JPH0786532B2 - Magnetic substance detection method - Google Patents

Magnetic substance detection method

Info

Publication number
JPH0786532B2
JPH0786532B2 JP8450490A JP8450490A JPH0786532B2 JP H0786532 B2 JPH0786532 B2 JP H0786532B2 JP 8450490 A JP8450490 A JP 8450490A JP 8450490 A JP8450490 A JP 8450490A JP H0786532 B2 JPH0786532 B2 JP H0786532B2
Authority
JP
Japan
Prior art keywords
optical path
magnetic
light
change
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8450490A
Other languages
Japanese (ja)
Other versions
JPH03282393A (en
Inventor
竜郎 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8450490A priority Critical patent/JPH0786532B2/en
Publication of JPH03282393A publication Critical patent/JPH03282393A/en
Publication of JPH0786532B2 publication Critical patent/JPH0786532B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、微弱な磁気を検出して磁性体を探知するに好
適な磁性体探知方法に関する。
The present invention relates to a magnetic body detection method suitable for detecting weak magnetism and detecting a magnetic body.

〔従来の技術〕[Conventional technology]

従来の微弱な磁気を検出する磁気センサの1つにジヨセ
フソン素子があり、微弱な磁気変化を検出して海中の潜
水艦を探知する為に用いられるので特に検出する磁気が
地磁気でかつ検出可能距離が長い技術内容は高度の軍事
機密として開示されていない。
One of the conventional magnetic sensors that detect weak magnetism is the Josephson element, which is used to detect subtle submarine by detecting weak magnetic changes. Therefore, the magnetism to be detected is geomagnetism and has a detectable distance. The long technical content is not disclosed as a high military secret.

次に微弱な磁気を検出する磁気センサとして磁歪材と光
フアィバを組み合わせた例があり、光フアィバをメタリ
ックガラスに挟むことにより磁気により光フアィバに圧
力変化を与える磁気センサや、光フアィバをメタリック
ガラスのボビンに巻いて磁気によりボビンが変形し光フ
アィバに圧力変化を与える磁気センサ及び光フアィバの
表面にニッケル等の磁歪材をコーティングし磁気により
ニッケル等が変形し光フアィバに圧力変化を与え光の伝
播位相変化を検出する磁気センサがある。
Next, there is an example of combining a magnetostrictive material and an optical fiber as a magnetic sensor that detects weak magnetism.A magnetic sensor that applies pressure change to the optical fiber by magnetism by sandwiching the optical fiber with metallic glass, or an optical fiber with a metallic glass is used. It is wound around a bobbin and the bobbin is deformed by magnetism to change the pressure on the optical fiber.The magnetic sensor and the surface of the optical fiber are coated with a magnetostrictive material such as nickel, and nickel is deformed by the magnetic force to change the pressure on the optical fiber. There are magnetic sensors that detect changes in the propagation phase.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記従来技術のうちジヨセフソン素子を用いる磁気セン
サは、ジヨセフソン素子の特性から超低温で作動させる
為に冷媒として液体ヘリウムや冷凍機を必要とし、設備
費や運転費が高価で取扱いも煩雑であった。
Among the above-mentioned conventional techniques, the magnetic sensor using the Josephson element requires liquid helium or a refrigerator as a refrigerant in order to operate at an ultralow temperature due to the characteristics of the Josephson element, and the equipment cost and operating cost are expensive and the handling is complicated.

一方磁歪材と光フアィバを組み合わせた磁気センサは感
度が著しく低くかつ磁気に対する指向性が無く磁気の方
向を特定出来ず磁性体探知装置として実用に供し得ない
という問題があった。
On the other hand, the magnetic sensor in which the magnetostrictive material and the optical fiber are combined has a problem that the sensitivity is extremely low, the directivity for magnetism is not present, the direction of magnetism cannot be specified, and it cannot be put to practical use as a magnetic body detection device.

本発明の目的は、上記問題を解決し高感度で磁気の方向
を特定出来かつ取扱いの簡便な磁性体探知方法を提供す
ることにある。
An object of the present invention is to solve the above-mentioned problems and to provide a magnetic material detection method which is highly sensitive and can specify the direction of magnetism and is easy to handle.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的は、光源が発光する光を第一の光路分離手段に
より2つの光路に分離し、分離された一方の光を長辺と
短辺からなる細長い直方体磁歪材の外周に前記長辺と平
行な光路が形成され、磁気により該光路長が変化し光路
を伝わる光の位相が変化する磁気検出光路に入力すると
共に、前記第一の光路分離手段により分離された他方の
光を磁気により該光路長が変化せず光路を伝わる光の位
相が変化しない参照光路に入力し、かつ、前記磁気検出
光路と該参照光路からの光を第二の光路分離手段により
1つの光路に合成し、該第二の光路分離手段からの光を
光検出手段に入力し、電気信号に変換し所定の処理を行
うことにより磁気方向を特定し、磁気分布の乱れるパタ
ーンから磁性体の存在を探知すること達成される。
The above-mentioned object is to separate the light emitted from the light source into two optical paths by the first optical path separating means, and to separate one of the separated lights into parallel to the long side on the outer periphery of the elongated rectangular parallelepiped magnetostrictive material having the long side and the short side. A different optical path is formed, and the optical path length is changed by magnetism, and the phase of the light transmitted through the optical path is changed, and the other light separated by the first optical path separating means is magnetized by the optical path. The light that propagates through the optical path without changing the length is input to the reference optical path and the magnetic detection optical path and the light from the reference optical path are combined into one optical path by the second optical path separating means, The light from the second optical path separating means is input to the light detecting means, converted into an electric signal and subjected to a predetermined process to specify the magnetic direction, and the presence of the magnetic substance is detected from the pattern in which the magnetic distribution is disturbed. It

〔作用〕[Action]

上記構成によれば、光源が発光する光を第一の光路分離
手段で2つの光路に分離し、一方の光を磁気検出光路に
入力し長辺と短辺からなる直方体の磁歪材に磁気が作用
すると磁歪材が歪みその外周に形成した光路の光路長が
変化し光路を伝播する光の位相が変化する。第一の光路
分離手段からの他方の光を参照光路に入力しここでは磁
気により光路長が変化しないから光路を伝播する光の位
相が変化しない。磁気検出光路と参照光路からの光を第
二の光路分離手段に入力し合成する。互いに位相が異な
2つの光を合成すると干渉して光の強さは変化するから
光検出手段に入力して電気信号に変換し所定の処理を行
なうと磁気を検出来、磁気分布の乱れるパターンから磁
性体の存在を探知することが出来る。
According to the above configuration, the light emitted from the light source is split into the two optical paths by the first optical path splitting means, and one of the lights is input to the magnetic detection optical path so that the rectangular magnetostrictive member having the long side and the short side is magnetized. When it acts, the magnetostrictive material is distorted, and the optical path length of the optical path formed on the outer periphery of the magnetostrictive material changes, and the phase of light propagating in the optical path changes. The other light from the first optical path separating means is input to the reference optical path, and the optical path length does not change here due to magnetism, so the phase of the light propagating in the optical path does not change. The light from the magnetic detection optical path and the light from the reference optical path are input to the second optical path separating means and combined. When two lights having different phases are combined, the light intensity changes due to interference, so that the light is input to the light detecting means, converted into an electric signal, and subjected to predetermined processing to detect magnetism, and from a pattern in which the magnetic distribution is disturbed. The presence of magnetic material can be detected.

磁気検出光路を長辺と短辺からなる細長い直方体の磁歪
材の外周に長辺と平行に光路を形成したことにより、長
手方向からの磁気に磁歪材が大きく伸縮して指向性が得
られ、かつ長手方向の光路が長いので磁歪材の伸縮につ
れて光路長も大きく伸縮し位相変化も大きく磁気検出感
度が高くなる。
By forming an optical path in parallel with the long side on the outer periphery of the elongated rectangular parallelepiped magnetostrictive material consisting of the long side and the short side, the magnetic detection optical path, the magnetostrictive material greatly expands and contracts in the magnetism from the longitudinal direction, and directivity is obtained. Moreover, since the optical path in the longitudinal direction is long, the optical path length greatly expands and contracts as the magnetostrictive material expands and contracts, the phase change also increases, and the magnetic detection sensitivity increases.

そして磁気検出手段を移動させて微弱な磁気を検出し、
該検出した微弱な磁気と記憶手段が記憶する予め計測し
た磁性体によって生じる磁気の不均一さ、距離による磁
気変化のパターンを照合判定手段に入力して照合し磁性
体の存在を判定することにより磁性体を探知することが
出来る。
Then, the magnetic detection means is moved to detect weak magnetism,
By inputting the nonuniformity of magnetism generated by the detected weak magnetic field and the magnetic material measured in advance in the storage means and the pattern of magnetic change due to distance to the verification determination means and verifying the presence of the magnetic material. The magnetic substance can be detected.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図により説明する。レーザ
光源1より出た光は、光カプラ2によって、リファレン
スループ3と磁気検出ループ4に分けられる。移相器6
は合成光の検出感度を高める為にリファレンスループ3
と磁気検出ループ4の光の位相差が1/4波長になる様に
移相する。磁気検出ループ4の光路長が磁気により変化
すると、その光は、光カプラ5でリファレンス光と合成
され、フォトダイオード5で干渉出力として電気信号と
して検出することができる。磁気検出ループ4に磁界が
加わっていない場合、フォトダイオードの出力信号は、
最大の値を示している。
An embodiment of the present invention will be described below with reference to FIG. The light emitted from the laser light source 1 is divided into a reference loop 3 and a magnetic detection loop 4 by an optical coupler 2. Phase shifter 6
Is a reference loop 3 to increase the detection sensitivity of the synthetic light.
And the magnetic detection loop 4 shifts the phase so that the phase difference of the light becomes 1/4 wavelength. When the optical path length of the magnetic detection loop 4 changes due to magnetism, the light is combined with the reference light by the optical coupler 5 and can be detected as an electric signal as an interference output by the photodiode 5. When no magnetic field is applied to the magnetic detection loop 4, the output signal of the photodiode is
It shows the maximum value.

磁気検出ループ4に使用する磁歪材の特性例を第2図に
示す。今AF合金を磁歪材として選定し、その磁歪率を第
2図より29.4×10-6m/50Oeの変化があるとみなす。なお
地磁気の水平分力は0.3Oeのオーダであるので、十分こ
の材料で潜水艦の検知目的に合致する。
FIG. 2 shows a characteristic example of the magnetostrictive material used for the magnetic detection loop 4. Now, select AF alloy as a magnetostrictive material, and assume that the magnetostriction rate changes from 29.4 × 10 -6 m / 50 Oe according to Fig. 2. Note that the horizontal component of the geomagnetism is on the order of 0.3 Oe, so this material is sufficient for the detection purpose of the submarine.

一方リファレンスループ3を巻く巻枠は、線膨張係数が
なるべく磁歪材と同じで、磁歪効果のほとんどないもの
が望まれる。その1つの例としてYCO3合金がある。
On the other hand, it is desired that the reel around which the reference loop 3 is wound has a linear expansion coefficient as similar as possible to that of the magnetostrictive material and has almost no magnetostrictive effect. One example is the YCO 3 alloy.

本発明に用いる磁歪材は磁気が到来する方向に著しく伸
びるということを利用すると、磁界の方向を検出するこ
とができる。例えば、潜没中の潜水艦によって地磁気の
水平分力が変化する。したがって潜水艦を探知するため
には、地磁気の水平分力方向に最大感度を有する様に磁
気センサの検出方向を定めると良い。潜水艦を地磁気の
分布の不均一さで、なるべく離れた位置、即ちより高い
高度で、またより深く潜没している潜水艦の発見や、小
さな機器の探知などに有効である。これは磁界の水平分
力方向以外の感度を著しく悪くするので各方向の磁気雑
音に対して、S/Nを良好にするからである。
The fact that the magnetostrictive material used in the present invention significantly extends in the direction in which magnetism arrives can detect the direction of the magnetic field. For example, the submerged submarine changes the horizontal component of the geomagnetism. Therefore, in order to detect a submarine, it is advisable to determine the detection direction of the magnetic sensor so as to have the maximum sensitivity in the horizontal component direction of geomagnetism. Due to the non-uniform distribution of the geomagnetic field of the submarine, it is effective for finding a submarine that is located as far away as possible, that is, at a higher altitude and deeper, and for detecting small equipment. This is because the sensitivity of the magnetic field other than in the horizontal component direction is significantly deteriorated, so that the S / N is improved with respect to the magnetic noise in each direction.

今、磁気検出ループ4の寸法を第3図に示すものを用い
ると、光ファイバ1回巻当りの磁歪材による長さの変化
は約9.42μm/50Oeである。光ファイバは100回巻かれて
いるため、全体の光ファイバの伸びる値は約942μm/50O
eである。使用するレーザの波長を0.55μmとすれば、9
42μmは波長換算で、約1108.23波長即ち6963.2ラジア
ンの位相変化が50Oeで生じたことになる。一方フォトダ
イオード5の出力電流値の変化の検出可能な光の位相差
換算は、実用的な値でπ/4rad×10-4〜10-5である。し
たがって磁界の変化の検出可能値をHdとすれば π/4×10-4=(6963.2/50Oe)・Hd Hd=5.64×10-7Oeとなる。
If the size of the magnetic detection loop 4 shown in FIG. 3 is used, the change in length due to the magnetostrictive material per one turn of the optical fiber is about 9.42 μm / 50 Oe. Since the optical fiber is wound 100 times, the total extension value of the optical fiber is about 942 μm / 50O.
It is e. If the wavelength of the laser used is 0.55 μm, 9
When 42 μm is converted into a wavelength, a phase change of about 1108.23 wavelength, that is, 6963.2 radians occurs at 50 Oe. On the other hand, the phase difference conversion of light that can detect a change in the output current value of the photodiode 5 is π / 4rad × 10 −4 to 10 −5 in a practical value. Therefore, if the detectable value of the change in the magnetic field is Hd, then π / 4 × 10 -4 = (6963.2 / 50 Oe) · Hd Hd = 5.64 × 10 -7 Oe.

更に、磁歪材や第4図に示す集束磁極42などの磁性材を
おくことにより、この磁歪材の平均透磁率を10とすれ
ば、最少検出値は、更に10分の1になる。したがって概
算の最小検出磁界の変化値Hmは5×10-8〜10-9Oeとな
る。1Oe=10-4T(テスラ)であるので、第5図に対比し
てみると、検出能力として5×10-12T〜5×10-13Tであ
る。また前述の様に潜水艦による地磁気の変化は2×10
-10T〜1.5×10-11Tであるので、十分に高度差1kmで潜水
艦の検出が可能である。
Furthermore, if a magnetic material such as a magnetostrictive material or a focusing magnetic pole 42 shown in FIG. 4 is provided, and the average magnetic permeability of this magnetostrictive material is set to 10, the minimum detection value is further reduced to 1/10. Therefore, the estimated change value Hm of the minimum detected magnetic field is 5 × 10 −8 to 10 −9 Oe. Since it is 1 Oe = 10 -4 T (Tesla), the detection capability is 5 × 10 -12 T to 5 × 10 -13 T when compared with FIG. As mentioned above, the change in geomagnetism due to the submarine is 2 × 10.
Since it is -10 T to 1.5 × 10 -11 T, it is possible to detect submarines with a sufficient altitude difference of 1 km.

第6図は航空機に搭載して潜水艦を探知する磁気センサ
の構成である。エレクトロニックス部61は、フォトダイ
オード5の出力電流の増幅をフィルタの作用を行なうも
のである。リファレンスループ3は、磁気検出ループ4
と同様に防振対策をして恒温ポット64に収納される。恒
温制御部66はポット内を一定温度にするものである。光
学系のレーザ光源1や光カプラ2、フォトダイオード5
は、光学系回路部67に収納されている。
FIG. 6 shows the structure of a magnetic sensor mounted on an aircraft to detect a submarine. The electronics section 61 functions as a filter for amplifying the output current of the photodiode 5. Reference loop 3 is magnetic detection loop 4
It is stored in the constant temperature pot 64 with anti-vibration measures in the same manner as. The constant temperature controller 66 keeps the inside of the pot at a constant temperature. Optical system laser light source 1, optical coupler 2, photodiode 5
Are stored in the optical system circuit section 67.

構造上の要点は磁気検出ループ4、リファレンスループ
3ともになるべく同温度にしかつ一室温度にすること
と、それぞれの光ファイバに振動を与えないことであ
る。温度の変化と振動は、光ファイバの伸縮や、光ファ
イバコアの屈折率に変化を与え、雑音の原因となり、信
号の処理を困難にするためである。
Structural points are to keep the magnetic detection loop 4 and the reference loop 3 at the same temperature as possible and to keep the room temperature at the same temperature, and not to give vibration to each optical fiber. This is because changes in temperature and vibrations cause expansion and contraction of the optical fiber and changes in the refractive index of the optical fiber core, which causes noise and makes signal processing difficult.

次に第7図によって探知信号の検出方法について説明す
る。
Next, a detection signal detecting method will be described with reference to FIG.

フォトダイオード71は光の干渉出力の変化を電流の変化
に変換する。この電流はプリアンプ72によって増幅され
て、ローバスフィルタ73によって高い周波数成分をカッ
トする。なぜ高い周波数成分が存在するかは、航空機の
振動や、航空機内に生ずる磁気、例えば400Hz電源の誘
導などによる磁歪材の振動成分である。アンプ74は低い
周波数成分のみを増幅するもので、その出力は高速フー
リエ変換回路75によって種々の周波数成分に分け、波形
メモリ76に保存する。
The photodiode 71 converts a change in interference output of light into a change in current. This current is amplified by the preamplifier 72, and the low-pass filter 73 cuts off high frequency components. The reason why the high frequency component exists is the vibration component of the magnetostrictive material due to the vibration of the aircraft and the magnetism generated inside the aircraft, for example, the induction of 400 Hz power supply. The amplifier 74 amplifies only low frequency components, and its output is divided into various frequency components by the fast Fourier transform circuit 75 and stored in the waveform memory 76.

第8図に示す様に潜水艦の上空の磁気の強さの変化は存
在するので、その上空を飛ぶ航空機の磁気センサの第7
図におけるアンプ74の出力は第8図に示す様になる。ア
ンプ74の潜水艦による出力成分の波形は、相対高度差と
航空機の速度によって変化する。即ち高度差が大きけれ
ばその付近の磁界の不均一さは減じ、航空機が高速であ
っても磁界の変化量は小さいため、アンプ74の信号が減
ずる。低高度差を高速度で飛行すると、磁界の変化量が
大きくなるため、アンプ74の出力振幅は大きくなり、か
つ、高い周波数例えば1Hz程度の出力が得られる。この
様に波形の変化によってこのままでは、雑音成分で探知
が困難であるため、第7図の演算コンピュータ78に、航
空機の高度(海面高度)情報と、速度情報を与え、それ
に潜水艦の潜没深度を予想して相対高度差パターンを各
種発生させる高度差パターンを発生器をおき、第9図に
示す様な検出パターンを発生させ、それを波形メモリ76
の波形と照合して潜水艦の探知を行なう。波形の周波数
は、航空機の飛行方向と潜水艦の首尾方向が一致し第9a
図に示すように相対高度差大で、低速飛行の場合はもっ
とも低く、その値は例えば0.1Hz、第9b図に示すように
相対高度差が小で高速飛行時でかつ潜水艦を横切る様に
飛ぶ場合は10〜20Hzになることもある。
As shown in Fig. 8, there is a change in the magnetic strength above the submarine, so the magnetic sensor No. 7 of the aircraft flying above it changes.
The output of the amplifier 74 in the figure is as shown in FIG. The waveform of the output component of the amp 74 from the submarine changes depending on the relative altitude difference and the speed of the aircraft. That is, if the altitude difference is large, the non-uniformity of the magnetic field in the vicinity thereof is reduced, and the change amount of the magnetic field is small even when the aircraft is at high speed, so the signal of the amplifier 74 is reduced. When flying at a low altitude difference at a high speed, the amount of change in the magnetic field becomes large, so that the output amplitude of the amplifier 74 becomes large and an output with a high frequency, for example, about 1 Hz is obtained. Since it is difficult to detect the noise component due to the change in the waveform as described above, the altitude (sea level) information of the aircraft and the speed information are given to the arithmetic computer 78 shown in FIG. The altitude difference pattern for generating various relative altitude difference patterns is set in the generator, and the detection pattern as shown in FIG. 9 is generated.
The submarine is detected by matching with the waveform of. The frequency of the waveform is the same as the direction of flight of the aircraft and the direction of success of the submarine.
As shown in the figure, the relative altitude difference is large, and it is the lowest in the case of low speed flight, the value is 0.1 Hz, for example, as shown in Fig. 9b, the relative altitude difference is small, and it flies during high speed flight and across the submarine. In some cases, it may be 10 to 20 Hz.

このため第7図に示す72〜76までの回路は多段設け、時
分割で使用しかつ照合すべきパターンも多種発生させて
照合を行なう必要がある。その様にしないと探知ミスを
生ずるためである。
Therefore, it is necessary to provide the circuits 72 to 76 shown in FIG. 7 in multiple stages, to use in a time division manner and to generate various patterns to be collated to perform collation. This is because a detection error will occur if this is not done.

検出を要する磁気のレベルは、即ち潜没中の潜水艦を探
知する場合のレベルは、航空機と潜水艦の高度差を1km
としたとき、航空機付近における地磁気の成分の変化
は、おおよそ2×10-10T〜1.5×10-11T程度の変化が生
じる。この値は第5図に示す様に、人体の磁気レベルに
等しい程、微弱なものである。これは引用文献の電気工
学ハンドブックにある様に、ジョセフソン素子を用いた
スキッド(SQUID)の検出分野であるとされているが、
本実施例のものではスキッドに代り使用可能である。
The level of magnetism that needs to be detected, that is, the level when detecting a submarine that is submerged, is the altitude difference of 1 km between the aircraft and the submarine.
Then, the change in the geomagnetic component near the aircraft will change by about 2 × 10 -10 T to 1.5 × 10 -11 T. As shown in FIG. 5, this value is so weak that it is equal to the magnetic level of the human body. This is said to be in the field of skid (SQUID) detection using Josephson devices, as in the Electrical Engineering Handbook of the cited document.
In this embodiment, the skid can be used instead.

以上述べたように、磁歪材の磁気による伸縮を光ファイ
バの伸縮にかえ、その長さの変化を光干渉回路で検出す
るために、従来ジョセフソン素子のみが使用できる微弱
磁界の検出が可能となった。
As described above, the expansion and contraction due to the magnetism of the magnetostrictive material is changed to the expansion and contraction of the optical fiber, and the change in the length is detected by the optical interference circuit, so that it is possible to detect the weak magnetic field that can be used only by the conventional Josephson element. became.

そして、防衛機器応用の場合に上記の微弱磁界の検出方
法に加えて、潜没中の潜水艦による地磁気の変化パター
ンを検出して潜水艦を探知するシステムが有り、磁気セ
ンサを磁気雑音やその他の雑音の多い所で使用するから
直接磁気の変化量検出による検知はむずかしいが、検出
装置には潜水艦によって生ずる地磁気の各方向の距離に
対する変化パターンを時間パターンに変換する変換回路
を備え、そのパターンと検出したパターンとの相似性を
照合して探知することによって良好なS/Nを得ることが
できる。
In addition to the above weak magnetic field detection method for defense equipment applications, there is a system that detects submarine by detecting the change pattern of the geomagnetism of the submarine that is submerged, and uses magnetic sensors to detect magnetic noise and other noise. It is difficult to detect the amount of change in magnetic field directly because it is used in a lot of places, but the detection device is equipped with a conversion circuit that converts the change pattern of the geomagnetic field generated by the submarine for each distance in each direction into a time pattern. A good S / N can be obtained by matching and detecting the similarity with the pattern.

〔発明の効果〕〔The invention's effect〕

本発明によれば、長辺と短辺からなる細長い直方体磁歪
材の外周に前記長辺と平行な光路が形成することによ
り、直方体磁歪材の長辺方向に高感度と鋭い指向性で磁
気の方向を特定し、磁気分布の乱れるパターンから磁性
体の存在を探知することが可能となる。
According to the present invention, by forming an optical path parallel to the long side on the outer periphery of the elongated rectangular parallelepiped magnetostrictive material consisting of the long side and the short side, the magnetic field with high sensitivity and sharp directivity in the long side direction of the rectangular parallelepiped magnetostrictive material is formed. It is possible to specify the direction and detect the presence of the magnetic substance from the pattern in which the magnetic distribution is disturbed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例に係る構成を示す系統図、第2
図は公知の磁歪合金の磁歪特性図表、第3a図は本発明の
実施例における磁気検出光路の構成を示す平面図、第3b
図は第3a図の側面図、第4a図は本発明の磁歪材の他の実
施例を示す平面図、第4b図は第4a図の側面図、第5図は
公知の磁気強度とその測定法を示す図表、第6a図は本発
明の実施例に係る機器の配置を示す配置図、第6b図は第
6a図の側面図、第7図は第6a図に示したエレクトロニク
ス部の構成を示すブロック図、第8図は磁性体による磁
気分布の変化を示す図表、第9a図は他の条件における磁
性体による磁気分布の変化を示す図表、第9b図は他の他
の条件における磁性体による磁気分布の変化を示す図表
である。 1……レーザ光源、2……光カプラ、3……リフアレン
スループ、4……磁気検出ループ、5……フォトダイオ
ード、6……移相器、31……磁歪材、32……光フアイ
バ、41……磁気検出ループ、42……集束磁極、61……エ
レクトロニクス部、62……リフアレンスループ、63……
磁気検出ループ、71……フォトダイオード、72……プリ
アンプ、73……ローパスフィルタ、74……アンプ、75…
…高速フーリエ変換器、76……波形メモリ、77……高度
差パターン発生器、78……コンピュータ、81……潜水艦
FIG. 1 is a system diagram showing a configuration according to an embodiment of the present invention, and FIG.
FIG. 3 is a magnetostrictive characteristic chart of a known magnetostrictive alloy, FIG. 3a is a plan view showing the configuration of a magnetic detection optical path in the embodiment of the present invention, and 3b.
Fig. 3 is a side view of Fig. 3a, Fig. 4a is a plan view showing another embodiment of the magnetostrictive material of the present invention, Fig. 4b is a side view of Fig. 4a, and Fig. 5 is a known magnetic strength and its measurement. Fig. 6a is a layout showing the arrangement of equipment according to an embodiment of the present invention, and Fig. 6b is a layout showing the method.
Fig. 6a is a side view, Fig. 7 is a block diagram showing the structure of the electronics section shown in Fig. 6a, Fig. 8 is a chart showing changes in magnetic distribution due to magnetic substances, and Fig. 9a is magnetic substances under other conditions. FIG. 9b is a diagram showing a change in magnetic distribution due to the above, and FIG. 9b is a diagram showing a change in magnetic distribution due to a magnetic substance under other conditions. 1 ... Laser light source, 2 ... Optical coupler, 3 ... Reference loop, 4 ... Magnetic detection loop, 5 ... Photodiode, 6 ... Phase shifter, 31 ... Magnetostrictive material, 32 ... Optical fiber , 41 …… Magnetic detection loop, 42 …… Focused magnetic pole, 61 …… Electronics department, 62 …… Reference loop, 63 ……
Magnetic detection loop, 71 ... Photodiode, 72 ... Preamplifier, 73 ... Lowpass filter, 74 ... Amplifier, 75 ...
… Fast Fourier transformer, 76 …… Waveform memory, 77 …… Altitude difference pattern generator, 78 …… Computer, 81 …… Submarine

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光源が発光する光を第一の光路分離手段に
より2つの光路に分離し、分離された一方の光を長辺と
短辺からなる細長い直方体磁歪材の外周に前記長辺と平
行な光路が形成され、磁気により該光路長が変化し光路
を伝わる光の位相が変化する磁気検出光路に入力すると
共に、前記第一の光路分離手段により分離された他方の
光を磁気により該光路長が変化せず光路を伝わる光の位
相が変化しない参照光路に入力し、かつ、前記磁気検出
光路と該参照光路からの光を第二の光路分離手段により
1つの光路に合成し、該第二の光路分離手段からの光を
光検出手段に入力し、電気信号に変換し所定の処理を行
うことにより磁気方向を特定し、磁気分布の乱れるパタ
ーンから磁性体の存在を探知することを特徴とする磁性
体探知方法。
1. A light emitted from a light source is separated into two optical paths by a first optical path separating means, and one of the separated lights is provided on the outer periphery of an elongated rectangular parallelepiped magnetostrictive material having long sides and short sides. A parallel optical path is formed, and the optical path length is changed by magnetism to input to the magnetic detection optical path in which the phase of the light transmitted through the optical path is changed, and the other light separated by the first optical path separating means is magnetically The optical path length does not change and the phase of the light propagating through the optical path does not change and is input to the reference optical path, and the magnetic detection optical path and the light from the reference optical path are combined into one optical path by the second optical path separating means, By inputting the light from the second optical path separating means to the light detecting means, converting it into an electric signal and performing a predetermined process to specify the magnetic direction, it is possible to detect the presence of the magnetic substance from the pattern in which the magnetic distribution is disturbed. Characteristic magnetic substance detection method.
JP8450490A 1990-03-30 1990-03-30 Magnetic substance detection method Expired - Lifetime JPH0786532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8450490A JPH0786532B2 (en) 1990-03-30 1990-03-30 Magnetic substance detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8450490A JPH0786532B2 (en) 1990-03-30 1990-03-30 Magnetic substance detection method

Publications (2)

Publication Number Publication Date
JPH03282393A JPH03282393A (en) 1991-12-12
JPH0786532B2 true JPH0786532B2 (en) 1995-09-20

Family

ID=13832475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8450490A Expired - Lifetime JPH0786532B2 (en) 1990-03-30 1990-03-30 Magnetic substance detection method

Country Status (1)

Country Link
JP (1) JPH0786532B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830557B2 (en) * 1979-06-06 1983-06-29 株式会社京三製作所 How to detect magnetic substances
JPS6474475A (en) * 1987-09-16 1989-03-20 Fujikura Ltd Optical fiber magnetic sensor
JP2519272B2 (en) * 1987-12-01 1996-07-31 オリンパス光学工業株式会社 Endoscope magnetic detection device
JPH0274892A (en) * 1988-09-10 1990-03-14 Kyosan Electric Mfg Co Ltd Method and apparatus for detecting overhead passage of magnetic body

Also Published As

Publication number Publication date
JPH03282393A (en) 1991-12-12

Similar Documents

Publication Publication Date Title
US4529875A (en) Fiber-optical measuring apparatus
US5305075A (en) Magnetostrictive transducer system having a three dual-strip fiber optic magnetostrictive transducers bonded into a single fiber mach-zehnder interferometer
US6278272B1 (en) Integrating fluxgate magnetometer
RU2497140C2 (en) Sensor device of magnetic field measurement
JPS58186065A (en) Optical magnetometer
KR920005762A (en) Chemical Sensors in Fiber Optic Interferometers and Chemical Vapor Detection Methods in the Atmosphere
Dagenais et al. Detection of low-frequency magnetic signals in a magnetostrictive fiber-optic sensor with suppressed residual signal
US4665363A (en) Optical fibre magnetic gradient detector
US3621382A (en) Anistropic thin ferromagnetic film magnetometer
JPS6338190A (en) Detector for change of magnetic field
US3125953A (en) Amplifier
JPH0786532B2 (en) Magnetic substance detection method
US6344743B1 (en) Standing wave magnetometer
Grigorenko et al. Frequency mixing in a bistable system in the presence of noise
JP2008216036A (en) Electromagnetic field measuring apparatus
Mentzer Fiber optic sensors
Pai et al. Fiber optic magnetometer with sub-pico tesla sensitivity for magneto-encephalography
Mamishev et al. Nonintrusive sensing techniques for the discrimination of energized electric cables
Koo et al. An analysis of a fiber-optic magnetometer with magnetic feedback
US3461387A (en) Magnetic field detector using a variable inductance rod
WO2020201372A1 (en) Apparatus for measuring magnetic field and associated methods
US2756276A (en) Means for sensing magnetic flux
JP3063655B2 (en) Magnetic sensor element operation circuit
JPH06309085A (en) Coordinate reader
US3328712A (en) System for phase (frequency) modulation of an rf carrier for low frequency signal