermore, if GaInAsP having a high P composition is used as the well layer of the quantum well structure, it becomes difficult to control the wavelength of the laser. There was a problem.

【0010】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、波長の制御が容易なG
aInAsの歪み量子井戸構造を用いて、しきい値が低
くかつ素子特性の温度依存性を小さくすることのできる
半導体レーザ装置を提供することにある。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to make it easy to control the wavelength.
An object of the present invention is to provide a semiconductor laser device using a strained quantum well structure of aInAs, which has a low threshold value and can reduce temperature dependence of device characteristics.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明は次のような構成を採用している。即ち本発
明は、GaInAsの歪み量子井戸構造からなる活性層
をp型及びn型のクラッド層で挟んだ半導体レーザ装置
において、活性層は気相成長法で形成されており、かつ
活性層又は活性層とp型クラッド層の間に設けられた光
ガイド層の少なくとも一部で、不純物としてのSiの濃
度を1×1016cm-3〜5×1017cm-3に設定したこ
とを特徴とする。
In order to solve the above problems, the present invention employs the following configurations. That is, the present invention relates to a semiconductor laser device in which an active layer having a strained quantum well structure of GaInAs is sandwiched by p-type and n-type cladding layers, the active layer being formed by a vapor phase epitaxy method, and the active layer or the active layer being active. The concentration of Si as an impurity is set to 1 × 10 16 cm −3 to 5 × 10 17 cm −3 in at least a part of the optical guide layer provided between the layer and the p-type cladding layer. To do.

【0012】ここで、Siの濃度が略1×1016cm-3
〜5×1017cm-3の原子濃度というのは、SIMS
(Secondary Ion Mass Spectrometry )により測定した
値であり、ファクター3の誤差を含んでいる。また、本
発明の望ましい実施態様としては、次のものがあげられ
る。 (1) クラッド層はInPを含む層である。 (2) 活性層の量子井戸構造の中の井戸層としては、クラ
ッド層に格子整合したGaInAs、又は基板と格子不
整合したGaInAsを用いること。井戸層については
P組成の低いGaInAsPでもよい。 (3) 量子井戸構造の作成にあたっては気相成長法で行う
必要があり、特に有機金属気相成長法を用いる。
Here, the Si concentration is approximately 1 × 10 16 cm -3.
The atomic concentration of ~ 5 × 10 17 cm -3 means SIMS
It is a value measured by (Secondary Ion Mass Spectrometry) and includes a factor 3 error. The following are preferred embodiments of the present invention. (1) The clad layer is a layer containing InP. (2) As the well layer in the quantum well structure of the active layer, use GaInAs lattice-matched with the cladding layer or GaInAs lattice-mismatched with the substrate. The well layer may be GaInAsP having a low P composition. (3) It is necessary to use the vapor phase epitaxy method to create the quantum well structure, and in particular, the metal organic vapor phase epitaxy method is used.

【0013】[0013]

【作用】本発明によれば、半導体レーザの活性層中にS
iを積極的に添加することにより、活性層中でp型不純
物(例えばZn)の拡散が抑制できるようになり、量子
井戸構造中でのp型不純物の蓄積及び深いレベルの発生
を抑制することが可能となる。
According to the present invention, S is contained in the active layer of the semiconductor laser.
By positively adding i, diffusion of p-type impurities (for example, Zn) in the active layer can be suppressed, and accumulation of p-type impurities and generation of deep level in the quantum well structure can be suppressed. Is possible.

【0014】Siを添加する領域については、活性層全
体でも量子井戸構造の井戸層のみでもよく、さらに量子
井戸構造の障壁層のみでもp型不純物の拡散を抑制する
効果がある。また、活性層とp型クラッド層の間に設け
た光ガイド層にSiを添加しても、p型不純物の拡散を
抑制する効果がある。
The region to which Si is added may be the entire active layer or only the well layer having the quantum well structure, and the barrier layer having the quantum well structure alone has an effect of suppressing diffusion of p-type impurities. Further, even if Si is added to the optical guide layer provided between the active layer and the p-type cladding layer, the effect of suppressing the diffusion of the p-type impurities is obtained.

【0015】特に埋め込み型のレーザにおいては、量子
井戸構造のGaInAs層に対して、埋め込み層から活
性層の量子井戸構造の面にp型不純物の拡散が起き易
い。この拡散は量子井戸構造の井戸層沿いに起きるの
で、光ガイド層等によってp型不純物の拡散を抑制する
ことは難しいが、本発明を適用することでこのようなp
型不純物の拡散を大幅に抑制できるようになる。また、
歪み量子井戸構造の活性層に本発明を用いた場合にも、
意図的にSiを添加しているので、井戸層のSiの濃度
が十分高く、p型不純物の拡散に対する抑制の効果が顕
著である。
Particularly in a buried type laser, p-type impurities are easily diffused from the buried layer to the surface of the quantum well structure of the active layer in the GaInAs layer having the quantum well structure. Since this diffusion occurs along the well layer of the quantum well structure, it is difficult to suppress the diffusion of the p-type impurity by the optical guide layer or the like.
Diffusion of type impurities can be suppressed significantly. Also,
Even when the present invention is used for the active layer of the strained quantum well structure,
Since Si is intentionally added, the Si concentration in the well layer is sufficiently high, and the effect of suppressing the diffusion of p-type impurities is remarkable.

【0016】以上のように、p型不純物の拡散を抑制で
きた結果、活性層がGaInAs層であっても、レーザ
特性の温度に対する依存性を小さくすることができる。
活性層中のSiの濃度が高すぎると、レーザ発振しきい
電流が上がったり、レーザ素子の寿命が短くなったりし
てしまうが、本発明の範囲内の濃度であれば、このよう
な問題は発生しなかった。
As described above, as a result of suppressing the diffusion of p-type impurities, even if the active layer is a GaInAs layer, the dependence of laser characteristics on temperature can be reduced.
If the Si concentration in the active layer is too high, the laser oscillation threshold current will increase and the life of the laser element will shorten, but if the concentration is within the range of the present invention, such a problem occurs. I didn't.

【0017】また、活性層の歪み量子井戸構造の井戸層
として、GaInAsの代わりにGaInAsPを用い
た場合、材料の特性としてp型不純物の濃度が上がりに
くくまた拡散係数も小さいので、p型不純物を蓄積しに
くい。また、結晶成長の際のバックグラウンドの不純物
濃度が下がりにくいのでp型不純物の拡散抑制効果があ
るといった点もあるが、本発明を適用することでGaI
nAsと同じ様な効果が、程度は小さいながら実現で
き、レーザの温度特性を向上することができる。特に、
P組成の低いGaInAsPの場合には材料特性がGa
InAsに近いのでその効果が顕著に現れる。
When GaInAsP is used instead of GaInAs for the well layer of the strained quantum well structure of the active layer, the p-type impurity concentration is small and the diffusion coefficient is small as a characteristic of the material. Hard to accumulate. In addition, the background impurity concentration during crystal growth is less likely to decrease, so that there is an effect of suppressing diffusion of p-type impurities.
The same effect as nAs can be realized to a small extent, and the temperature characteristic of the laser can be improved. In particular,
In the case of GaInAsP having a low P composition, the material properties are Ga
Since it is close to InAs, its effect is remarkable.

【0018】[0018]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は、本発明の第1の実施例に係わる半導体レ
ーザの素子構造を示す断面図である。n型InP基板1
0上に、n型クラッド層11,光ガイド層12,活性層
13,光ガイド層14及びp型クラッド層15が、上記
順に成長形成されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing the device structure of a semiconductor laser according to the first embodiment of the present invention. n-type InP substrate 1
0, an n-type cladding layer 11, an optical guide layer 12, an active layer 13, an optical guide layer 14 and a p-type cladding layer 15 are grown and formed in this order.

【0019】n型クラッド層11は、キャリア濃度10
18cm-3のSi添加のn型InPである。光ガイド層1
2は、キャリア濃度1017cm-3のSi添加のn型Ga
InAsP(厚さ0.1μm,バンドギャップ1.3μ
m)である。活性層13は、キャリア濃度5×1016
-3のSi添加のGaInAsP障壁層13a(厚さ1
0nm,バンドギャップ1.3μm,7層)と、キャリ
ア濃度5×1016cm-3のSi添加のGa 0.35 In
0.65 As井戸層13b(厚さ3nm,8層)とが交互
に繰り返された歪み量子井戸構造となっている。光ガイ
ド層14は、キャリア濃度1016cm-3のSi添加のG
aInAsP(厚さ0.1μm,バンドギャップ1.3
μm)である。また、p型クラッド層15は、キャリア
濃度1018cm-3のZn添加のp型InP(厚さ0.5
μm)である。
The n-type cladding layer 11 has a carrier concentration of 10
It is 18 cm −3 Si-added n-type InP. Light guide layer 1
2 is Si-added n-type Ga with a carrier concentration of 10 17 cm -3
InAsP (thickness 0.1 μm, band gap 1.3 μm
m). The active layer 13 has a carrier concentration of 5 × 10 16 c
m -3 Si-added GaInAsP barrier layer 13a (thickness 1
0 nm, band gap 1.3 μm, 7 layers), and carrier concentration 5 × 10 16 cm −3 Si-added Ga 0.35 In
It has a strained quantum well structure in which 0.65 As well layers 13b (thickness 3 nm, 8 layers) are alternately repeated. The optical guide layer 14 is a Si-added G having a carrier concentration of 10 16 cm -3.
aInAsP (thickness 0.1 μm, band gap 1.3
μm). The p-type clad layer 15 is formed of Zn-added p-type InP (having a carrier concentration of 10 18 cm −3 ) (thickness: 0.5).
μm).

【0020】n型InPクラッド層11の上部より上層
が幅約1.5μmのメサ構造になっており、その両側が
キャリア濃度1018cm-3のZn添加のp型InP層1
6及びキャリア濃度1018cm-3のSi添加のn型In
P電流阻止層17で埋め込まれている。さらにその上部
には、キャリア濃度1018cm-3のZn添加のp型In
P層18及びキャリア濃度5×1018cm-3のZn添加
のp型のGa 0.47 In 0.53 Asコンタクト層19
(厚さ0.5μm)が形成されている。
A layer above the n-type InP clad layer 11 has a mesa structure having a width of about 1.5 μm, and both sides of the mesa structure have a carrier concentration of 10 18 cm −3 and a Zn-added p-type InP layer 1 is formed.
6 and a carrier concentration of 10 18 cm −3 , Si-added n-type In
It is filled with the P current blocking layer 17. Furthermore, on the upper part thereof, Zn-added p-type In having a carrier concentration of 10 18 cm −3
The P layer 18 and the Zn-added p-type Ga 0.47 In 0.53 As contact layer 19 having a carrier concentration of 5 × 10 18 cm −3
(Thickness 0.5 μm) is formed.

【0021】そして、GaInAsコンタクト層19上
にはAu−Zn/Au電極(p側電極)21が蒸着形成
され、n型InP基板10の下面にはAu−Ge/Ni
/Au電極(n側電極)22が蒸着形成されている。
Then, an Au-Zn / Au electrode (p-side electrode) 21 is formed on the GaInAs contact layer 19 by vapor deposition, and Au-Ge / Ni is formed on the lower surface of the n-type InP substrate 10.
The / Au electrode (n-side electrode) 22 is formed by vapor deposition.

【0022】本実施例の半導体レーザは共振器長を20
0μmとし、SiとSiO2 の多層膜により、一方の端
面の反射率が70%、他方の端面の反射率が90%の高
反射コートを施した。
The semiconductor laser of this embodiment has a cavity length of 20.
The thickness was 0 μm, and a high-reflection coating having a reflectance of 70% on one end face and a reflectance of 90% on the other end face was applied by a multilayer film of Si and SiO 2 .

【0023】本実施例の半導体レーザの発振波長は1.
56μmで、しきい電流は3mA,スロープ効率ηの温
度変動はη(75℃)/η(25℃)〜0.7と、この
ような低しきい電流のレーザ素子としては大きな値を示
した。活性層にSiに添加を行わなかった同様な構造の
素子においては、η(75℃)/η(25℃)〜0.6
となった。
The oscillation wavelength of the semiconductor laser of this embodiment is 1.
At 56 μm, the threshold current was 3 mA, and the temperature variation of the slope efficiency η was η (75 ° C.) / Η (25 ° C.) to 0.7, which was a large value for a laser device having such a low threshold current. . In an element having a similar structure in which Si was not added to the active layer, η (75 ° C.) / Η (25 ° C.) to 0.6
Became.

【0024】本実施例の半導体レーザの活性層13は有
機金属気相成長法で形成した。その際に、Siの添加は
SiH4 をもって行った。結晶成長の温度は620〜6
90℃で行った。Ga 0.35 In 0.65 As井戸層13
bについては結晶の厚さが極めて薄いので、膜中のSi
の濃度を測定することが難しい。一方、SiH4 につい
てはInAs中への取り込まれ効率は620℃では、G
0.47 In 0.53 As中への取り込まれ効率より約
1.5桁小さく、Ga 0.47 In 0.53 As中への取り
込まれ効率はGaAs中へのそれよりも約1桁小さかっ
た。このことは、SiH4 の取り込まれが材料との表面
反応でGax In1-x As(0≦x=1)の組成に対し
て、指数関数的に変化していることを意味している。
The active layer 13 of the semiconductor laser of this embodiment was formed by the metal organic chemical vapor deposition method. At that time, Si was added with SiH 4 . Crystal growth temperature is 620-6
Performed at 90 ° C. Ga 0.35 In 0.65 As well layer 13
As for b, the thickness of the crystal is extremely thin, so Si in the film
Is difficult to measure. On the other hand, SiH 4 is incorporated into InAs, and the efficiency is G at 620 ° C.
The incorporation efficiency into a 0.47 In 0.53 As was about 1.5 orders of magnitude lower, and the incorporation efficiency into Ga 0.47 In 0.53 As was about an order of magnitude lower than that into GaAs. This means that the incorporation of SiH 4 changes exponentially with respect to the composition of Ga x In 1-x As (0 ≦ x = 1) due to the surface reaction with the material. .

【0025】そこで、Ga 0.35 In 0.65 As井戸層
13bにSiH4 を供給するときの条件はSiH4 の取
り込まれ効率がGaInAsの組成変化に対して指数関
数的に変化しているとして決めた。原料としてSiH4
を用いたとき、Siの取り込まれ効率はInAs組成の
高いGaInAsほど温度に対して強い依存性を持ち、
このときの活性化エネルギーはGax In1-x As(0
≦x=1)の固相組成に比例した。そこで、InAsへ
のSiの取り込まれ効率、Ga 0.47 In 0.53 Asへ
のSiの取り込まれ効率の温度依存性、及び材料組成に
対するSiの取り込まれ効率を勘案して、Ga 0.35
0.65 As井戸層13b中でのキャリア濃度が5×1
16cm-3となるようにSiH4 の供給条件を決めた。
[0025] Therefore, conditions for supplying the SiH 4 to the Ga 0.35 In 0.65 As well layer 13b is decided as an efficient captured the SiH 4 is changing exponentially with GaInAs composition change. SiH 4 as raw material
When Si is used, the efficiency of Si uptake has a stronger dependence on temperature as GaInAs having a higher InAs composition,
The activation energy at this time is Ga x In 1-x As (0
It was proportional to the solid phase composition of ≦ x = 1). Therefore, taking into account the temperature dependence of the Si incorporation efficiency into InAs, the Si incorporation efficiency into Ga 0.47 In 0.53 As, and the Si incorporation efficiency relative to the material composition, Ga 0.35 I
n 0.65 As carrier concentration in the well layer 13b is 5 × 1
The supply conditions of SiH 4 were determined so as to be 0 16 cm −3 .

【0026】ここで、活性層13中のSi濃度の望まし
い範囲について説明する。本実施例の半導体レーザにお
いて、Ga0.35In0.05As井戸層13bのnタイプの
キャリア濃度を1×1016cm-3より低くすると、しき
い電流が略3mAから6mAと急激に上昇した。一方、
Ga0.35In0.65As井戸層13bのキャリア濃度を略
5×1017cm-3より高くすると、再びしきい値が上昇
した。
Here, a desirable range of Si concentration in the active layer 13 will be described. In the semiconductor laser of the present example, when the n-type carrier concentration of the Ga 0.35 In 0.05 As well layer 13b was lower than 1 × 10 16 cm -3 , the threshold current sharply increased from about 3 mA to 6 mA. on the other hand,
When the carrier concentration of the Ga 0.35 In 0.65 As well layer 13b was made higher than approximately 5 × 10 17 cm -3 , the threshold value increased again.

【0027】しきい電流のキャリア濃度依存性を図2に
示す。キャリア濃度を下げた時にしきい電流が上昇した
のは、Ga0.35In0.65As井戸層13b中のSi濃度
を下げたために、Znの二段階拡散の一段目の低濃度領
域のZn濃度とSiの濃度が略一致或いはより高くな
り、Znの拡散が急激に増大したためと推定される。
FIG. 2 shows the carrier concentration dependence of the threshold current. The threshold current increased when the carrier concentration was lowered because the Si concentration in the Ga 0.35 In 0.65 As well layer 13b was lowered, so that the Zn concentration in the low concentration region in the first stage of the two-step diffusion of Zn and the Si concentration It is presumed that the concentrations became substantially equal to or higher, and the diffusion of Zn rapidly increased.

【0028】一方、キャリア濃度を上げた時にしきい電
流が上昇したのは、以下のような理由と考えられる。レ
ーザが発振するためには活性層中で活性層の不純物によ
りキャリア濃度に対して外部から注入されたキャリア濃
度が十分高く、キャリアの反転分布が形成される必要が
ある。ところが、井戸層中の不純物濃度が略5×1017
cm-3以上となると、通常レーザ発振するときに外部か
ら注入されるキャリア濃度と差が小さくなる。このた
め、井戸層中の不純物濃度の上昇に伴い反転分布を形成
するために必要な注入キャリア濃度が上昇したと推定さ
れる。
On the other hand, the reason why the threshold current increased when the carrier concentration was increased is considered to be as follows. In order for the laser to oscillate, the carrier concentration injected from the outside is sufficiently higher than the carrier concentration in the active layer due to the impurities in the active layer, and the population inversion of carriers must be formed. However, the impurity concentration in the well layer is about 5 × 10 17
If it is cm −3 or more, the difference from the carrier concentration injected from the outside during normal laser oscillation becomes small. Therefore, it is presumed that the concentration of injected carriers required to form the population inversion increased as the concentration of impurities in the well layer increased.

【0029】このような結果に基づき本発明の半導体レ
ーザにおいては、歪み量子井戸層中のSi濃度を1×1
16cm-3〜5×1017cm-3の間にあるようにした。
このように本実施例によれば、歪み量子井戸構造の活性
層13の井戸層13bに組成制御の行い易いGaInA
sを用いることにより、組成の確認が難しい歪み量子井
戸構造を用いても発振波長が極めて安定であり、1.5
6±0.01μmに制御することができた。類似の構造
の量子井戸レーザで活性層の井戸層に四元混晶であるG
aInAsPを用いた場合に比べてウェハー毎のばらつ
きを約6割程度に抑えることができた。
Based on these results, in the semiconductor laser of the present invention, the Si concentration in the strained quantum well layer is 1 × 1.
It was set to be between 0 16 cm -3 and 5 × 10 17 cm -3 .
As described above, according to the present embodiment, GaInA whose composition is easily controlled is formed in the well layer 13b of the active layer 13 having the strained quantum well structure.
By using s, the oscillation wavelength is extremely stable even if a strained quantum well structure whose composition is difficult to confirm is used.
It was possible to control to 6 ± 0.01 μm. In a quantum well laser having a similar structure, the well layer of the active layer has a quaternary mixed crystal G
The variation from wafer to wafer could be suppressed to about 60% as compared with the case of using aInAsP.

【0030】しかも、活性層13中にSiを積極的に添
加し、Si濃度を1×1016cm-3〜5×1017cm-3
に設定しているので、活性層13中でのp型不純物(Z
n)の拡散を抑制することができ、歪み量子井戸構造中
でのp型不純物の蓄積及び深いレベルの発生を抑制する
ことが可能となる。従って、しきい値の低減化と共に素
子特性の温度依存性を小さくすることができ、その有用
性は絶大である。
Moreover, Si is positively added to the active layer 13 so that the Si concentration is 1 × 10 16 cm −3 to 5 × 10 17 cm −3.
Therefore, the p-type impurity (Z
The diffusion of n) can be suppressed, and the accumulation of p-type impurities and the generation of deep levels in the strained quantum well structure can be suppressed. Therefore, the temperature dependence of the device characteristics can be reduced together with the reduction of the threshold value, and its usefulness is tremendous.

【0031】図3は、本発明の第2の実施例に係わる半
導体レーザの素子構造を示す断面図である。本実施例の
半導体レーザにおいては、キャリア濃度4×1018cm
-3のZn添加のp型InP基板30の上に、p型クラッ
ド層31,光ガイド層32,活性層33,光ガイド層3
4及びn型クラッド層35が、上記順に成長形成されて
いる。
FIG. 3 is a sectional view showing the device structure of a semiconductor laser according to the second embodiment of the present invention. In the semiconductor laser of this embodiment, the carrier concentration is 4 × 10 18 cm
-3 on the Zn-doped p-type InP substrate 30, the p-type cladding layer 31, the light guide layer 32, the active layer 33, and the light guide layer 3
The 4 and n-type cladding layers 35 are grown and formed in the above order.

【0032】p型クラッド層31は、キャリア濃度10
18cm-3のZn添加のp型InP(厚さ1.5μm)で
ある。光ガイド層32は、キャリア濃度5×1017cm
-3のSi添加のGaInAsP(厚さ0.2μm,バン
ドギャップ1.13μm)である。活性層33は、キャ
リア濃度1017cm-3のSi添加のGaInAsP障壁
層33a(厚さ6nm,バンドギャップ1.13μm,
5層)と、キャリア濃度1017cm-3のSi添加のGa
InAsP井戸層33b(厚さ7nm,バンドギャップ
1.4μm,格子不整合度0.6%,6層)とを、交互
に繰り返した歪み量子井戸構造となっている。光ガイド
層34は、キャリア濃度5×1017cm-3のSi添加の
GaInAsP(バンドギャップ1.13μm)であ
る。また、n型クラッド層35は、キャリア濃度5×1
18cm-3のSi添加のn型InPである。
The p-type cladding layer 31 has a carrier concentration of 10
It is p-type InP (thickness: 1.5 μm) with addition of 18 cm −3 Zn. The optical guide layer 32 has a carrier concentration of 5 × 10 17 cm
-3 is GaInAsP with Si added (thickness 0.2 μm, band gap 1.13 μm). The active layer 33 is a Si-added GaInAsP barrier layer 33a (thickness: 6 nm, band gap: 1.13 μm, carrier concentration: 10 17 cm −3 ).
5 layers) and Si-added Ga having a carrier concentration of 10 17 cm -3
It has a strained quantum well structure in which InAsP well layers 33b (thickness 7 nm, band gap 1.4 μm, lattice mismatch degree 0.6%, 6 layers) are alternately repeated. The light guide layer 34 is Si-added GaInAsP (bandgap 1.13 μm) with a carrier concentration of 5 × 10 17 cm −3 . The n-type cladding layer 35 has a carrier concentration of 5 × 1.
It is n-type InP added with Si of 18 cm -3 .

【0033】p型InPクラッド層31の上部より上層
が幅約1.5μmのメサ構造になっており、その両側が
キャリア濃度1018cm-3のZn添加のp−InP層3
6a、キャリア濃度1018cm-3のSi添加のn型In
P電流阻止層37、キャリア濃度1018cm-3のZn添
加のp型InP層36bで埋め込まれている。さらにそ
の上部は、キャリア濃度1018cm-3のSi添加のn型
InP層38及びキャリア濃度5×1018cm-3,厚さ
0.5μmのSi添加n型のGa 0.47 In 0.53 As
コンタクト層39が形成されている。
The upper layer of the p-type InP clad layer 31 has a mesa structure with a width of about 1.5 μm, and the Zn-doped p-InP layer 3 having a carrier concentration of 10 18 cm -3 is formed on both sides thereof.
6a, n-type In with Si added and carrier concentration of 10 18 cm -3
A P current blocking layer 37 and a Zn-doped p-type InP layer 36b having a carrier concentration of 10 18 cm −3 are embedded. Further thereon, the carrier concentration 10 18 cm n-type InP layer 38 of Si addition of -3 and the carrier concentration of 5 × 10 18 cm -3, the Si added n-type thickness 0.5μm Ga 0.47 In 0.53 As
The contact layer 39 is formed.

【0034】そして、GaInAsコンタクト層39上
にはAu−Ge/Ni/Au電極(n側電極)41が蒸
着形成され、p型InP基板30の裏面にはAu−Zn
/Au電極(p側電極)42が蒸着形成されている。
Then, an Au-Ge / Ni / Au electrode (n-side electrode) 41 is formed by vapor deposition on the GaInAs contact layer 39, and Au-Zn is formed on the back surface of the p-type InP substrate 30.
The / Au electrode (p-side electrode) 42 is formed by vapor deposition.

【0035】本実施例の半導体レーザは共振器長を20
0μmとし、SiとSiO2 の多層膜により、一方の端
面の反射率が70%、他方の端面の反射率が90%の高
反射コートを施した。
The semiconductor laser of this embodiment has a cavity length of 20.
The thickness was 0 μm, and a high-reflection coating having a reflectance of 70% on one end face and a reflectance of 90% on the other end face was applied by a multilayer film of Si and SiO 2 .

【0036】本実施例の半導体レーザの発振波長は1.
3μmで、しきい電流は2.3mA,スロープ効率ηの
温度変動はη(75℃)/η(25℃)〜0.8とn基
板上に形成したレーザと同様のp基板上に形成したよう
な低しきい電流のレーザ素子としては優れた特性を示し
た。活性層にSiに添加を行わなかった同様な構造の素
子としては、しきい電流η(75℃)/η(25℃)〜
0.7となった。これは、光ガイド層32中のキャリア
濃度が5×1017cm-3と比較的高いために、高濃度に
添加された基板30からのZnの拡散をこの層で大幅に
低減でき、活性層33の量子井戸構造の中にZnの蓄積
が起こることを防ぐことができたためである。ここで、
光ガイド層32中のキャリア濃度を5×1018cm-3
上の高い濃度とすると素子の寿命が急激に低下した。
The oscillation wavelength of the semiconductor laser of this embodiment is 1.
At 3 μm, the threshold current was 2.3 mA, and the temperature variation of the slope efficiency η was η (75 ° C.) / Η (25 ° C.) ˜0.8, which was formed on the same p substrate as the laser formed on the n substrate. It showed excellent characteristics as a laser device with such a low threshold current. As an element having a similar structure in which Si is not added to the active layer, a threshold current η (75 ° C.) / Η (25 ° C.)
It became 0.7. This is because the carrier concentration in the light guide layer 32 is relatively high at 5 × 10 17 cm −3 , so that the diffusion of Zn from the substrate 30 added at a high concentration can be greatly reduced in this layer, and the active layer This is because it was possible to prevent the accumulation of Zn in the quantum well structure of No. 33. here,
When the carrier concentration in the light guide layer 32 was set to a high concentration of 5 × 10 18 cm −3 or more, the life of the device was drastically reduced.

【0037】なお、本発明は上述した各実施例に限定さ
れるものではない。実施例では、光ガイド層、量子井戸
構造の井戸層,障壁層、いずれにもSiの添加を行った
が、Siの添加はこの一部分だけでもそれに応じた効果
がある。また、実施例ではp型の不純物としてZnを用
いたが、Cd,Mg,Be等をp型の不純物として用い
た場合にも本発明はZnの場合と同様の効果を発揮す
る。
The present invention is not limited to the above embodiments. In the embodiment, Si is added to the light guide layer, the well layer having the quantum well structure, and the barrier layer. However, even if only a part of Si is added, the corresponding effect can be obtained. Further, although Zn is used as the p-type impurity in the examples, the present invention exhibits the same effect as that of Zn when Cd, Mg, Be, etc. are used as the p-type impurity.

【0038】また、実施例で説明した量子井戸構造はい
ずれも圧縮歪みのGaInAsないしGaInAsP量
子井戸であるが、歪みが無くても、引張り歪みの量子井
戸構造でもよい。さらに、InAsPの活性層等への適
用も可能である。また、実施例では通常の埋め込み型の
ファブリペローレーザを例にとり説明したが、メサ構造
やリッジウェイブ構造のレーザ、DFBレーザや面発光
レーザへの応用も可能である。その他、本発明の要旨を
逸脱しない範囲で、種々変形して実施することができ
る。
Although the quantum well structures described in the embodiments are compression strained GaInAs or GaInAsP quantum wells, they may be strained or tensile strained quantum well structures. Further, InAsP can be applied to an active layer and the like. Further, in the embodiments, the description has been made by taking the ordinary embedded Fabry-Perot laser as an example, but the invention can be applied to a laser having a mesa structure or a ridge wave structure, a DFB laser, or a surface emitting laser. In addition, various modifications can be made without departing from the scope of the present invention.

【0039】[0039]

【発明の効果】以上詳述したように本発明によれば、量
子井戸構造の活性層中にSiを積極的に添加し、不純物
としてのSiの濃度を1×1016cm-3〜5×1017
-3に設定することにより、活性層中でp型不純物(例
えばZn)の拡散を抑制して、量子井戸構造中でのp型
不純物の蓄積及び深いレベルの発生を抑制することが可
能となる。従って、波長の制御が容易なGaInAsの
歪み量子井戸構造を用いて、しきい値が低くかつ素子特
性の温度依存性を小さくすることのできる半導体レーザ
装置を実現することが可能となる。
As described above in detail, according to the present invention, Si is positively added to the active layer of the quantum well structure so that the concentration of Si as an impurity is 1 × 10 16 cm −3 to 5 ×. 10 17 c
By setting m −3 , it is possible to suppress diffusion of p-type impurities (for example, Zn) in the active layer, and suppress accumulation of p-type impurities and generation of deep level in the quantum well structure. Become. Therefore, it is possible to realize a semiconductor laser device having a low threshold value and a small temperature dependence of element characteristics by using a strained quantum well structure of GaInAs whose wavelength can be easily controlled.

【0040】またこの効果は高出力の半導体レーザにも
適用可能であり、素子特性の向上を実現できる。さら
に、GaInAs井戸層を用いた場合には、井戸層がG
aInAs混晶であり特に有機金属気相成長法を用いた
場合には組成の決定が容易であり発振波長が容易に決定
できる。特に、埋め込み型の1.5μm帯の半導体レー
ザにおいて本発明の効果は絶大である。
Further, this effect can be applied to a high-power semiconductor laser, and the improvement of device characteristics can be realized. Furthermore, when a GaInAs well layer is used, the well layer is G
It is an aInAs mixed crystal, and particularly when the metal organic chemical vapor deposition method is used, the composition can be easily determined and the oscillation wavelength can be easily determined. In particular, the effect of the present invention is great in an embedded type 1.5 μm band semiconductor laser.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係わる半導体レーザの
素子構造を示す断面図。
FIG. 1 is a sectional view showing an element structure of a semiconductor laser according to a first embodiment of the present invention.

【図2】第1の実施例におけるしきい電流のキャリア濃
度依存性を示す特性図。
FIG. 2 is a characteristic diagram showing the carrier concentration dependence of the threshold current in the first embodiment.

【図3】本発明の第2の実施例に係わる半導体レーザの
素子構造を示す断面図。
FIG. 3 is a sectional view showing a device structure of a semiconductor laser according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…n−InP基板 11…n−In
Pクラッド層 12…n−GaInAsP光ガイド層 13…量子井戸
活性層 14…GaInAsP光ガイド層 15…p−In
Pクラッド層 16…p−InP層 17…n−In
P電流阻止層 18…p−InP層 19…p−Ga
InAsコンタクト層 21…Au-Zn/Au電極(p側電極) 22…Au-Ge/Ni
/Au 電極(n側電極) 30…p−InP基板 31…p−In
Pクラッド層 32…GaInAsP光ガイド層 33…量子井戸
活性層 34…GaInAsP光ガイド層 35…n−In
Pクラッド層 36a,36b…p−InP層 37…n−In
P電流阻止層 38…n−InP層 39…n−Ga
InAsコンタクト層 41…Au-Ge/Ni/Au 電極(n側電極) 42…Au-Zn/Au
電極(p側電極)
10 ... n-InP substrate 11 ... n-In
P-clad layer 12 ... n-GaInAsP light guide layer 13 ... Quantum well active layer 14 ... GaInAsP light guide layer 15 ... p-In
P cladding layer 16 ... p-InP layer 17 ... n-In
P current blocking layer 18 ... p-InP layer 19 ... p-Ga
InAs contact layer 21 ... Au-Zn / Au electrode (p-side electrode) 22 ... Au-Ge / Ni
/ Au electrode (n-side electrode) 30 ... p-InP substrate 31 ... p-In
P cladding layer 32 ... GaInAsP light guide layer 33 ... Quantum well active layer 34 ... GaInAsP light guide layer 35 ... n-In
P clad layer 36a, 36b ... p-InP layer 37 ... n-In
P current blocking layer 38 ... n-InP layer 39 ... n-Ga
InAs contact layer 41 ... Au-Ge / Ni / Au electrode (n-side electrode) 42 ... Au-Zn / Au
Electrode (p-side electrode)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野村 正明 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaaki Onomura No. 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Incorporated Toshiba Research and Development Center

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】GaInAsの歪み量子井戸構造からなる
活性層をp型及びn型のクラッド層で挟んだ半導体レー
ザ装置であって、 前記活性層は気相成長法で形成されており、かつ前記活
性層又は前記活性層とp型クラッド層の間に設けられた
光ガイド層の少なくとも一部で、不純物としてのSiの
濃度を1×1016cm-3〜5×1017cm-3に設定して
なることを特徴とする半導体レーザ装置。
1. A semiconductor laser device in which an active layer having a strained quantum well structure of GaInAs is sandwiched between p-type and n-type cladding layers, the active layer being formed by a vapor phase epitaxy method, and The concentration of Si as an impurity is set to 1 × 10 16 cm −3 to 5 × 10 17 cm −3 in at least a part of the active layer or the optical guide layer provided between the active layer and the p-type cladding layer. A semiconductor laser device characterized by the following.
JP23004093A 1993-09-16 1993-09-16 Semiconductor laser device Expired - Fee Related JP3381976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23004093A JP3381976B2 (en) 1993-09-16 1993-09-16 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23004093A JP3381976B2 (en) 1993-09-16 1993-09-16 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH0786695A true JPH0786695A (en) 1995-03-31
JP3381976B2 JP3381976B2 (en) 2003-03-04

Family

ID=16901627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23004093A Expired - Fee Related JP3381976B2 (en) 1993-09-16 1993-09-16 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP3381976B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356600A (en) * 2003-03-31 2004-12-16 Hitachi Cable Ltd Semiconductor light emitting device
JP2009004451A (en) * 2007-06-19 2009-01-08 Sumitomo Electric Ind Ltd Semiconductor optical element and manufacturing method thereof
JP2012220530A (en) * 2011-04-04 2012-11-12 Mitsubishi Electric Corp Optical modulator
WO2019216308A1 (en) * 2018-05-11 2019-11-14 Dowaエレクトロニクス株式会社 Semiconductor light-emitting element and method for manufacturing semiconductor light-emitting element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356600A (en) * 2003-03-31 2004-12-16 Hitachi Cable Ltd Semiconductor light emitting device
JP2009004451A (en) * 2007-06-19 2009-01-08 Sumitomo Electric Ind Ltd Semiconductor optical element and manufacturing method thereof
JP2012220530A (en) * 2011-04-04 2012-11-12 Mitsubishi Electric Corp Optical modulator
WO2019216308A1 (en) * 2018-05-11 2019-11-14 Dowaエレクトロニクス株式会社 Semiconductor light-emitting element and method for manufacturing semiconductor light-emitting element
JP2019197868A (en) * 2018-05-11 2019-11-14 Dowaエレクトロニクス株式会社 Semiconductor light emitting device and manufacturing method for semiconductor light emitting device

Also Published As

Publication number Publication date
JP3381976B2 (en) 2003-03-04

Similar Documents

Publication Publication Date Title
EP1182756B1 (en) Semiconductor laser device having lower threshold current
US20050194634A1 (en) Semiconductor device, semiconductor laser, their manufacturing methods and etching methods
JP3129779B2 (en) Semiconductor laser device
EP0575684A1 (en) Decoupled optic and electronic confinement laser diode
US6853015B2 (en) Optical semiconductor device including InGaAlAs doped with Zn
US20010048111A1 (en) Distributed feedback semiconductor laser device
JP2997573B2 (en) Semiconductor laser device
JP4641230B2 (en) Optical semiconductor device
JP2000114661A (en) Semiconductor laser element and optical disk device
EP0701309B1 (en) Semiconductor laser diode
JPH08255950A (en) Semiconductor laser
JP3381976B2 (en) Semiconductor laser device
WO2017192718A1 (en) Semiconductor laser incorporating an electron barrier with low aluminum content
JPH0697592A (en) Semiconductor laser and manufacture thereof
JP3645320B2 (en) Semiconductor laser element
JP3497290B2 (en) Semiconductor crystal structure, semiconductor laser and method of manufacturing the same
US20180269658A1 (en) Semiconductor laser incorporating an electron barrier with low aluminum content
JP3033333B2 (en) Semiconductor laser device
Glew et al. Growth and assessment of InGaAs/InGaAlAs/InP multiple quantum well lasers
JPH0669589A (en) Semiconductor laser element
JP3239821B2 (en) Method for producing strained semiconductor crystal
US20040119080A1 (en) Semiconductor optical device
JP3115006B2 (en) Semiconductor laser device
JPH0563290A (en) Semiconductor laser
US6636541B1 (en) Semiconductor laser device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20071220

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees