JPH0785052B2 - Particle size distribution analysis method - Google Patents

Particle size distribution analysis method

Info

Publication number
JPH0785052B2
JPH0785052B2 JP2312252A JP31225290A JPH0785052B2 JP H0785052 B2 JPH0785052 B2 JP H0785052B2 JP 2312252 A JP2312252 A JP 2312252A JP 31225290 A JP31225290 A JP 31225290A JP H0785052 B2 JPH0785052 B2 JP H0785052B2
Authority
JP
Japan
Prior art keywords
particle size
size distribution
detector
light intensity
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2312252A
Other languages
Japanese (ja)
Other versions
JPH04184144A (en
Inventor
達夫 伊串
喜昭 東川
寿一郎 右近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2312252A priority Critical patent/JPH0785052B2/en
Publication of JPH04184144A publication Critical patent/JPH04184144A/en
Publication of JPH0785052B2 publication Critical patent/JPH0785052B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、分散した試料粒子に光を照射することによっ
て生じる回折光もしくは散乱光の強度分布を複数のディ
テクタで測定し、測定した強度分布のデータから、試料
粒子の粒度分布を求める粒度分布解析方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention measures the intensity distribution of diffracted light or scattered light generated by irradiating dispersed sample particles with light using a plurality of detectors, and measures the measured intensity distribution. The present invention relates to a particle size distribution analysis method for obtaining the particle size distribution of sample particles from the above data.

〔従来の技術〕[Conventional technology]

粒子による光の回折ないしは散乱現象を利用した粒度分
布測定装置では、回折光ないしは散乱光の強度分布、つ
まり回折角ないしは散乱角と光強度との関係を測定し、
これはフラウンホーファ回折ないしはミー散乱の理論に
基づく演算処理を施すことによって、試料粒子の粒度分
布が算出される。
In the particle size distribution measuring device using the diffraction of light by particles or scattering phenomenon, the intensity distribution of diffracted light or scattered light, that is, the diffraction angle or the relationship between the scattering angle and the light intensity is measured,
The particle size distribution of the sample particles is calculated by performing arithmetic processing based on the Fraunhofer diffraction or Mie scattering theory.

第1図は、一般的な粒度分布測定装置の測定光学系を模
式的に示した図である。
FIG. 1 is a diagram schematically showing a measuring optical system of a general particle size distribution measuring device.

第1図において、試料セル1は分散した試料粒子を含む
媒体を収容した透明容器であり、この試料セル1に対し
て光源2から平行な単一波長光Lが照射される。
In FIG. 1, a sample cell 1 is a transparent container containing a medium containing dispersed sample particles, and the sample cell 1 is irradiated with parallel single-wavelength light L from a light source 2.

上記試料セル1の周囲には、その試料セル1中の試料粒
子によって回折もしくは散乱する単一波長光Lを各散乱
角ごとに個々に受光する複数のディテクタd1,d2,…dmが
配置されており、これらのディテクタd1,d2,…dmが検出
する光強度g1,g2,…gmのデータに、フラウンホーファ回
折もしくはミー散乱理論に基づく演算処理を施すことに
よって試料粒子の粒度分布が求められる。
Around the sample cell 1, there are arranged a plurality of detectors d1, d2, ... dm for individually receiving the single wavelength light L diffracted or scattered by the sample particles in the sample cell 1 at each scattering angle. The particle size distribution of the sample particles can be obtained by subjecting the data of the light intensities g1, g2, ... Gm detected by these detectors d1, d2, ... Dm to arithmetic processing based on Fraunhofer diffraction or Mie scattering theory.

第2図は、上記試料粒子の粒度分布f0(j)と各ディテ
クタd1,d2,…dmの感度曲線p1(j),p2(j),…p
m(j)を示すグラフであり、横軸は粒度jは、左側の
縦軸はディテクタd1,d2,…dmの感度を、右側の縦軸は粒
子量をそれぞれ示している。
FIG. 2 shows the particle size distribution f 0 (j) of the sample particles and the sensitivity curves p 1 (j), p 2 (j), ... P of the detectors d1, d2 ,.
3 is a graph showing m (j), where the horizontal axis represents the grain size j, the left vertical axis represents the sensitivity of the detectors d1, d2, ... dm, and the right vertical axis represents the particle amount.

従来の粒度分布解析方法では、上記演算処理を次のよう
に行っている。
In the conventional particle size distribution analysis method, the above arithmetic processing is performed as follows.

いま、各ディテクタd1,d2,…dmで検出される光強度g1,g
2,…gmを行列G、各ディテクタd1,d2,…dmの分布感度曲
線p1(j),p2(j),…pm(j)(以下、必要に応じ
て応答関数と呼ぶ)を行列P、粒度分布f0(j)を行列
Fで表すと、各行列G,P,Fの間には次の関係式 G=PF …(1) が成り立つ。
Now, the light intensity g1, g detected by each detector d1, d2, ... dm
2, ... Gm is a matrix G, and distribution sensitivity curves p 1 (j), p 2 (j), ... P m (j) of each detector d1, d2, ... dm (hereinafter referred to as a response function if necessary) Is represented by a matrix P, and the particle size distribution f 0 (j) is represented by a matrix F, the following relational expression G = PF (1) holds between the matrices G, P, F.

そこで、従来の粒度分布解析方法では、応答関数の行列
Pの逆行列P-1を先ず求め、これと(1)式の関係とか
ら F=P-1G …(2) として、行列Fを求めるという手順で粒度分布f0(j)
が求められていた。
Therefore, in the conventional particle size distribution analysis method, the inverse matrix P −1 of the response function matrix P is first obtained, and from this and the relationship of the equation (1), F = P −1 G (2) Particle size distribution f 0 (j)
Was required.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、上述した従来の粒度分布解析方法では、
一般的に粒度分布の行列Fの解に振動や発散が起こりや
すく、これを回避するために、ディテクタd1,d2,…dmの
数と代表粒子径の数を等しく設定したり、粒度分布の分
布形状やその曲線について収束条件を定める行列を別に
追加しなければならず、演算処理が煩雑になるという問
題点があった。
However, in the conventional particle size distribution analysis method described above,
Generally, the solution of the matrix F of the particle size distribution is likely to vibrate or diverge, and in order to avoid this, the number of detectors d1, d2, ... dm and the number of representative particle diameters are set equal, or the distribution of particle size distribution is There has been a problem that a matrix for defining the convergence condition for the shape and its curve has to be added separately, which makes the calculation process complicated.

上記の従来欠点に鑑み、本発明は、粒度分布の演算解が
振動したり発散せず、しかもディテクタの数に左右され
ず任意の粒子径間隔で粒度分布を求めることのできる粒
度分布解析方法を提供せんとするものである。
In view of the above conventional drawbacks, the present invention provides a particle size distribution analysis method capable of obtaining a particle size distribution at arbitrary particle size intervals without vibrating or diverging the solution of the particle size distribution, and without depending on the number of detectors. It is intended to be provided.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記の目的を達成するために、本発明は、分散した試料
粒子に光を照射することによって生じる回折光もしくは
拡散光の強度分布を複数のディテクタで測定し、測定し
た強度分布のデータから、フラウンホーファ回折もしく
はミー散乱理論に基づいて前記試料粒子の粒度分布を求
める粒度分布解析方法において、予め仮定の粒度分布を
設定し、各ディテクタの感度を重みとして各ディテクタ
の担う粒度範囲に対応する前記仮定粒度分布のそれぞれ
の値から各ディテクタによる計算上の光強度を求め、そ
の計算上の光強度と実測光強度との相違の割合に応じた
値だけ前記仮定粒度分布における各粒度範囲での値をそ
れぞれ補正し、補正した粒度分布を新たな仮定粒度分布
として前記と同じ処理を順次繰り返し、計算上の光強度
と実測光強度との相違の割合が所定の値以内となったと
きの仮定粒度分布を真の粒度分布とすることを特徴とし
ている。
In order to achieve the above-mentioned object, the present invention measures the intensity distribution of diffracted light or diffused light generated by irradiating light on dispersed sample particles with a plurality of detectors, and from the measured intensity distribution data, the Fraunhofer In the particle size distribution analysis method for obtaining the particle size distribution of the sample particles based on the diffraction or Mie scattering theory, the assumed particle size distribution is set in advance, and the assumed particle size corresponding to the particle size range carried by each detector with the sensitivity of each detector as a weight. Calculate the calculated light intensity by each detector from each value of the distribution, the value in each particle size range in the assumed particle size distribution by the value according to the ratio of the difference between the calculated light intensity and the measured light intensity, respectively. Corrected, the corrected particle size distribution is used as a new assumed particle size distribution, and the same processing as above is sequentially repeated to calculate the calculated light intensity and the measured light intensity. Ratio of differences is characterized in that assuming particle size distribution of the true particle size distribution of when it becomes within a predetermined value.

〔作用〕[Action]

上記の構成によれば、各ディテクタの感度を重みとし
て、各ディスクの担う粒度範囲に対応する仮定粒度分布
のそれぞれの値から求められる各ディテクタによる計算
上の光強度と、実測される光強度との相違の割合に応じ
て、各ディテクタの担う粒度範囲に対応する仮定粒度分
布のそれぞれの値が補正され、その補正処理が繰り返さ
れることによって、仮定粒度分布は真の粒度分布に収束
する。
According to the above configuration, with the sensitivity of each detector as a weight, the calculated light intensity by each detector obtained from each value of the assumed particle size distribution corresponding to the particle size range carried by each disk, and the actually measured light intensity The assumed particle size distribution is converged to the true particle size distribution by correcting each value of the assumed particle size distribution corresponding to the particle size range carried by each detector according to the ratio of the difference, and repeating the correction process.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図に示す一般的な粒度分布
測定装置の光学系、および第2図に示すグラフを参照し
て説明する。
An embodiment of the present invention will be described below with reference to an optical system of a general particle size distribution measuring device shown in FIG. 1 and a graph shown in FIG.

この実施例の粒度分布解析方法では、実質的な粒度分布
の解析に入る前に、各ディテクタd1,d2,…dmの分布感度
曲線つまり応答関数p1(j),p2(j),…pm(j)
を、フラウンホーファ回折もしくはミー散乱理論から予
め求めておく。
According to the particle size distribution analysis method of this embodiment, the distribution sensitivity curves of the detectors d1, d2, ... Dm, that is, the response functions p 1 (j), p 2 (j), ... p m (j)
From the Fraunhofer diffraction or Mie scattering theory.

そして、実質的な解析を始めるときに、先ず仮定の粒度
分布f(j)を決める。この場合の変数jは代表粒度を
表す。この仮定の粒度分布f(j)としては、例えば第
2に破線で示すように全粒度範囲にわたって一様な値α
である粒度分布を設定することができる。
Then, when the substantial analysis is started, first, the assumed particle size distribution f (j) is determined. The variable j in this case represents the representative grain size. The assumed particle size distribution f (j) is, for example, secondly, as shown by the broken line, a uniform value α over the entire particle size range.
The particle size distribution can be set.

次に、例えば最も散乱角の大きい粒度範囲R1に対応付け
られるディテクタd1が検出する、上記仮定の粒度分布f
(j)での計算上の光強度g′1を求める。この計算上
の光強度g′1は、ディテクタd1の応答関数p1(j)を
重みとして仮定の粒度分布f(j)から求める。すなわ
ち、 g′1=∫p1(j)・f(j)dj …(1) の式によって求める。
Next, for example, the above assumed particle size distribution f detected by the detector d1 associated with the particle size range R1 having the largest scattering angle
The calculated light intensity g'1 in (j) is obtained. The calculated light intensity g'1 is obtained from the assumed particle size distribution f (j) using the response function p 1 (j) of the detector d 1 as a weight. That is, g′1 = ∫p 1 (j) · f (j) dj (1) is calculated.

次に、上記ディテクタd1によって実測された光強度g1と
上記計算上の光強度g′1との比r0を、 r0=g1/g′1 =g1/∫p1(j)・f(j)dj …(2) の式から求める。
Next, the ratio r 0 between the light intensity g1 measured by the detector d1 and the calculated light intensity g′1 is r 0 = g1 / g ′ 1 = g1 / ∫p 1 (j) · f ( j) dj ... Obtained from the equation (2).

上記比の値r0を重みとして、ディテクタd1に対応する仮
定の粒度分布f1(j)の値を次式 f1(j)={1+(r0−1)p1(i)}f(j) …
(3) のように補正する。
With the value r 0 of the ratio as a weight, the value of the assumed particle size distribution f 1 (j) corresponding to the detector d 1 is expressed by the following expression f 1 (j) = {1+ (r 0 −1) p 1 (i)} f (J) ...
Correct as in (3).

同様にして、上記ディテクタd1の隣のディテクタ、つま
り次に散乱角の大きい粒度範囲R2に対応付けられるディ
テクタd2について、実測された光強度g2と計算上の光強
度g′2との比r1を求める。
Similarly, for the detector adjacent to the detector d1, that is, for the detector d2 associated with the grain size range R2 having the next largest scattering angle, the ratio r 1 between the actually measured light intensity g2 and the calculated light intensity g′2. Ask for.

すなわち、この場合の計算上の光強度g′2は、 g′2=∫p2(j)・f1(j)dj …(4) として求め、比r1は、 r1=g2/g′2 =g2/∫p2(j)・f1(j)dj …(5) の式から求める。That is, the calculated light intensity g′2 in this case is obtained as g′2 = ∫p 2 (j) · f 1 (j) dj (4), and the ratio r 1 is r 1 = g2 / g ′ 2 = g2 / ∫p 2 (j) · f 1 (j) dj… (5)

そして、上記比の値r1を重みとして、ディテクタd2によ
り粒度分布f2(j)の値を次式 f2(j)={1+(r1−1)p2(j)}f1(j) …
(6) のように補正する。
Then, with the value r 1 of the ratio as a weight, the value of the particle size distribution f 2 (j) is calculated by the detector d 2 as follows: f 2 (j) = {1+ (r 1 −1) p 2 (j)} f 1 ( j) ...
Correct as in (6).

以下の各ディテクタd3,d4,…dmに対応して粒度分布f
3(j),f4(j)…fm(j)を同様に順次補正する。
Particle size distribution f corresponding to each of the following detectors d3, d4, ... dm
3 (j), f 4 ( j) ... Similarly sequentially corrected f m (j).

次に、初めのディテクタd1に戻って、2度目の粒度分布
補正を行う。
Next, returning to the first detector d1, the second particle size distribution correction is performed.

この場合の計算上の光強度g′21は、 g′21=∫p1(j)・f1,m(j)dj …(7) として求める。但し、f1,m(j)は1回目の補正で求
めたディテクタdmに対応する粒度分布fm(j)であり、
添字1は1回目の補正であることを表す。g′21の添字
2も、2回目の演算結果であることを表す。
Light intensity g of the calculation in this case '2 1, g' 2 1 = ∫p 1 (j) · f 1, obtained as m (j) dj ... (7 ). However, f 1, m (j) is the particle size distribution f m (j) corresponding to the detector dm obtained in the first correction,
The subscript 1 represents the first correction. The subscript 2 of g ′ 2 1 also indicates that it is the second calculation result.

また、この場合の比の値r2,0は、 r2,0=g1/g′21 =g1/∫p1(j)・f1,m(j)dj …(8) の式から求める。但し、比の値r2,0の添字2は2回目
の演算結果であることを表す。
The value r 2, 0 of the ratio in this case, from the equation r 2,0 = g1 / g '2 1 = g1 / ∫p 1 (j) · f 1, m (j) dj ... (8) Ask. However, the subscript 2 of the ratio value r 2,0 represents the second calculation result.

そして、上記比の値r2,0を重みとして、ディテクタd1
に対応する粒度分布f1(j)の2回目の補正した粒度分
布f2,0(j)を次式 f2,1(j)={1+(r2,0−1)p1(j)}f
1,m(j) …(9) から求める。
Then, using the value r 2,0 of the ratio as a weight, the detector d1
The second corrected particle size distribution f 2,0 (j) of the particle size distribution f 1 (j) corresponding to the following formula f 2,1 (j) = {1+ (r 2,0 −1) p 1 (j )} F
Calculated from 1, m (j) (9).

また、次のディテクタd2による2回目の補正した粒度分
布値f2.2(j)は、比の値r2,1を r2,1=g2/g′22 =g2/∫p2(j)・f2,1(j)dj …(10) として、次式 f2,2(j)={1+(r2,1−1)p2(j)}f
2,1(j) …(11) から求める。
The second corrected particle size distribution value f 2.2 (j) by the detector d2 is the ratio value r 2,1 r 2,1 = g2 / g ' 2 2 = g2 / ∫p 2 (j) · f as 2,1 (j) dj ... (10 ), the following equation f 2,2 (j) = {1+ (r 2,1 -1) p 2 (j)} f
Calculated from 2,1 (j) (11).

以下、同様にして、i番目のディテクタdiによる2回目
の補正した粒度分布値f2,1(j)は、次式 f2,1(j)={1+(r2,1−1−1)pi(j)} ×f2,i−1(j) …(12) から求める。
Similarly, the particle size distribution value f 2,1 (j) corrected by the i-th detector di for the second time is expressed by the following equation f 2,1 (j) = {1+ (r 2,1-1 −1). ) P i (j)} × f 2, i−1 (j) (12)

このような補正を、各ディデクタd1,d2,…dmの配列順序
にしたがって以後も繰り返すことによって、一般的にn
回目におけるi番目のディテクタdiにより補正した粒度
分布値fn,i(j)として、次式 fn,i(j)={1+(rh,i−1−1)pi(j)} ×fn,i−1(j) …(13) を求めることができる。
By repeating such correction in accordance with the arrangement order of the respective detectors d1, d2, ...
As the particle size distribution value f n, i (j) corrected by the i-th detector di at the time, the following expression f n, i (j) = {1+ (r h, i−1 −1) p i (j)} × f n, i−1 (j) (13) can be obtained.

また、上記比の値rn,i−1は、次式 rn,i−1=gj/g′ni =gi/∫pi(j)・fn,i−1(j)dj …(14) として求めることができる。Further, the value r n, i−1 of the above ratio is expressed by the following equation r n, i−1 = gj / g ′ n i = gi / ∫p i (j) · f n, i−1 (j) dj. (14) can be obtained as

但し、添字(i−1)が1の場合、つまりディテクタd1
により補正した粒度分布値fn,i(j)を求める場合に
は、そのために用いる1つ隣のディテクタの粒度分布補
正値fn,i−1(j)として、ディテクタdmの1回前、
つまり(n−1)回目の補正値fn,i−m(j)を採用
する。
However, when the subscript (i-1) is 1, that is, the detector d1
When the particle size distribution value f n, i (j) corrected by the above is obtained, as the particle size distribution correction value f n, i−1 (j) of the next adjacent detector used for that, one time before the detector dm,
That is, the (n−1) th correction value f n, i−m (j) is adopted.

そして、各ディテクタd1,d2,…dmにおける|rn,i−1−1
|が全て予め定めた一定値以下になったとき、すなわち
仮定した粒度分布の補正が進んで真の粒度分布値に十分
収束したと見なすことができる時点で、上記補正の繰り
返しを打ち切り、この時の補正した粒度分布値f
n,1(j)を求めるべき真の粒度分布値とする。
Then, | r n, i−1 −1 in each detector d1, d2, ... dm
When all of | are less than or equal to a predetermined fixed value, that is, when it can be considered that the assumed correction of the particle size distribution has proceeded sufficiently and converged to the true particle size distribution value, the above correction is terminated and Corrected particle size distribution value f
Let n, 1 (j) be the true particle size distribution value to be determined.

〔発明の効果〕〔The invention's effect〕

本発明は、上述した構成より成り、各ディテクタの感度
を重みとして、各ディテクタの担う粒度範囲に対応する
仮定粒度分布のそれぞれの値から各ディテクタによる計
算上の光強度を求め、その計算上の光強度と実測された
光強度との相違の割合に応じて、各ディテクタの担う粒
度範囲に対応する仮定粒度分布のそれぞれの値を補正
し、その補正処理を繰り返すことによって、仮定粒度分
布を真の粒度分布に収束させるようにしているので、粒
度分布の演算解が振動したり発散せず、しかもディテク
タの数に左右されず任意の粒子径間隔で粒度分布求める
ことができる。
The present invention is configured as described above, and the sensitivity of each detector is used as a weight, and the calculated light intensity by each detector is obtained from each value of the assumed particle size distribution corresponding to the particle size range carried by each detector, and the calculated light intensity is calculated. The assumed particle size distribution is corrected by correcting each value of the assumed particle size distribution corresponding to the particle size range of each detector according to the ratio of the difference between the light intensity and the actually measured light intensity, and repeating the correction process. Since the calculation solution of the particle size distribution does not oscillate or diverge, the particle size distribution can be obtained at an arbitrary particle size interval regardless of the number of detectors.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は本発明の一実施例の説明図を示
し、第1図は一般的な粒度分布測定装置の測定光学系を
模式的に示す図、第2図は試料粒子の粒度分布と前記粒
度分布測定装置における各ディテクタの感度曲線を示す
グラフである。 d1〜dm……ディテクタ、g1〜gm……実測光強度、f
(j)……仮定粒度分布、p1(j)〜pm(j)……ディ
テクタの感度、R1〜Rm……ディテクタの分担粒度範囲。
1 and 2 are explanatory views of one embodiment of the present invention, FIG. 1 is a diagram schematically showing a measuring optical system of a general particle size distribution measuring device, and FIG. 2 is a particle size of sample particles. It is a graph which shows distribution and a sensitivity curve of each detector in the above-mentioned particle size distribution measuring device. d1 to dm …… detector, g1 to gm …… measured light intensity, f
(J) ...... assumed particle size distribution, p 1 (j) ~p m (j) sensitivity ...... detectors share size range of R1 to Rm ...... detector.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】分散した試料粒子に光を照射することによ
って生じる回折光もしくは散乱光の強度分布を複数のデ
ィテクタで測定し、測定した強度分布のデータから、フ
ラウンホーファ回折もしくはミー散乱理論に基づいて前
記試料粒子の粒度分布を求める粒度分布解析方法におい
て、予め仮定の粒度分布を設定し、各ディテクタの感度
を重みとして各ディテクタの担う粒度範囲に対応する前
記仮定粒度分布のそれぞれの値から各ディテクタによる
計算上の光強度を求め、その計算上の光強度と実測光強
度との相違の割合に応じた値だけ前記仮定粒度分布にお
ける各粒度範囲での値をそれぞれ補正し、補正した粒度
分布を新たな仮定粒度分布として前記と同じ処理を順次
繰り返し、計算上の光強度と実測光強度との相違の割合
が所定の値以内となったときの仮定粒度分布を真の粒度
分布とすることを特徴とする粒度分布解析方法。
1. The intensity distribution of diffracted light or scattered light generated by irradiating dispersed sample particles with light is measured with a plurality of detectors, and based on Fraunhofer diffraction or Mie scattering theory based on the measured intensity distribution data. In the particle size distribution analysis method for obtaining the particle size distribution of the sample particles, an assumed particle size distribution is set in advance, and the detector is selected from the respective values of the assumed particle size distribution corresponding to the particle size range carried by each detector with the sensitivity of each detector as a weight. Calculate the calculated light intensity, correct the value in each particle size range in the assumed particle size distribution by a value corresponding to the ratio of the difference between the calculated light intensity and the measured light intensity, and then correct the particle size distribution. As a new assumed particle size distribution, the same processing as the above is sequentially repeated, and the difference between the calculated light intensity and the measured light intensity is within a predetermined value. The particle size distribution analysis method characterized by the assumptions particle size distribution and the true particle size distribution when the Tsu.
JP2312252A 1990-11-17 1990-11-17 Particle size distribution analysis method Expired - Fee Related JPH0785052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2312252A JPH0785052B2 (en) 1990-11-17 1990-11-17 Particle size distribution analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2312252A JPH0785052B2 (en) 1990-11-17 1990-11-17 Particle size distribution analysis method

Publications (2)

Publication Number Publication Date
JPH04184144A JPH04184144A (en) 1992-07-01
JPH0785052B2 true JPH0785052B2 (en) 1995-09-13

Family

ID=18026999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2312252A Expired - Fee Related JPH0785052B2 (en) 1990-11-17 1990-11-17 Particle size distribution analysis method

Country Status (1)

Country Link
JP (1) JPH0785052B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5418383B2 (en) * 2010-04-13 2014-02-19 株式会社島津製作所 Particle size distribution measuring apparatus and program
JP6218449B2 (en) * 2013-06-17 2017-10-25 株式会社堀場製作所 Particle size distribution measuring device
JP6883770B2 (en) * 2018-02-27 2021-06-09 パナソニックIpマネジメント株式会社 Particle detection sensor

Also Published As

Publication number Publication date
JPH04184144A (en) 1992-07-01

Similar Documents

Publication Publication Date Title
Eisenstein et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies
Frazin et al. Tomography of the solar corona. II. Robust, regularized, positive estimation of the three-dimensional electron density distribution from LASCO-C2 polarized white-light images
JP2001525933A (en) Neutron spectrum detection method and device for implementing the method
Icenogle et al. Fluorescence correlation spectroscopy and photobleaching recovery of multiple binding reactions. II. FPR and FCS measurements at low and high DNA concentrations
Mendez et al. Beyond integration: modeling every pixel to obtain better structure factors from stills
JPH0785052B2 (en) Particle size distribution analysis method
Khattak et al. High energy physics calorimeter detector simulation using generative adversarial networks with domain related constraints
Englert et al. Intrinsic and operational observables in quantum mechanics
JPH07325026A (en) Particle size distribution measuring method
Wu et al. Machine learning method for 12C event classification and reconstruction in the active target time-projection chamber
von Gehlen et al. The spectra of quantum chains with free boundary conditions and Virasoro algebras
CN109239771B (en) elastic wave imaging method based on non-uniform background medium
JP3266107B2 (en) Particle counting method and particle measuring device
Mendez et al. Deep residual networks for crystallography trained on synthetic data
CN106290094A (en) The mie being applied to airborne dust particulate matter on-line monitoring scatters quick calculation method
Nagamine et al. Cosmic Mach Number as a function of overdensity and galaxy age
Millett et al. Angular Correlation of Annihilation Radiation in Alkali Halide Crystals
JPS6335426Y2 (en)
Srivastava et al. Reconstruction of time-dependent concentration gradients around a KDP crystal growing from its aqueous solution
JPS6319004B2 (en)
Ahmadi Characterization of a Super-Kamiokande Photomultiplier tube using the TRIUMF PMT test facility
Venkatakrishnan et al. Wavelength-resolved neutron tomography for crystalline materials
JPS63234187A (en) Method and device for measuring high-energy electromagnetic radiation
Hsu et al. The inverse problem of acoustic emission- Explicit determination of acoustic emission source time-functions
Xie et al. Large sampling intervals for learning and predicting chaotic systems with reservoir computing

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees