JPH0785996A - Ecr plasma generating device - Google Patents

Ecr plasma generating device

Info

Publication number
JPH0785996A
JPH0785996A JP5233072A JP23307293A JPH0785996A JP H0785996 A JPH0785996 A JP H0785996A JP 5233072 A JP5233072 A JP 5233072A JP 23307293 A JP23307293 A JP 23307293A JP H0785996 A JPH0785996 A JP H0785996A
Authority
JP
Japan
Prior art keywords
discharge tube
magnetic field
ecr
plasma
slits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5233072A
Other languages
Japanese (ja)
Other versions
JPH0821476B2 (en
Inventor
Wataru Miyazawa
亘 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIMEN DENSHI KOKEN KK
Original Assignee
NICHIMEN DENSHI KOKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIMEN DENSHI KOKEN KK filed Critical NICHIMEN DENSHI KOKEN KK
Priority to JP5233072A priority Critical patent/JPH0821476B2/en
Publication of JPH0785996A publication Critical patent/JPH0785996A/en
Publication of JPH0821476B2 publication Critical patent/JPH0821476B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To construct an ECR plasma generating device in a small size with possibility of long time operation, produce clean ions, and generate a high density plasma by introducing microwaves to an ECR magnetic field through slits from the peripheries of a discharge tube. CONSTITUTION:A gas introducing pipe 18 is installed as penetrating the major diametric part 12a of a discharge tube 10, and from this pipe 18, a gas to be ionized is introduced into the discharge tube 10 through a space, which is formed between the major diametric part 12a of an external conductor 12 and the major diametric part 13a of an internal conductor 13, and slits 16. In front of the discharge tube 10, an ion drawout electrode is installed which is to draw out ions through a front opening from the plasma which was generated in the ECR magnetic field region. In paralel with the lines of magnetic force, microwaves are introduced through the slits 16 from the peripheries along the axis of the discharge tube 10 into the ECR magnetic field which is specified by the mirror magnetic field extending in the axial direction of the discharge tube 10, so that a high density plasma can be produced while avoiding cutting- off. Further, this permits omission of any waveguide pipe window or helix antenna to lead to constructing the device in a small size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、核融合や半導体プロセ
スの分野で、例えば使用される、ECRプラズマ発生装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ECR plasma generator used, for example, in the fields of nuclear fusion and semiconductor processing.

【0002】[0002]

【従来の技術】ECRプラズマ発生装置においては、プ
ロセスガスのイオン化を果たすような、電子サイクロト
ロン共鳴条件を満たす共鳴域を放電管内に発生するよう
に、放電管にマイクロ波を導入している。このようなマ
イクロ波を放電間へ導入するために、従来の装置では、
導波管に導波管窓を設けたり、放電管中にヘリックスア
ンテナを突出させたりしている。
2. Description of the Related Art In an ECR plasma generator, a microwave is introduced into a discharge tube so that a resonance region satisfying an electron cyclotron resonance condition that fulfills ionization of a process gas is generated in the discharge tube. In order to introduce such a microwave between discharges, in the conventional device,
A waveguide window is provided in the waveguide, or a helix antenna is projected into the discharge tube.

【0003】[0003]

【発明が解決しようとする課題】しかし、導波管窓を使
用した場合には、そのマイクロ波の伝搬の遮断を避ける
ために、この導波管窓を一定以上のデメンションにしな
ければならず、装置を小形化することができないばかり
か、高密度のプラズマを発生させることはできない。
However, when a waveguide window is used, the waveguide window must be dimensioned above a certain level in order to avoid interruption of the propagation of the microwave. Not only can the device be miniaturized, but also high-density plasma cannot be generated.

【0004】一方、ヘリックスアンテナを使用した場合
には、プラズマによるマイクロ波のカットオフが生じる
ので高密度のプラズマを生成することができない。そし
て、ヘリックスアンテナが放電管内のプラズマ中にさら
されてるいために、プラズマの損失が生じたり、アンテ
ナ材の不純物がプラズマ中に混入しクリーンなイオンが
生成されなかったり、また、このために長時間の連続運
転ができない等の問題が有る。
On the other hand, when a helix antenna is used, microwaves are cut off by the plasma, so that high-density plasma cannot be generated. And, since the helix antenna is exposed to the plasma in the discharge tube, plasma loss occurs, impurities of the antenna material are mixed into the plasma, and clean ions are not generated. There is a problem such as not being able to operate continuously.

【0005】さらに、上記従来の装置においては、放電
管の径がマイクロ波のカットオフサイズよりも小さくな
ると(2.45GFzのマイクロ波は直径が72mm以
下の円筒状の放電管ではカットオフする)、放電管内に
プラズマ生成のエネルギー源であるマイクロ波が入射で
きなくなるので、装置の小形化に限度がある。そして、
ヘリックスアンテナを使用した場合には、この限度近く
まで、装置を小形化すると、前記ヘリックスアンテナに
よるプラズマの損失が著しくなる。
Further, in the above conventional device, when the diameter of the discharge tube becomes smaller than the cutoff size of the microwave (the microwave of 2.45GFz is cut off in the cylindrical discharge tube having a diameter of 72 mm or less). Since the microwave, which is the energy source for plasma generation, cannot enter the discharge tube, there is a limit to downsizing the device. And
In the case of using a helix antenna, if the device is miniaturized close to this limit, the plasma loss due to the helix antenna becomes significant.

【0006】本発明は、前記課題に着目してなされたも
ので、その目的とするところは、装置の小形化が可能
で、クリーンなイオン生成することができ、長時間の運
転も可能で、かつ高濃度のプラズマを発生させることが
できるECRプラズマ発生装置を提供することにある。
The present invention has been made in view of the above-mentioned problems. The purpose of the present invention is to enable downsizing of the apparatus, clean ion generation, and long-term operation. Another object of the present invention is to provide an ECR plasma generator that can generate high-concentration plasma.

【0007】[0007]

【課題を解決するための手段】本発明に係わるECRプ
ラズマ発生装置は、プロセスガスが導入される放電管
と、この放電管の外周に、この放電管の軸方向に互いに
所定間隔を有して配設され、放電管内に放電管の中心に
向かって凸となるミラー磁界を形成する複数のリング状
の永久磁石と、前記放電管にマイクロ波を供給し、前記
ミラー磁界とで、電子サイクロトロン共鳴条件を満たす
共鳴域を電子管内に発生するように、前記放電管にマイ
クロ波を供給する手段とを具備し、前記マイクロ波を供
給する手段は、一部が放電管中に同軸的に突出した同軸
アンテナと、この同軸アンテナの内部導体に、放電管の
軸に沿って互いに所定間隔を有して形成され、同軸ケー
ブルを伝搬したマイクロ波を放電管中に放射させる複数
の放射口とを有することを特徴とする。
An ECR plasma generator according to the present invention comprises a discharge tube into which a process gas is introduced, and an outer periphery of the discharge tube with a predetermined interval in the axial direction of the discharge tube. Electron cyclotron resonance is provided between a plurality of ring-shaped permanent magnets that are provided and that form a mirror magnetic field that is convex toward the center of the discharge tube and microwaves that are supplied to the discharge tube. A means for supplying a microwave to the discharge tube so as to generate a resonance region satisfying a condition in the electron tube, and a part of the means for supplying the microwave is coaxially projected into the discharge tube. It has a coaxial antenna and a plurality of emission ports formed in the inner conductor of the coaxial antenna at predetermined intervals along the axis of the discharge tube and radiating the microwave propagating through the coaxial cable into the discharge tube. And wherein the door.

【0008】[0008]

【作用】前記放射口から、放電管中に放射されたマイク
ロ波は、ECR領域に有効に導入され、この領域にプラ
ズマを生成する。
The microwave radiated from the radiation port into the discharge tube is effectively introduced into the ECR region, and plasma is generated in this region.

【0009】[0009]

【実施例】以下に、図1並びに図2を参照して、本発明
の一実施例に係わるECRプラズマ発生装置を説明す
る。図において、符号10は両端が開口し、ステンレス
のような金属でできた円筒状の放電管を示す。この放電
管10の外周壁の一部は同軸アンテナ11の外部導体1
2の前部である大径部12aにより構成されている。ま
た、この同軸アンテナ11は、外部導体12内に、これ
と所定間隔を有して同軸的に配置された内部導体13を
有する。この同軸アンテナ11はマイクロ波入力側が小
径で、放電管10側が大径となっており、これらの間に
はテーパ部11aが形成されている。そして、同軸アン
テナ11は大径側で放電管10の一方の開口に密にか
つ、同軸的に装着されている。外部導体12と、内部導
体13との間には、アルミナのような絶縁材(誘電体)
14が、これら導体間を電磁波的に絶縁して異常放電を
防ぐように配置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An ECR plasma generator according to an embodiment of the present invention will be described below with reference to FIGS. In the figure, reference numeral 10 indicates a cylindrical discharge tube which is open at both ends and is made of a metal such as stainless steel. A part of the outer peripheral wall of the discharge tube 10 is the outer conductor 1 of the coaxial antenna 11.
It is composed of a large-diameter portion 12a which is the front portion of No. 2. Further, the coaxial antenna 11 has an inner conductor 13 coaxially arranged inside the outer conductor 12 with a predetermined distance therebetween. The coaxial antenna 11 has a small diameter on the microwave input side and a large diameter on the discharge tube 10 side, and a tapered portion 11a is formed between them. The coaxial antenna 11 is densely and coaxially attached to one opening of the discharge tube 10 on the large diameter side. An insulating material (dielectric material) such as alumina is provided between the outer conductor 12 and the inner conductor 13.
14 is arranged so as to insulate these conductors from each other by electromagnetic waves and prevent abnormal discharge.

【0010】前記放電管10の中央部外周面には、複数
(この実施例では3個)のリング状の永久磁石15が、
放電管10の軸方向に互いに所定の間隔を有して同軸的
に取着されている。各永久磁石15は、3000ガウス
程度のECR磁場(2.54GHzのマイクロ波を使用
する場合にはECR磁場は875G)よりも高い磁束密
度を有し、内周面15aと外周面15bとで異なる極性
を有するように形成されている。また、3個の永久磁石
15は、隣り合うもの相互の内周面15aの極性が反対
となるようにして、配設されており、かくして、これら
永久磁石15によりミラー磁界が図に示すように放電管
10内に、これの内周面近くで発生される。このミラー
磁界は、内周面15aがN極の永久磁石15から内周面
15aがS極の永久磁石15に、放電管10の軸方向に
沿って延び、これら永久磁石15の間では放電管10の
中心軸に向かって凸状に湾曲している。
A plurality of (three in this embodiment) ring-shaped permanent magnets 15 are provided on the outer peripheral surface of the central portion of the discharge tube 10.
The discharge tubes 10 are coaxially attached to each other with a predetermined interval in the axial direction. Each permanent magnet 15 has a magnetic flux density higher than an ECR magnetic field of about 3000 gauss (the ECR magnetic field is 875 G when using a microwave of 2.54 GHz), and is different between the inner peripheral surface 15a and the outer peripheral surface 15b. It is formed to have polarity. Further, the three permanent magnets 15 are arranged such that the polarities of the inner peripheral surfaces 15a of the adjacent ones are opposite to each other, and thus the mirror magnetic field is generated by the permanent magnets 15 as shown in the figure. It is generated in the discharge tube 10 near its inner peripheral surface. This mirror magnetic field extends in the axial direction of the discharge tube 10 from the permanent magnet 15 having an N-pole on the inner peripheral surface 15 a to the permanent magnet 15 having an S-pole on the inner peripheral surface 15 a, and the discharge tube is located between these permanent magnets 15. It is convexly curved toward the central axis of 10.

【0011】前記内部導体13の一端の周縁部より、同
軸アンテナ11内に突出した環状の大径部13aには、
前記永久磁石15の内周面15aと対面するようにし
て、マイクロ波放射口としてのスリット16が形成され
ている。また、内周面15aとスリット16との間に位
置する絶縁材14の部分は除去されており、永久磁石1
5からの磁束が放電管10内に効率良く延びるようにな
っている。この結果、同軸アンテナ11により伝搬され
たマイクロ波は、スリット16を介して、所謂ホイッス
ラ・モードでECR領域にまで放射される。これらスリ
ット16は、ほぼ環状をしており、夫々等しい幅かもし
くは、イオンの射出側である放電管10の他方の開口側
に向かうのに従ってデイメンションが徐々に大きくなる
ように夫々異なる幅並びに/もしくは長さを有する。こ
のように、スリット16のデメンションを、同軸アンテ
ナ11内でのマイクロ波の伝搬方向に沿って徐々に大き
くすることにより、スリット16からのマイクロ波の射
出量を全スリット16に渡ってほぼ等しくすることがで
きる。この結果、ECR領域で発生されるプラズマPの
密度を放電管10の軸方向に沿って所望の分布を有する
ようにできる。
The annular large-diameter portion 13a protruding into the coaxial antenna 11 from the peripheral portion at one end of the inner conductor 13 has
A slit 16 as a microwave radiation port is formed so as to face the inner peripheral surface 15a of the permanent magnet 15. Further, the portion of the insulating material 14 located between the inner peripheral surface 15a and the slit 16 is removed, and the permanent magnet 1
The magnetic flux from 5 efficiently extends into the discharge tube 10. As a result, the microwave propagated by the coaxial antenna 11 is radiated to the ECR region in the so-called Whistler mode through the slit 16. These slits 16 are substantially annular and have the same width or different widths so that the dimensions gradually increase toward the other opening side of the discharge tube 10 which is the ion ejection side. Or it has a length. In this way, the dimension of the slit 16 is gradually increased along the microwave propagation direction in the coaxial antenna 11, so that the amount of microwaves emitted from the slits 16 is made substantially equal over all the slits 16. be able to. As a result, the density of the plasma P generated in the ECR region can be made to have a desired distribution along the axial direction of the discharge tube 10.

【0012】前記同軸アンテナ11のテーパ部11aの
全長は、マイクロ波の半波長の整数倍に設定されてお
り、この結果、インピーダンスの整合は良く、マイクロ
波の反射を防止できる。
The total length of the taper portion 11a of the coaxial antenna 11 is set to be an integral multiple of a half wavelength of the microwave. As a result, impedance matching is good and reflection of the microwave can be prevented.

【0013】前記同軸アンテナ11は、小径側の外部導
体12の外径をa1,内部導体13の外径をb1とし、
大径側の外部導体12の外径をa2,内部導体13の外
径をb2とした場合に、次式で表される、小径側と大径
側とのインピーダンス(Z1、Z2)とをほぼ等しくし
て、全体のデメンションを小さくしている(荷電粒子の
損失を大にして放電を防ぐ)。
In the coaxial antenna 11, the outer diameter of the outer conductor 12 on the small diameter side is a1, and the outer diameter of the inner conductor 13 is b1.
When the outer diameter of the outer conductor 12 on the large diameter side is a2 and the outer diameter of the inner conductor 13 is b2, the impedance (Z 1 , Z 2 ) between the small diameter side and the large diameter side expressed by the following equation Are made substantially equal to each other to reduce the overall dimension (the loss of charged particles is increased and the discharge is prevented).

【0014】Z1=138.05/(εr1/2 ・log
10(a1/b1) Z2=138.05/(εr1/2 ・log10(a2
2) ここで、εrは外部導体12と内部導体13との間の誘
電率を示し、絶縁材14が介在されているときには絶縁
材14の誘電率を示すが、この絶縁材14は必ずしも必
要ではない)。
Z 1 = 138.05 / (ε r ) 1/2 · log
10 (a 1 / b 1 ) Z 2 = 138.05 / (ε r ) 1/2 · log 10 (a 2 /
b 2 ) Here, ε r represents the dielectric constant between the outer conductor 12 and the inner conductor 13 and the dielectric constant of the insulating material 14 when the insulating material 14 is interposed, but this insulating material 14 is not always required. Not required).

【0015】前記内部導体13の放電管10側の一端部
の中央には、表面磁束密度が3000G程度の、ECR
磁場よりも高い磁束密度をもつ円柱状の補助永久磁石1
7が同軸的に埋設されている。この補助永久磁石17の
放電管10側に位置する内端面は、前記永久磁石15の
うち接近したものの内周面の極性と異なる極性に設定さ
れている。この極性は、この実施例では、補助永久磁石
17の内端面はS極に、そして永久磁石15の内周面は
N極に設定されており、この結果、図1に示すように、
N極からS極に向かうミラー磁界が、両永久磁石15,
17間で形成され、プラズマを効率良く閉じ込めるEC
R領域の一端側を規定している。前記内部導体13内に
は、前記補助永久磁石17の所まで延びた二重管よりな
る水冷ジャケット19が形成され、この中で水を循環さ
せることにより補助永久磁石17の過度の加熱を防止し
ている。
At the center of one end of the inner conductor 13 on the discharge tube 10 side, an ECR having a surface magnetic flux density of about 3000 G is provided.
A cylindrical auxiliary permanent magnet with a magnetic flux density higher than the magnetic field 1
7 is buried coaxially. The inner end surface of the auxiliary permanent magnet 17 located on the discharge tube 10 side is set to have a polarity different from the polarity of the inner peripheral surface of one of the permanent magnets 15 that is close to. In this embodiment, this polarity is set such that the inner end surface of the auxiliary permanent magnet 17 is the S pole and the inner peripheral surface of the permanent magnet 15 is the N pole. As a result, as shown in FIG.
The mirror magnetic field from the N pole to the S pole is generated by the two permanent magnets 15,
EC formed between 17 and efficiently confining plasma
One end side of the R region is defined. A water-cooling jacket 19 made of a double tube extending to the auxiliary permanent magnet 17 is formed in the inner conductor 13, and water is circulated therein to prevent the auxiliary permanent magnet 17 from being excessively heated. ing.

【0016】前記大径部12aを貫通するようにしてガ
ス導入管18が設けられ、このガス導入管18より、外
部導体12の大径部12aと内部導体13の大径部13
aとの間の空間並びにスリット16を介して、イオン化
されるガスが放電管10内に導入される。
A gas introduction pipe 18 is provided so as to penetrate through the large diameter portion 12a. From this gas introduction pipe 18, the large diameter portion 12a of the outer conductor 12 and the large diameter portion 13 of the inner conductor 13 are provided.
The gas to be ionized is introduced into the discharge tube 10 through the space between the a and the slit 16.

【0017】前記放電管10の前側には、図示していな
いが、ECR磁場領域で発生されたプラズマからイオン
を放電管10の外に前端開口を介して、矢印aで示すよ
うに、引出すための、イオン引き出し電極が設けられて
いる。
On the front side of the discharge tube 10, although not shown, in order to extract ions from the plasma generated in the ECR magnetic field region to the outside of the discharge tube 10 through the front end opening as shown by the arrow a. , An ion extraction electrode is provided.

【0018】上記のような構造のECRプラズマ発生装
置においては、放電管10の軸方向に延びたミラー磁界
により規定されたECR磁場に、放電管10の軸方向に
沿って、周方向から、スリット16を介して、磁力線に
平行にマイクロ波が導入されるので、カットオフを避け
て高密度プラズマを生成できる。例えば、酸素ガスの圧
力を2 x 10-4Torrとし、2.45GHzのマ
イクロ波の電力を400Wとしたときに、電子密度5.
6 x 1011cm-3、電子温度10eVの高密度、高
エネルギーのプラズマを生成することができた。
In the ECR plasma generator having the above structure, the ECR magnetic field defined by the mirror magnetic field extending in the axial direction of the discharge tube 10 is slit along the axial direction of the discharge tube 10 from the circumferential direction. Since microwaves are introduced in parallel to the magnetic lines of force through 16, high-density plasma can be generated while avoiding cutoff. For example, when the pressure of the oxygen gas is 2 × 10 −4 Torr and the electric power of the microwave of 2.45 GHz is 400 W, the electron density is 5.
It was possible to generate a high-density, high-energy plasma having an electron temperature of 10 eV at 6 × 10 11 cm −3 .

【0019】上記実施例では、ステンレスやアルミナを
装置形成材料として使用したが、これに限定されるもの
ではない。例えば、放電管を軽量化するためには、ステ
ンレスの代わりにアルミニウムを使用しても良く。ま
た、アルミナが加工しにくければ、窒化ボロンを使用し
ても良い。
In the above embodiments, stainless steel and alumina were used as the material for forming the device, but the invention is not limited to this. For example, in order to reduce the weight of the discharge tube, aluminum may be used instead of stainless steel. If alumina is difficult to process, boron nitride may be used.

【0020】前記リング状の永久磁石15としては、内
周面と外周面とで異なる極性のものを使用したが、一側
面と反対側面とで異なる極性のものを使用しても良い。
この場合には、隣合う永久磁石15相互の互いに面する
側面の極性が異なるようにして複数の永久磁石15を放
電管10の軸に沿って互いに所定間隔を有して配置し、
ミラー磁界を放電管10内に、放電管10の中心軸に向
かって凸状に湾曲して、これの内周面近くで発生するよ
うにする。
As the ring-shaped permanent magnet 15, the inner peripheral surface and the outer peripheral surface have different polarities, but one side surface and the opposite side surface may have different polarities.
In this case, a plurality of permanent magnets 15 are arranged at predetermined intervals along the axis of the discharge tube 10 such that the side surfaces of the adjacent permanent magnets 15 facing each other have different polarities.
The mirror magnetic field is curved in the discharge tube 10 in a convex shape toward the central axis of the discharge tube 10 so as to be generated near the inner peripheral surface thereof.

【0021】[0021]

【発明の効果】本発明によれば、導波管窓やヘリックス
アンテナを使用しなくても、効果的にマイクロ波を放電
管中に導入できるので、装置の小形化が可能で、クリー
ンなイオン生成することができ、長時間の運転も可能
で、かつ高濃度のプラズマを発生させることができる。
According to the present invention, since microwaves can be effectively introduced into the discharge tube without using a waveguide window or a helix antenna, the apparatus can be downsized and clean ion can be obtained. It can be generated, can be operated for a long time, and can generate high-concentration plasma.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係わるECRプラズマ発生
装置を概略的に示す縦断面図。
FIG. 1 is a vertical sectional view schematically showing an ECR plasma generator according to an embodiment of the present invention.

【図2】図1に示す装置の一部を示す図。FIG. 2 is a diagram showing a part of the apparatus shown in FIG.

【符号の説明】[Explanation of symbols]

10…放電管、11…同軸アンテナ、12…外部導体、
13…内部導体,14…絶縁材、15…永久磁石、16
…スリット(放射口)
10 ... Discharge tube, 11 ... Coaxial antenna, 12 ... External conductor,
13 ... Inner conductor, 14 ... Insulating material, 15 ... Permanent magnet, 16
… Slit (radiation port)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 プロセスガスが導入される放電管と、こ
の放電管の外周に、この放電管の軸方向に互いに所定間
隔を有して配設され、放電管内に放電管の中心に向かっ
て凸となるミラー磁界を形成する複数のリング状の永久
磁石と、前記放電管にマイクロ波を供給し、前記ミラー
磁界とで、電子サイクロトロン共鳴条件を満たす共鳴域
を電子管内に発生するように、前記放電管にマイクロ波
を供給する手段とを具備し、前記マイクロ波を供給する
手段は、一部が放電管中に同軸的に突出した同軸アンテ
ナと、この同軸アンテナの内部導体に、放電管の軸に沿
って互いに所定間隔を有して形成され、同軸ケーブルを
伝搬したマイクロ波を放電管中に放射させる複数の放射
口とを有することを特徴とするECRプラズマ発生装
置。
1. A discharge tube into which a process gas is introduced, and an outer circumference of the discharge tube, which are arranged at predetermined intervals in the axial direction of the discharge tube, and are disposed in the discharge tube toward the center of the discharge tube. A plurality of ring-shaped permanent magnets forming a convex mirror magnetic field, and supplying microwaves to the discharge tube, the mirror magnetic field, to generate a resonance region in the electron tube satisfying the electron cyclotron resonance condition, Means for supplying microwaves to the discharge tube, wherein the means for supplying microwaves comprises a coaxial antenna part of which coaxially protrudes into the discharge tube, and an internal conductor of the coaxial antenna, the discharge tube ECR plasma generator having a plurality of emission ports that are formed at predetermined intervals along the axis of the above, and that radiate the microwave propagating through the coaxial cable into the discharge tube.
JP5233072A 1993-09-20 1993-09-20 ECR plasma generator Expired - Lifetime JPH0821476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5233072A JPH0821476B2 (en) 1993-09-20 1993-09-20 ECR plasma generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5233072A JPH0821476B2 (en) 1993-09-20 1993-09-20 ECR plasma generator

Publications (2)

Publication Number Publication Date
JPH0785996A true JPH0785996A (en) 1995-03-31
JPH0821476B2 JPH0821476B2 (en) 1996-03-04

Family

ID=16949368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5233072A Expired - Lifetime JPH0821476B2 (en) 1993-09-20 1993-09-20 ECR plasma generator

Country Status (1)

Country Link
JP (1) JPH0821476B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004002201A1 (en) * 2002-06-19 2003-12-31 The Australian National University A plasma beam generator
JP2015530694A (en) * 2012-07-11 2015-10-15 ユニヴェルシテ ジョセフ フーリエ−グレノーブル アンUniversite Joseph Fourier−Grenoble 1 Surface wave applicator for plasma generation
WO2020166969A1 (en) * 2019-02-14 2020-08-20 주식회사 쌤빛 Improved ecr device for uniform plasma generation
CN114698219A (en) * 2020-12-25 2022-07-01 上海光链电子科技有限公司 Ionization source device for hydrogen atom exciter and hydrogen atom exciter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279599A (en) * 1987-05-11 1988-11-16 Matsushita Electric Ind Co Ltd Microwave plasma generating method
JPH03201703A (en) * 1989-12-28 1991-09-03 Rikagaku Kenkyusho Microwave antenna for generating plasma
JPH05182785A (en) * 1990-12-07 1993-07-23 Noriyoshi Sato Microwave discharge reaction device and electrode device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279599A (en) * 1987-05-11 1988-11-16 Matsushita Electric Ind Co Ltd Microwave plasma generating method
JPH03201703A (en) * 1989-12-28 1991-09-03 Rikagaku Kenkyusho Microwave antenna for generating plasma
JPH05182785A (en) * 1990-12-07 1993-07-23 Noriyoshi Sato Microwave discharge reaction device and electrode device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004002201A1 (en) * 2002-06-19 2003-12-31 The Australian National University A plasma beam generator
JP2015530694A (en) * 2012-07-11 2015-10-15 ユニヴェルシテ ジョセフ フーリエ−グレノーブル アンUniversite Joseph Fourier−Grenoble 1 Surface wave applicator for plasma generation
WO2020166969A1 (en) * 2019-02-14 2020-08-20 주식회사 쌤빛 Improved ecr device for uniform plasma generation
KR20200099375A (en) * 2019-02-14 2020-08-24 주식회사 쌤빛 Apparatus for generating improved ecr uniform plasma
CN114698219A (en) * 2020-12-25 2022-07-01 上海光链电子科技有限公司 Ionization source device for hydrogen atom exciter and hydrogen atom exciter
CN114698219B (en) * 2020-12-25 2024-03-12 上海光链电子科技有限公司 Ionization source device for hydrogen atom laser and hydrogen atom laser

Also Published As

Publication number Publication date
JPH0821476B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
JP2959508B2 (en) Plasma generator
US4906900A (en) Coaxial cavity type, radiofrequency wave, plasma generating apparatus
JP4671313B2 (en) Electron cyclotron resonant plasma source with coaxial microwave applicator and plasma generation method
JPH02501965A (en) Electron cyclotron resonance plasma source
JP2010525155A (en) Plasma generator
EP0827182A2 (en) Surface wave plasma processing apparatus
JPH0563413A (en) Device for generating field of regular microwave
US6812647B2 (en) Plasma generator useful for ion beam generation
JPH08102279A (en) Microwave plasma generating device
US5234565A (en) Microwave plasma source
JPH0785996A (en) Ecr plasma generating device
JP3189389B2 (en) Microwave ion source
JPH088159B2 (en) Plasma generator
JPH05182785A (en) Microwave discharge reaction device and electrode device
JP2709162B2 (en) Microwave plasma processing equipment
JP2937468B2 (en) Plasma generator
JPH0750844B2 (en) Microwave antenna for plasma generation
JPH0831443B2 (en) Plasma processing device
JPH07335162A (en) Antenna for high frequency plasma source
JP2644203B2 (en) Microwave power supply device and plasma generator using the same
JPH05345990A (en) Microwave discharge reaction device
JP3396345B2 (en) Plasma generator
JP2909992B2 (en) Microwave discharge reactor
JP3364064B2 (en) Sheet plasma generator
JPH04304630A (en) Microwave plasma generator