JPH0786636A - Light emitting diode device - Google Patents

Light emitting diode device

Info

Publication number
JPH0786636A
JPH0786636A JP24866693A JP24866693A JPH0786636A JP H0786636 A JPH0786636 A JP H0786636A JP 24866693 A JP24866693 A JP 24866693A JP 24866693 A JP24866693 A JP 24866693A JP H0786636 A JPH0786636 A JP H0786636A
Authority
JP
Japan
Prior art keywords
layer
light emitting
light
cladding layer
diode device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24866693A
Other languages
Japanese (ja)
Inventor
Hideo Tetsu
英男 鐵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP24866693A priority Critical patent/JPH0786636A/en
Publication of JPH0786636A publication Critical patent/JPH0786636A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

PURPOSE:To obtain luminous output with efficiency by forming on a second cladding layer a current constricting layer of a higher refractive index than that of the second cladding layer, and forming electrodes on the underside of the substrate and on the periphery of the luminous screen. CONSTITUTION:A first cladding layer 22, an active layer 23, and a second cladding layer 24, are formed on a substrate 21 in this order. Silicon nitride 27 is formed on the entire surface thereof, and is selectively removed except for its central portion. The second cladding layer 24 is etched halfway using the silicon nitride 27 left in the center as an etching mask. A current constricting layer 28 of a higher refractive index than that of the second cladding layer 24, is formed thereon; however, no current constricting layer 28 is formed on the silicon nitride 27. The silicon nitride 27 is removed by etching, and then a contact layer 29 is formed. Finally, an electrode 26 is formed on the periphery of the contact layer 29 by vapor deposition to make the central portion of the luminous screen a luminous window 30, and further an electrode 25 is also formed on the underside of the substrate 21 by vapor deposition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発光ダイオード装置に
係り、特に空間光通信に使用するのに好適なダブルへテ
ロ構造を有する面発光型発光ダイオード装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting diode device, and more particularly to a surface emitting light emitting diode device having a double hetero structure suitable for use in spatial optical communication.

【0002】[0002]

【従来の技術】従来のダブルへテロ構造を有する面発光
型発光ダイオード装置の構成図を図4に示す。同図に示
す発光ダイオード装置は、n型GaAs基板1上に、n
型Al0.3 Ga0.7 Asの第1のクラッド層2、n型G
aAsの活性層3、p型Al0.3 Ga0.7 Asの第2の
クラッド層4が順次積層されている。そして、基板1の
裏面にはn型電極5が設けられ、導電性樹脂7を介して
ステム8に設置されている。
2. Description of the Related Art FIG. 4 is a block diagram of a conventional surface emitting light emitting diode device having a double hetero structure. The light emitting diode device shown in FIG.
Type Al 0.3 Ga 0.7 As first cladding layer 2, n-type G
The active layer 3 of aAs and the second cladding layer 4 of p-type Al 0.3 Ga 0.7 As are sequentially laminated. Then, an n-type electrode 5 is provided on the back surface of the substrate 1, and is installed on the stem 8 via a conductive resin 7.

【0003】また、第2のクラッド層4上にはp型電極
6が設けられ、金ワイヤ9によりリード10に接続され
ている。この様な発光ダイオード装置では、電極5,6
間に電流を流すと、活性層3にて発光するので、その光
は、第2のクラッド層4の上面から出力される面発光型
の発光ダイオード装置となる。
A p-type electrode 6 is provided on the second cladding layer 4 and is connected to the lead 10 by a gold wire 9. In such a light emitting diode device, the electrodes 5, 6 are
When a current is applied between them, the active layer 3 emits light, so that the light is emitted from the upper surface of the second cladding layer 4 to form a surface-emitting light emitting diode device.

【0004】[0004]

【発明が解決しようとする課題】従来の発光ダイオード
装置は、光の出力される面内に、p型電極6が形成され
ており、このp型電極6や金ワイヤ9が出力光の影にな
ったり、出力光を吸収したりするので、発光出力が減少
したり、出力光の形状が均一にならないという課題があ
った。
In the conventional light emitting diode device, the p-type electrode 6 is formed in the plane from which the light is output, and the p-type electrode 6 and the gold wire 9 are shaded by the output light. However, there is a problem in that the light emission output is reduced and the shape of the output light is not uniform because the light is absorbed or the output light is absorbed.

【0005】そこで本発明は、実際に発光される発光出
力面を小さくし、電極をこの発光出力面外に形成するこ
とにより、高効率の発光出力が得られる発光ダイオード
装置を提供することを目的とする。
Therefore, the present invention has an object to provide a light emitting diode device which can obtain a highly efficient light emission output by reducing the light emission output surface for actual light emission and forming the electrodes outside the light emission output surface. And

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の手段として、基板上に少なくとも第1のクラッド層と
活性層とこの第1のクラッド層とは導電型の異なる第2
のクラッド層とがこの順番に形成されたダブルへテロ構
造を有する発光ダイオード装置において、前記第2のク
ラッド層に前記第2のクラッド層よりも高屈折率の電流
狭窄層を設けると共に、基板裏面及び発光面の周囲部分
に電極を形成したことを特徴とする発光ダイオード装
置、または、基板上に少なくとも第1のクラッド層と活
性層とこの第1のクラッド層とは導電型の異なる第2の
クラッド層とがこの順番に形成されたダブルへテロ構造
を有する発光ダイオード装置において、前記第2のクラ
ッド層に電流狭窄層を設け、基板裏面に電極を形成する
と共に、前記活性層から出力される光が発光面において
臨界角となる領域外の発光面上に電極を形成したことを
特徴とする発光ダイオード装置を提供しようとするもの
である。
As means for achieving the above object, at least a first clad layer, an active layer, and a second clad layer having different conductivity types are provided on a substrate.
In the light emitting diode device having a double hetero structure in which the second cladding layer and the second cladding layer are formed in this order, a current confinement layer having a higher refractive index than that of the second cladding layer is provided in the second cladding layer, and And a light emitting diode device characterized in that an electrode is formed in the peripheral portion of the light emitting surface, or at least a first clad layer, an active layer, and a second clad layer having different conductivity types on the substrate. In a light emitting diode device having a double hetero structure in which a clad layer is formed in this order, a current constriction layer is provided on the second clad layer, an electrode is formed on the back surface of the substrate, and the current is output from the active layer. It is an object of the present invention to provide a light emitting diode device characterized in that an electrode is formed on a light emitting surface outside a region where light has a critical angle on the light emitting surface.

【0007】[0007]

【作用】図3に示すように、ある媒体A内から別の媒体
Bに向かって進行する光は、それぞれの媒体A,Bの屈
折率をa,bとすると、次式で示される臨界角θよりも
大きな角度で媒体A,Bの境界面に到達すると、その境
界面で反射されてしまい、媒体B内には進行しない。 θ=sin-1(b/a)
As shown in FIG. 3, the light traveling from one medium A toward another medium B has a critical angle expressed by the following equation, where the refractive indices of the respective media A and B are a and b. When it reaches the boundary surface between the media A and B at an angle larger than θ, it is reflected at the boundary surface and does not travel into the medium B. θ = sin -1 (b / a)

【0008】したがって、θ1 <θ<θ2 とすると、光
1 は角度θ1 で境界面に到達しているので、媒体B内に
進行するが、光2 は角度θ2 で境界面に到達しているの
で、媒体A内に反射されてしまう。
Therefore, if θ 1 <θ <θ 2 ,
Since 1 reaches the boundary surface at the angle θ 1, it travels into the medium B, but since light 2 reaches the boundary surface at the angle θ 2 , it is reflected into the medium A.

【0009】このことから、発光ダイオード装置の発光
面から外部に出力される光は、発光領域にて発光された
光のうち、臨界角θよりも小さい角度で発光面に到達し
た光だけが外部に出力されることになる。
From this, the light emitted from the light emitting surface of the light emitting diode device to the outside is only the light that has reached the light emitting surface at an angle smaller than the critical angle θ of the light emitted in the light emitting region. Will be output to.

【0010】発光ダイオード装置に電流狭窄層を形成し
て、電流の流れる経路を制限すると、発光領域の発光部
分を小さくすることができる。そして、この電流狭窄層
を高屈折率にすると、発光領域から電流狭窄層に向けて
発光される光は反射されるので、発光面から外部に出力
される光は、この電流狭窄層の間を通って発光面に達し
た光だけとなり、発光ダイオード装置の発光面のうち、
実際に発光する部分は小さくなる。したがって、発光面
のうちその発光する部分以外のところに電極を設けれ
ば、電極が発光出力の影になったりすることがなくな
る。
If a current confinement layer is formed in the light emitting diode device to limit the current flow path, the light emitting portion of the light emitting region can be made smaller. When the current confinement layer has a high refractive index, the light emitted from the light emitting region toward the current confinement layer is reflected, so that the light output from the light emitting surface to the outside is between the current confinement layers. Only the light that reaches through to the light emitting surface is reached, and among the light emitting surface of the light emitting diode device,
The part that actually emits light becomes smaller. Therefore, if the electrode is provided on a portion of the light emitting surface other than the light emitting portion, the electrode does not become a shadow of the light emission output.

【0011】また、発光面において電流狭窄層の間を通
って出力される光の臨界角θを計算して、この角度θ内
の発光面を窓部とし、この窓部以外のところに電極を設
けることにより、同様に電極が発光出力の影になること
を防止することができる。
Further, the critical angle θ of the light output between the current confinement layers on the light emitting surface is calculated, and the light emitting surface within this angle θ is used as a window portion, and an electrode is provided at a portion other than this window portion. By providing the electrodes, it is possible to prevent the electrodes from shadowing the light emission output.

【0012】[0012]

【実施例】本発明の発光ダイオード装置の一実施例を図
面と共に説明する。なお、通常、発光ダイオード装置は
1枚のウエハ上に同一構造の発光ダイオード装置を多数
形成してから、一つづつに分離するのであるが、以下の
実施例では、1つの素子だけを取り上げてその構造と製
造方法について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the light emitting diode device of the present invention will be described with reference to the drawings. Normally, a light emitting diode device is formed by forming a large number of light emitting diode devices having the same structure on one wafer and then separating them one by one. However, in the following embodiments, only one element will be taken up. The structure and manufacturing method will be described.

【0013】図1(A)〜(E)は、本発明の発光ダイ
オード装置の一実施例の製造方法を示す工程図である。
まず、同図(A)に示すように、n型GaAs基板21
上にMOCVD法を用いてn型Al0.3 Ga0.7 Asの
第1のクラッド層22を20μm、n型GaAsの活性
層23を1μm、p型Al0.3 Ga0.7 Asの第2のク
ラッド層24を20μmの厚さで順次積層する。そし
て、窒化シリコン27をCVD法により全面に2000
A(オングストローム)程度の厚さに形成し、中央部分
の直径150μm程度を残して他の部分ををHF水溶液
を用いて選択除去する。
FIGS. 1A to 1E are process drawings showing a method of manufacturing an embodiment of a light emitting diode device of the present invention.
First, as shown in FIG.
The first cladding layer 22 of n-type Al 0.3 Ga 0.7 As is 20 μm, the active layer 23 of n-type GaAs is 1 μm, and the second cladding layer 24 of p-type Al 0.3 Ga 0.7 As is 20 μm by MOCVD. Are sequentially laminated with the thickness of. Then, the silicon nitride 27 is deposited over the entire surface by the CVD method to 2000.
It is formed to a thickness of about A (angstrom), and the other part is selectively removed using an HF aqueous solution, leaving a diameter of about 150 μm at the central part.

【0014】次に、同図(B)に示すように、この中央
部分に残した窒化シリコン27をエッチングマスクとし
て燐酸系のエッチング液を用いて第2のクラッド層24
の途中まで(この実施例では深さ10μm)エッチング
する。そして、同図(C)に示すように、n型Al0.8
Ga0.2 Asの電流狭窄層28を10μmの厚さにMO
CVD法を用いて積層する。このとき、窒化シリコン2
7上には、n型Al0.8 Ga0.2 Asは積層せず、表面
はほぼ平坦となる。さらに、窒化シリコン27をエッチ
ング除去してから、同図(D)に示すように、p型Al
0.3 Ga0.7 Asのコンタクト層29を5μmの厚さに
MOCVD法を用いて積層する。
Next, as shown in FIG. 2B, the second cladding layer 24 is formed by using a phosphoric acid-based etching solution with the silicon nitride 27 remaining in the central portion as an etching mask.
The etching is performed halfway (in this embodiment, the depth is 10 μm). Then, as shown in FIG. (C), n-type Al 0.8
A Ga 0.2 As current confinement layer 28 is formed to a thickness of 10 μm by MO.
Stack using the CVD method. At this time, silicon nitride 2
No n-type Al 0.8 Ga 0.2 As is laminated on the surface of No. 7, and the surface is almost flat. Further, after removing the silicon nitride 27 by etching, as shown in FIG.
A 0.3 Ga 0.7 As contact layer 29 is laminated to a thickness of 5 μm by MOCVD.

【0015】最後に、このコンタクト層29上の外周部
にp型AuBe/Au電極26を蒸着して発光面の中央
部分を発光窓30とすると共に、n型GaAs基板21
の裏面にn型AuGeNi/Au電極25を蒸着するこ
とにより、本発明の発光ダイオード装置を製造すること
ができる。そして、このようにして製造した発光ダイオ
ード装置は、電極25,26間に電流を流すと、電流狭
窄層28は、第2のクラッド層24と導電型が異なるの
で電流が流れず、電流は、電流狭窄層28の間を通って
流れるので、活性層23のほぼ中央部分だけが発光領域
aとなる。そして、電流狭窄層28の屈折率は、第2の
クラッド層24よりも高いので、この発光領域aから発
光される光のうち、電流狭窄層28に照射される光は、
電流狭窄層28で反射されて電流狭窄層28の間を通っ
て他の光と共に発光面に到達する。したがって、発光面
に到達する光は、中央部分の発光窓30内だけになり、
p型AuBe/Au電極26が出力光の影になったり、
光を吸収したりすることはない。
Finally, a p-type AuBe / Au electrode 26 is vapor-deposited on the outer peripheral portion of the contact layer 29 to form a light-emitting window 30 at the center of the light-emitting surface, and the n-type GaAs substrate 21.
The light emitting diode device of the present invention can be manufactured by depositing the n-type AuGeNi / Au electrode 25 on the back surface of the. In the light-emitting diode device manufactured in this manner, when a current is passed between the electrodes 25 and 26, the current confinement layer 28 has a conductivity type different from that of the second cladding layer 24, so that no current flows, and the current is Since the current flows through between the current confinement layers 28, only the substantially central portion of the active layer 23 becomes the light emitting region a. Since the refractive index of the current confinement layer 28 is higher than that of the second cladding layer 24, of the light emitted from the light emitting region a, the light emitted to the current confinement layer 28 is
The light is reflected by the current confinement layer 28, passes between the current confinement layers 28, and reaches the light emitting surface together with other light. Therefore, the light reaching the light emitting surface is only in the light emitting window 30 in the central portion,
The p-type AuBe / Au electrode 26 becomes a shadow of the output light,
It does not absorb light.

【0016】また、同図(E)に示すように、電流狭窄
層28の間を通って出力される光は、図中bで表される
範囲を通過する。そして、この範囲bを通過して発光面
における入射角が臨界角θとなる光をL1 とすると、こ
のL1 よりも入射角の小さい光のみが出力されることに
なるので、この発光面での臨界角θを計算して、この臨
界角θよりも大きな角度でしか光が入射されない部分に
p型AuBe/Au電極26を設けることにより、発光
窓30を必要かつ十分な大きさにすることができ、さら
に、p型AuBe/Au電極26による光吸収を確実に
防ぐことができる。
Further, as shown in FIG. 3E, the light output between the current confinement layers 28 passes through the range indicated by b in the figure. If the light passing through the range b and having an incident angle on the light emitting surface becomes the critical angle θ is L 1 , only light having an incident angle smaller than this L 1 is output. The critical angle θ is calculated and the p-type AuBe / Au electrode 26 is provided in a portion where light is incident only at an angle larger than the critical angle θ, so that the light emitting window 30 has a necessary and sufficient size. Further, it is possible to reliably prevent light absorption by the p-type AuBe / Au electrode 26.

【0017】上記した実施例では、高屈折率の電流狭窄
層28を設けると共に発光面において臨界角となる領域
外の発光面上にp型AuBe/Au電極26を形成して
いるが、高屈折率の電流狭窄層28を設けた場合には、
発光窓30を広めにとれるようにして電極26を形成す
れば良い。
In the above-described embodiment, the current confinement layer 28 having a high refractive index is provided and the p-type AuBe / Au electrode 26 is formed on the light emitting surface outside the region having the critical angle on the light emitting surface. When the current confinement layer 28 having a high rate is provided,
The electrode 26 may be formed so that the light emitting window 30 can be widened.

【0018】さらに、電流狭窄層28aが高屈折率を有
していない場合には、活性層23で発光される光は、電
流狭窄層28a内も通って発光面に達する。このとき、
図2に示すように、電流は、電流狭窄層28aの間を通
って流れるので、その発光領域は、電流狭窄層28aの
端部の垂線で囲まれた図中cで示す領域となる(電流は
多少広がるが、第2のクラッド層24が薄いので無視す
ることができる)。したがって、この範囲cを通過して
発光面における入射角が臨界角θとなる光をL2 とする
と、このL2 よりも入射角の小さい光のみが出力される
ことになるので、この発光面での臨界角θを計算して、
この臨界角θよりも大きな角度でしか光が入射されない
部分にp型AuBe/Au電極26を設けることによ
り、発光窓30を必要かつ十分な大きさにすることがで
き、さらに、p型AuBe/Au電極26による光吸収
を確実に防ぐことができる。
Further, when the current confinement layer 28a does not have a high refractive index, the light emitted from the active layer 23 passes through the current confinement layer 28a and reaches the light emitting surface. At this time,
As shown in FIG. 2, since the current flows between the current confinement layers 28a, the light emitting region thereof is a region surrounded by a vertical line at the end of the current confinement layer 28a and indicated by c (current). Spreads somewhat, but can be ignored because the second cladding layer 24 is thin). Therefore, when the light incident angle of the light emitting surface passes through the range c becomes the critical angle θ and L 2, since only a small light having incident angle than the L 2 will be output, the light emitting surface Calculate the critical angle θ at
By providing the p-type AuBe / Au electrode 26 in a portion where light is incident only at an angle larger than the critical angle θ, the light emission window 30 can be made necessary and sufficient, and further, the p-type AuBe / Au / It is possible to reliably prevent light absorption by the Au electrode 26.

【0019】[0019]

【発明の効果】本発明の発光ダイオード装置は、第2の
クラッド層に第2のクラッド層よりも高屈折率の電流狭
窄層を設けると共に、発光面の周囲部分に電極を形成し
たので、電流狭窄層に照射される光は、この電流狭窄層
で反射されて他の光と共に電流狭窄層の間を通って発光
面に到達するので、発光面に到達する光は、中央部分の
発光窓内だけになり、電極やこの電極に接続されるワイ
ヤなどによって発光出力が吸収されたり、影になったり
せず、高効率で均一な発光出力を得ることができる。
In the light emitting diode device of the present invention, since the current confinement layer having a higher refractive index than that of the second cladding layer is provided in the second cladding layer and the electrode is formed in the peripheral portion of the light emitting surface, The light radiated to the constriction layer is reflected by the current confinement layer and reaches the light emitting surface through the current confinement layers together with other light. Therefore, the light reaching the light emitting surface is in the light emitting window in the central portion. Therefore, the light emission output is not absorbed or shaded by the electrode or the wire connected to the electrode, and a highly efficient and uniform light emission output can be obtained.

【0020】また、第2のクラッド層に電流狭窄層を設
け、活性層から出力される光が発光面において臨界角と
なる領域外の発光面上に電極を形成した場合は、さら
に、発光窓を必要かつ十分な大きさにすることができ、
電極による光吸収をより確実に防ぐことができるという
効果がある。
When a current confinement layer is provided in the second cladding layer and an electrode is formed on the light emitting surface outside the region where the light emitted from the active layer has a critical angle on the light emitting surface, the light emitting window is further provided. Can be required and large enough,
There is an effect that the light absorption by the electrodes can be prevented more reliably.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)〜(E)は本発明の発光ダイオード装置
の一実施例の製造方法を示す工程図である。
1A to 1E are process diagrams showing a manufacturing method of an embodiment of a light emitting diode device of the present invention.

【図2】本発明の発光ダイオード装置の他の実施例を示
す模式図である。
FIG. 2 is a schematic view showing another embodiment of the light emitting diode device of the present invention.

【図3】屈折率と臨界角の関係を示す模式図である。FIG. 3 is a schematic diagram showing a relationship between a refractive index and a critical angle.

【図4】従来の発光ダイオード装置を示す構成図であ
る。
FIG. 4 is a configuration diagram showing a conventional light emitting diode device.

【符号の説明】[Explanation of symbols]

1,21 n型GaAs基板 2,22 n型Al0.3 Ga0.7 Asの第1のクラッド
層 3,23 n型GaAsの活性層 4,24 p型Al0.3 Ga0.7 Asの第2のクラッド
層 5,25 n型電極 6,26 p型電極 7 導電性樹脂 8 ステム 9 金ワイヤ 10 リード 11 発光ダイオード素子 12 リードフレーム 27 窒化シリコン 28,28a n型Al0.8 Ga0.2 Asの電流狭窄層 29 p型Al0.3 Ga0.7 Asのコンタクト層 30 発光窓
1,21 n-type GaAs substrate 2,22 n-type Al 0.3 Ga 0.7 As first cladding layer 3,23 n-type GaAs active layer 4,24 p-type Al 0.3 Ga 0.7 As second cladding layer 5, 25 n-type electrode 6,26 p-type electrode 7 conductive resin 8 stem 9 gold wire 10 lead 11 light emitting diode element 12 lead frame 27 silicon nitride 28,28a n-type Al 0.8 Ga 0.2 As current constriction layer 29 p-type Al 0.3 Ga 0.7 As contact layer 30 Light emitting window

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】基板上に少なくとも第1のクラッド層と活
性層とこの第1のクラッド層とは導電型の異なる第2の
クラッド層とがこの順番に形成されたダブルへテロ構造
を有する発光ダイオード装置において、 前記第2のクラッド層に前記第2のクラッド層よりも高
屈折率の電流狭窄層を設けると共に、基板裏面及び発光
面の周囲部分に電極を形成したことを特徴とする発光ダ
イオード装置。
1. A light emission having a double hetero structure in which at least a first cladding layer, an active layer, and a second cladding layer having a conductivity type different from that of the first cladding layer are formed in this order on a substrate. In the diode device, the second clad layer is provided with a current confinement layer having a higher refractive index than that of the second clad layer, and electrodes are formed around the back surface of the substrate and the light emitting surface. apparatus.
【請求項2】基板上に少なくとも第1のクラッド層と活
性層とこの第1のクラッド層とは導電型の異なる第2の
クラッド層とがこの順番に形成されたダブルへテロ構造
を有する発光ダイオード装置において、 前記第2のクラッド層に電流狭窄層を設け、 基板裏面に電極を形成すると共に、前記活性層から出力
される光が発光面において臨界角となる領域外の発光面
上に電極を形成したことを特徴とする発光ダイオード装
置。
2. A light emission having a double hetero structure in which at least a first cladding layer, an active layer, and a second cladding layer having a conductivity type different from that of the first cladding layer are formed in this order on a substrate. In the diode device, a current confinement layer is provided on the second cladding layer, an electrode is formed on the back surface of the substrate, and an electrode is formed on a light emitting surface outside a region where light emitted from the active layer has a critical angle on the light emitting surface. A light emitting diode device characterized by being formed.
JP24866693A 1993-09-09 1993-09-09 Light emitting diode device Pending JPH0786636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24866693A JPH0786636A (en) 1993-09-09 1993-09-09 Light emitting diode device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24866693A JPH0786636A (en) 1993-09-09 1993-09-09 Light emitting diode device

Publications (1)

Publication Number Publication Date
JPH0786636A true JPH0786636A (en) 1995-03-31

Family

ID=17181538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24866693A Pending JPH0786636A (en) 1993-09-09 1993-09-09 Light emitting diode device

Country Status (1)

Country Link
JP (1) JPH0786636A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180203A (en) * 2005-12-27 2007-07-12 Shinko Electric Ind Co Ltd Semiconductor device and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180203A (en) * 2005-12-27 2007-07-12 Shinko Electric Ind Co Ltd Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
JP3540605B2 (en) Light emitting element
US5739552A (en) Semiconductor light emitting diode producing visible light
JP5304662B2 (en) Light emitting element
US7968903B2 (en) Light emitting device
JP4850453B2 (en) Semiconductor light emitting device manufacturing method and semiconductor light emitting device
JP2018101675A (en) Semiconductor light-emitting element and method of manufacturing the same
JP2010114337A (en) Light-emitting device
WO2012040979A1 (en) Light emitting device and manufacturing method thereof
JPH045871A (en) Light-emitting diode array
CN109273573B (en) LED chip with vertical structure, reflecting electrode and preparation method thereof
JPH05283796A (en) Surface emission type semiconductor laser
JPH11266058A (en) Gallium nitride compound semiconductor laser diode
TW202218180A (en) Infrared LED element
WO2021129214A1 (en) Vertical-structured deep ultraviolet light-emitting diode and manufacturing method therefor
CN110176525B (en) Sub-wavelength vertical structure light emitting diode and preparation method thereof
JP2003142727A (en) Semiconductor light emitting device and its manufacturing method
CN109378378B (en) Vertical structure LED chip with reflecting electrode and preparation method thereof
JP2010192709A (en) Light-emitting element
JPH09129922A (en) Light emitting element and its manufacture
JPH0786636A (en) Light emitting diode device
KR100805324B1 (en) Light emitting diode for enhancing efficiency
JPH07263743A (en) Light-emitting diode
JP3652134B2 (en) Light emitting element array
JP2885463B2 (en) Method of manufacturing light emitting diode array
JPS61280686A (en) Semiconductor light emission element and manufacture of the same